
Homework 3

SNU 4910.210 Fall 2012

Chung-Kil Hur

due: 10/19(Sun) 24:00

Exercise 1 “Manual Type Checking”

Type check your solutions (or the official solutions) for homework assign-

ments 1.3, 1.5, 1.6, 2.1, 2.2, and 2.3.

Exercise 2 “Maze Validation”

A maze is defined as follows.

• A maze consists of n×m rooms arranged in n rows and m columns.

• Two contiguous rooms may or may not have a wall between them.

• There are two special rooms: one for the start in the top row and one for

the end in the bottom row.

Define a function maze-check that checks whether a given maze is valid or

not.

maze-check : maze × room × room → bool

More specifically, maze-check determines, given a maze M and two rooms r1, r2,

whether there is a path from r1 to r2 in the maze M . Then, we can check the

validity of any given maze by checking whether there is a path from the start

room to the end one using maze-check.

You can define maze-check using the following functions without know-

ing how they are implemented. TAs will provide an implementation of those

1



functions for you.

can-enter : maze × room → room list

same-room? : room × room → bool

empty-set : room set

add-element : room × room set → room set

is-member? : room × room set → bool

is-subset? : room set × room set → bool

can-enter returns, given a room r, the list of those rooms r′ that are next to

r with no wall between r and r′. same-room? determines whether given two

rooms are the same one or not.

Also, show that your function maze-check always terminates. 2

Exercise 3 “Maze Generation”

Define a function

mazeGen : int × int → maze

that generates, given two positive integers n and m, a valid maze of size n×m

at random.

Here is an example of maze:

Use the following functions that will be provided by TAs. Your imple-

mentation of mazeGen should not depend on how the functions provided are

2



implemented.

init-maze : int × int → maze

open-s : int × int ×maze → maze

open-n : int × int ×maze → maze

open-e : int × int ×maze → maze

open-w : int × int ×maze → maze

maze-pp : maze → void

(init-maze n m) returns the maze of size n×m that is fully blocked, meaning

that it has a wall between every pair of two contiguous rooms. Each room has

a coordinate (i, j) with 0 ≤ i ≤ n − 1 and 0 ≤ j ≤ m − 1. (open-s i j M)

removes the south wall of the room at (i, j) from the maze M . The functions

open-n, open-e and open-w similarly remove the north, the east and the west

wall, respectively. (maze-pp M) prints the maze M .

A reasonable way to generate a valid random maze is to first randomly

choose a start room in the top row and an end room in the bottom row; and

then repeatedly remove a randomly chosen wall until there is a path from the

start room to the end one.

You can use the function random: see http://tinyurl.com/o7jvlyb for

the details. 2

3

http://tinyurl.com/o7jvlyb

