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Abstract

The purpose of this paper is threefold: to present a general abstract, yet practical,
notion of equational system; to investigate and develop the finitary and transfinite
construction of free algebras for equational systems; and to illustrate the use of
equational systems as needed in modern applications.
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1 Introduction

The importance of equational theories in theoretical computer science is by
now well established. Traditional applications include the initial algebra ap-
proach to the semantics of computational languages and the specification of
abstract data types pioneered by the ADJ group [19], and the abstract de-
scription of powerdomain constructions as free algebras of non-determinism
advocated by Plotkin [21126] (see also [1]). While these developments essen-
tially belong to the realm of universal algebra, more recent applications have
had to be based on the more general categorical algebra. Examples include
models of name-passing process calculi [12]32], theories of abstract syntax
with variable binding [I3J16], and the algebraic treatment of computational
effects [2728].

In the above and most other applications of equational theories, the existence
and construction of initial and/or free algebras, and consequently of monads,
plays a central role; as so does the study of categories of algebras. These
topics are investigated here in the context of equational systems, a very broad
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notion of equational theory introduced by the authors in [I1]. Examples of
equational systems include enriched algebraic theories [23/31], algebras for a
monad, monoids in a monoidal category, etc. (see Section .

The original motivation for the development of the theory of equational sys-
tems arose from the need of a mathematical theory readily applicable to two
further examples of equational systems: (i) m-algebras (see Section[7.1]), which
provide algebraic models of the finitary m-calculus [32], and (i) X-monoids (see
Section , which are needed for the initial algebra approach to the semantics
of languages with variable binding and capture-avoiding simultaneous substi-
tution [I3/10]. Indeed, these two examples respectively highlight two inade-
quacies of enriched algebraic theories in applications: (i) models may require
a theory based on more than one enrichment, as it is the case with m-algebras;
and (7i) the explicit presentation of an enriched algebraic theory may be hard
to give, as it is the case with Y>-monoids.

Further benefits of equational systems over enriched algebraic theories are
that the theory can be developed for cocomplete, not necessarily locally pre-
sentable, categories (examples of which are the category of topological spaces,
the category of directed-complete posets, and the category of complete semi-
lattices), and that the concept of equational system is straightforwardly dual-
izable: an equational cosystem on a category is simply an equational system on
the opposite category (thus, for instance, comonoids in a monoidal category
are algebras for an equational cosystem). On the other hand, the price paid for
all this generality is that the important connection between enriched algebraic
theories and enriched Lawvere theories [29] is lost for equational systems.

An equational system S = (¢ : X >T'F L = R) is defined as a parallel pair
L, R : ¥-Alg — I'-Alg of functors between categories of algebras over a base
category % . In this context, the endofunctor > on %, which generalizes the
notion of algebraic signature, is called a functorial signature; the functors L
and R over ¥ generalize the notion of equation and are called functorial
terms; the endofunctor I' on %, referred to as a functorial context, corre-
sponds to the context of the terms. The category of S-algebras is the equalizer
S-Alg < 3-Alg of L, R. Thus, an S-algebra is a -algebra (X,s: XX — X)
such that L(X,s) = R(X,s) as ['-algebras on X.

Free constructions for equational systems are investigated in Sections [4 and [5]
For an equational system S = (¢ : ¥ > I' F L = R), the existence of free
S-algebras on objects in € is considered in two stages: (i) the construction of
free Y-algebras on objects in ¢, and (i) the construction of free S-algebras
over X-algebras. The former captures the construction of freely generated
terms with operations from the functorial signature ¥3; the latter that of quo-
tienting Y-algebras by the equation L = R and congruence rules. We give fini-
tary and transfinite sufficient conditions for the existence of free S-algebras



on Y-algebras. The finitary condition can be used to deduce the existence of
free algebras for enriched algebraic theories, but it applies more generally. The
proofs of these results provide constructions of free algebras that may lead to
explicit descriptions. Indeed, as concrete examples of this situation, we con-
sider algebraic models of the untyped A-calculus up to 87 identities (see Sec-
tion and the recently introduced nominal equational theories of Clouston
and Pitts [7] (see Section [7.3).

Monads and categories of algebras for equational systems are discussed in
Section [6] In the vein of the above results, we provide conditions under which
the monadicity and cocompleteness of categories of algebras follow. As a di-
rect application, we deduce that the categories of (i) m-algebras (Section[7.1]),
(i4) A-algebras (Section [7.2), and (iii) algebras for nominal equational theo-
ries (Section are monadic and cocomplete.

2 Algebraic equational theories

To set our work in context, we briefly review the classical concept of al-
gebraic equational theory and some basic aspects of the surrounding the-

ory (see e.g. [§]).

An algebraic equational theory consists of a signature defining its operations
and a set of equations describing the axioms that it should obey.

A signature ¥ = (O, [—]) is given by a set of operators O together with a
function [—] : O — N giving an arity to each operator. The set of terms Tx (V)
on a set of variables V' is built up from the variables and the operators of the
signature X by the following grammar

teTs(V) == v | olty,..., tg)
where v € V| 0 is an operator of arity k, and t; € Tx(V) for alli =1,... k.

An equation of arity V for a signature ¥, written X > V [ = r, is given by
a pair of terms [, € Tx(V).

An algebraic equational theory T = (X, F) is given by a signature > together
with a set of equations E.

An algebra for a signature ¥ is a pair (X, [—]y) consisting of a carrier set
X together with interpretation functions [o]  : XI?) — X for each opera-
tor o in Y. By structural induction, such an algebra induces interpretations
[t]5 : XV — X of terms t € Tx(V) as follows:
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An algebra for the theory T = (X, F) is an algebra for the signature ¥ that sat-
isfies the constraints given by the equations in £, where a X-algebra (X, [—] )
is said to satisfy the equation ¥ > V F [ = r whenever [l] & = [r]4Z for
all # € XV.

A homomorphism of T-algebras from (X, [—]) to (Y,[—],) is a function
h : X — Y between their carrier sets that commutes with the interpretation of
each operator; that is, such that h([o] y(x1,...,2%)) = [o]y (R(z1), ..., h(z))
for all x; € X. Algebras and homomorphisms form the category T-Alg.

The existence of free algebras for algebraic theories is one of the most signifi-
cant properties that they enjoy. For an algebraic theory T = (X, E), the free
algebra over a set X has as carrier the set Tx(X)/~, of equivalence classes
of terms on X under the equivalence relation ~p defined by setting t ~p t’
iff ¢ is provably equal to ¢’ by the equations given in E and the congruence
rules. The interpretation of each operator on 7%(X)/~, is given syntactically:
[ol([t1]~pgs - - - [tklmg) = [0(t1, - . . s tk)]~p- This construction gives rise to a left
adjoint to the forgetful functor Uy : T-Alg — Set. Moreover, the adjunction
is monadic: T-Alg is equivalent to the category of algebras for the associated
monad on Set.

3 Equational systems

We develop abstract notions of signature and equation, leading to the concept
of equational system. Free constructions for equational systems are considered
in the following two sections.

3.1 Functorial signatures

We recall the notion of algebra for an endofunctor and how it generalizes that
of algebra for a signature.

An algebra for an endofunctor ¥ on a category % is a pair (X, s) consisting of
a carrier object X in % together with an algebra structure map s : ¥ X — X.
A homomorphism of -algebras (X,s) — (Y,t)isamap h: X — Y in &
such that h o s = t o ¥ h. ¥-algebras and homomorphisms form the category



¥-Alg, and the forgetful functor Uy, : ¥-Alg — % maps a Y-algebra (X, s) to
its carrier object X.

As it is well known, every algebraic signature can be turned into an endofunc-
tor on Set preserving its algebras. Indeed, for a signature X, one defines the
corresponding endofunctor as %(X) = [,es; X[, so that ¥-Alg and $-Alg
are isomorphic. In this view, we will henceforth take endofunctors as a general
abstract notion of signature.

Definition 3.1 (Functorial signature) A functorial signature on a cate-
gory is an endofunctor on it.

3.2  Functorial terms

We motivate and present an abstract notion of term for functorial signatures.

Let t € Tx(V) be a term on a set of variables V' for a signature . Re-
call from the previous section that for every 3-algebra (X, [—] ), the term ¢
gives an interpretation function [t], : XV — X. Thus, writing I'y for the
endofunctor (—)" on Set, the term ¢ determines a function ¢ assigning to a
Y-algebra (X, [—]y) the I'y-algebra (X, [t] ). Note that the function ¢ does
not only preserve carrier objects but, furthermore, by the uniformity of the
interpretation of terms, that a X-homomorphism (X, [—]y) — (Y,[-]y) is
also a I'y-homomorphism (X, [t]y) — (Y, [t]y). In other words, the function
t extends to a functor 3-Alg — I'y-Alg over Set (i.e. a functor preserving
carrier objects and homomorphisms). These considerations lead us to define
an abstract notion of term in context as follows.

Definition 3.2 (Functorial term) Let X be a functorial signature on a cat-
egory €. A functorial term € : X > I' =T consists of an endofunctor I’ on €,
referred to as a functorial context, and a functor T : ¥-Alg — I'-Alg over € ;
that is, a functor such that Upr o T = Us.

Typically, when a syntactic signature Y is turned into a functorial signature 3
its algebras provide the models of the signature, giving interpretations to the
operators. Moreover, when a syntactic term in context I' F ¢ is turned into a
functorial term ¢ : ¥-Alg — I'-Alg, the object I'X intuitively consists of all
valuations of the context I' in X, and the functor ¢ encodes the process of
evaluating a term to a value, parametrically on models and valuations.

We give a general example of functorial term that arises frequently in applica-
tions. To this end, let Tx, be the free monad on a functorial signature ¥ on a
category €. For an object V € €, to be thought of as an object of variables,
the object TV intuitively represents the terms built up from the variables by



means of the signature. Under this view, thus, we obtain an abstract notion
of term as a generalized element U — TxV. Assume now that € is symmetric
monoidal closed (with structure I, ®, [—,=]) and that ¥ is strong [24], with
strength stxy : X @ (V) — (X ® V). It follows that T is strong, say with
strength sty y : X @ Tx(V) — T%(X ® V) providing a means to distribute
parameters within terms as specified by st. In this situation, then, every ab-
stract term ¢ : U — TxV induces a functorial term ¢ : ¥-Alg — 'y y-Alg, for
the functorial context I'yy (=) = [V, —] ® U, as follows:

t(X,s: XX —X)
— (V. X] o U M8 [V, X] @ To(V) =5 15V, X] @ V) 2 1px 55 X))
where (X, 5 : T X — X) is the Tx-algebra corresponding to the ¥-algebra (X s).

3.3  Equational systems

We define equational systems, our abstract notion of equational theory.

Definition 3.3 (Equational system) An equational system
S=(¢:S>THL=R)

s given by a functorial signature 3 on a category €, and a pair of functorial
terms € : X > T FL and € : X > T F R referred to as a functorial equation.

We have restricted attention to equational systems subject to a single equation.
The consideration of multi-equational systems (¢ : ¥ > {I'; b L; = R; }ier)
subject to a set of equations in what follows is left to the interested reader. We
remark however that our development is typically without loss of generality;
as, whenever % has [-indexed coproducts, a multi-equational system as above
can be expressed as the equational system (¢ : ¥ > [[;c; I'i b [Lilier = [Rilier)
with a single equation.

Recall that an equation ¥ > V' [ = r in an algebraic theory is interpreted as
the constraint that the interpretation functions associated with the terms [ and
r coincide. Hence, for an equational system S = (¢ : ¥ > ' = L = R), it is nat-
ural to say that a X-algebra (X s) satisfies the functorial equation I' - L = R
whenever L(X,s) = R(X,s) : I'X — X, and consequently to define the cat-
egory of algebras for the equational system as the full subcategory of »-Alg
consisting of the Y-algebras that satisfy the functorial equation I' - L = R.
Equivalently, we introduce the following definition.

Definition 3.4 For an equational system S = (¢ : ¥ > I' F L = R), the
category S-Alg of S-algebras is the equalizer of L, R : ¥-Alg — I'-Alg (in the
large category of locally small categories over €).



3.4

Ezxamples

Examples of equational systems together with their induced categories of al-
gebras follow.

(1)

The equational system St associated to an algebraic theory T = (3, E)
is given by (Set : ¥ > I't F Lt = Ry), with X1X = [[,ex X9, 't X =
H(Vl—l:r)eE XV, and

Le(X, [-]x) = (X’ [[[ZHX}(VH:T)EE) ’

Rr(X, [-]x) = (X7 “[T]]X}(Vl—l:r)eE) '

It follows that T-Alg is isomorphic to St-Alg.
More generally, consider an enriched algebraic theory T = (¥, B, E, 0, T)
on a locally finitely presentable category % enriched over a suitable cat-
egory ¥, see [23]. Recall that this is given by functors B, E : |65,| — %o
and a pair of morphisms 0,7 : FEE — F B between the free finitary mon-
ads FFB and F'E on % respectively arising from B and E. The equa-
tional system St associated to such an enriched algebraic theory T is
given by (%o : (GB)y > (GE)y F 79 =T7y), where GB and GE are
the free finitary endofunctors on € respectively arising from B and FE,
and where @ and 7 are respectively the functors corresponding to o
and 7 by the bijection between morphisms FFE — FB and functors
GB-Alg 2 ¢1B — ¢FF = GE-Alg over €. It follows that (T-Alg)y is
isomorphic to Sr-Alg.
The definition of Eilenberg-Moore algebra for a monad T = (7,7, u)
on a category ¢ with binary coproducts can be directly encoded as the
equational system St = (¢ : T > '+ L =R) with I'(X) = X +T?X
and

L(X,s)=(X,[sony ,soux]),

R(X,s)=(X,] idy ,so0Ts]) .

It follows that Sp-Alg is isomorphic to the category €T of Eilenberg-
Moore algebras for T.

The definition of monoid in a monoidal category (¢, ®, I, a, \, p) with
binary coproducts yields the equational system

Snton(e) = (€ : E > T+ L = R)
with $(X) = (X@X)+1,T(X) = (X@X)®X)+(I®X)+(X®I), and
L(X,[m,e]) = (X, [ mo (m®idx) : Ax : PX D,
R(X,[m,e]) = (X,[mo (idy ®m)oaxx,x ,mo(e®idx),mo (idx ®e) |).

It follows that Syion(#)-Alg is isomorphic to the category of monoids and
monoid homomorphisms in %.



4 Finitary free constructions for equational systems

We give sufficient finitary conditions for the existence of free algebras for
equational systems; that is, for the existence of a left adjoint to the forgetful
functor Us : S-Alg — ¢, for S an equational system. Since, by definition, the
forgetful functor Us decomposes as S-Alg“sis— X-Alg-Us— ¢, its left adjoint
can be described in two stages as the composition of a left adjoint to Us
followed by a left adjoint to Js. Conditions for the existence of the former
have been studied in the literature (see e.g. [3/4]). Thus, we concentrate here
on obtaining a reflection to the embedding of S-Alg into »-Alg.

4.1 Algebraic coequalizers

The construction of free algebras for an equational system explained in Sec-
tion depends on the key concept of algebraic coequalizer, whose existence
and explicit construction is dealt with in here.

Definition 4.1 Let X be an endofunctor on a category €. By a X-algebraic
coequalizer of a parallel pair l,r in € into the carrier object Z of a X-algebra
(Z,t) we mean a universal X-algebra homomorphism z from (Z,t) coequalizing
the parallel pair.

NI —2E g
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The following lemma, shows how algebraic coequalizers may be seen to arise
from coequalizers by reflecting algebra cospans to algebras.

~ \Zh/

Definition 4.2 For Y an endofunctor on a category €, we let -AlgCoSpan
be the category with ¥-algebra cospans (Z — Zy «— ¥.Z) as objects and homo-
morphisms (h, hy) between them as follows:
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We will henceforth regard ¥-Alg as a full subcategory of ¥-AlgCoSpan via
the embedding that maps (Z « $7) to (Z - b7 X7).

Lemma 4.3 Let ¥ be an endofunctor on a category €. If the embedding
Y-Alg — >-AlgCoSpan has a left adjoint, then the existence of coequalizers
in € implies that of ¥-algebraic coequalizers.

PROOF.

Nl —2E g

tJ cot reflect lt’
l

Y#)Z co(feq Zl = A
Let [,r be a parallel pair into Z in % and let t:XZ — Z be an algebra
structure. Consider the coequalizer ¢: Z — Z; of I,r in € and let (z,2) :
(Z % 72, & n7) — (7 gl ¥7") be a universal reflection. Then, the
homomorphism z = zy0c: (Z,t) — (Z',t') is a X-algebraic coequalizer of [, r.
O

The missing ingredient for constructing algebraic coequalizers, thus, is the
construction of a reflection from >-AlgCoSpan to »-Alg.

Theorem 4.4 Let X be an endofunctor on a category € with finite colimits. If
% has colimits of w-chains and ¥ preserves them then ¥-Alg is a full reflective
subcategory of >-AlgCoSpan.

PROOF. Given a Y-algebra cospan (¢q : Zyg — Zy < %72y : ty) we construct
a Y-algebra t, : ¥ 7, — Z4 as follows:

AR ARG 3 AR N 3 A RRETED Y/

I

oo colim

where

o Z, Iz, Ly z s a pushout of Z,.q <2 N7, 25 27,41, for all
n > 0;

o 7, with {¢, : Z,, = Z }n>0 is a colimit of the w-chain { ¢, },,>0; and

e {, is the mediating map from the colimiting cone { ¥¢, : ¥7,, — X7 }u>0
to the cone {¢,11 oty }n>o of the w-chain { X¢;, }i>o.

We now show that the homomorphism

(0,71) : (Zo — 2y — BZ0) — (Zoo S Zoo — BZ0)



in >-AlgCoSpan is universal. To this end, consider another homomorphism
(ho, h1) : (Zg — Zy «— XZy) — (W W & $W) and perform the following
construction

S0 2N T, NN Ty - ST
\ \

Ty I\ ——Zy - Zs W
\X}Ll\}u . J{u

where

e for n > 0, h,, o is the mediating map from the pushout Z, .5 to W with
respect to the cone (h,y1: Zy1 — W — X711 : uwo Xhy,y); and

e h. is the mediating map from the colimit Z,, to W with respect to the
cone { hy, }n>o of the w-chain { ¢, }n>o.

As, for all m > 0, u 0 Xhy 0 3¢, = he 0 o © XC,, it follows that hy is a
Y-algebra homomorphism. Hence, (hg, hy) factors as (heo, hoo) © (€, C1)-

We finally establish the uniqueness of such factorizations. Indeed, for any
homomorphism h : (Zy,ts) — (W, u) such that h o = hy, it follows by
induction that h o ¢, = h,, for all n > 0, and hence that h = h. O

Corollary 4.5 Let > be an endofunctor on a category € with finite colimits. If
% has colimits of w-chains and X preserves them then Y-algebraic coequalizers
exist. If, in addition, X preserves epimorphisms then Y-algebraic coequalizers
are epimorphic in €.

PROOF. According to Lemma [4.3| and Theorem the algebraic coequal-
izer of [,r :' Y — Zy with respect to the algebra structure ¢t : X7, — Z; is
given by ¢ : (Zo,t) — (Z,tx) in the construction above where ¢ is
taken to be the coequalizer of [, in € and ty is defined as ¢y o t.

If 3 preserves epimorphisms, then the w-chain {¢, : Z, — Z,11 }n>0 in

consists of epimorphisms, and hence this is also the case for its colimiting cone
{én . Zn — Zoo }nZO- O

10



4.2 Finitary free ¥-algebras

The following result describes a well-known condition for the existence of free
Y-algebras (see e.g. [2]).

Theorem 4.6 Let Y be an endofunctor on a category € with finite coproducts.
If € has colimits of w-chains and ¥ preserves them, then the forgetful functor
Us : X-Alg — € has a left adjoint.

The free Y-algebra (T'X,7x : X(TX) — TX) on an object X € ¥ and the
unit map ny : X — TX are constructed as follows. The object T'X is given
as a colimit of the w-chain { f, : X, — X,41 }u>0, inductively defined by
Xo=0, fo="and X,,;; = X+ XX, fos1 = X + 2f, for n > 0, where
0 is an initial object and ! is the unique map. Since the functor X + ¥(—)
preserves colimits of w-chains, the object X +X(7°X) is a colimit of the w-chain
{X+Xf, : X +2X,, - X +3X,41 }u>o. The map [nx,7x] is the unique
mediating map as follows:

X+ 205X +5(X 4+20) - X 4+ 2(TX)
|
~ ~ =3 nx,7x] (2)

4
0 ——— X+30 X2 X+ R(X+320) - TX colim

The intuition behind this construction of TX, in which ¥ represents a signa-
ture and X an object of variables, is that of taking the union of the sequence
of objects X,, of terms of depth at most n built from the operators in ¥ and
variables in X.

Note that the (X + ¥(—))-algebra in the construction (2)) is obtained as the

reflection of the initial (X + X(—))-algebra cospan (0 LX+208 X+ %0)
as given by the construction ({1)).

4.8 Finitary free S-algebras

We now turn our attention to finitary conditions for the existence of a left
adjoint to the embedding S-Alg — >-Alg. The construction of free S-algebras
on Y-algebras follows.

Theorem 4.7 Let S = (¢ : ¥ > I' b L = R) be an equational system for
which € is finitely cocomplete. If € has colimits of w-chains, and ¥ and T’
preserve them then S-Alg is a full reflective subcategory of 3-Alg.

11



This result is proved by performing an iterative construction that associates a
free S-algebra to every Y-algebra. The cocompleteness assumptions on the base
category allows one to perform the construction, while the other conditions
guarantee that the process stops.

PROOF. Given a Y-algebra (X, s), we construct a free S-algebra (Xo, Soo)
on it as follows:

DXy NN WX, e SX.
|
J{SO Jsl lSQ 13 Soo
1
XO alg é)oeq X1 alg Cloeq X2 """ *X%oo colim (3)
L(Xo,SO)TTR(Xo,SO) L(X1,S1)TTR(X1,S1) L(XQ,SQ)TTR(XQ,SQ) L(Xoo,soo):‘R(Xomsoo)
Xo Teg r'X, ey S 1 CUNTR X,

where

o forn >0, e, : (Xpn,8,) — (Xus1,Sne1) is an algebraic coequalizer of the
parallel pair L(X,, s,), R(X,, sn) : X, — X3

o X with {&,: X, — X }n>0 is a colimit of the w-chain { e, },>0; and

® 5. is the mediating map from the colimiting cone { e, },>o to the cone
{€, 0 sy, }n>0 of the w-chain { e, },>0.

As {T'e, },>0 is a colimiting cone and L(Xw, Soo) 018, = R(X o, So0) 0 I'E,, for
all n > 0, it follows that (X, Soo) is an S-algebra.

We now show that the unit n = &y : (Xo, o) — (Xoo, Seo) satisfies the universal
property that every homomorphism (X, sg) — (W, ) into an S-algebra (W, u)
uniquely factors through it.

Indeed, we construct a factor he : (X0, Soo) — (W, u) of hg : (Xo, So) — (W, u)
through 7 as follows:

Wy 8
s s Sho—
¥
\
L(X0,50) R(XO,SOF) L(X1,51) R(Xl,\
FXg—2 TX;_ oo I'X
\ \
0
Ir'w
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where

o for n > 0, hyy1 @ (Xng1, Snr1) — (W, u) is the factor of h, through the
algebraic coequalizer e, ; and

e h., is the mediating map from the colimit X, to W with respect to the
cone { hy, }n>o-

Then, ho 01 = hy and, as u 0 Xhy 0 Y€, = hy 0 Sop 0 23€, for all n > 0, it
follows that h is a homomorphism (X, so0) — (W, u).

We finally establish the uniqueness of such factorizations: for any homomor-
phism h : (X, o) — (W, u) such that hon = hg, it follows by induction
that h o€, = h,, for all n > 0, and hence that h = h. O

4.4 Inductive free S-algebras

As we have seen above, free S-algebras on Y-algebras may be constructed by
a colimit of an w-chain of algebraic coequalizers (Theorem , each of which
is in turn constructed by a coequalizer and a colimit of an w-chain (Corol-
lary . Here we introduce an extra condition on the functorial signature
and functorial context of an equational system to accomplish the construction
of free algebras in just w steps.

Theorem 4.8 Let S = (¢ : ¥ > I' b L = R) be an equational system for
which € is finitely cocomplete. If € has colimits of w-chains and ¥ preserves
them, and both ¥ and I" preserve epimorphisms, then S-Alg is a full reflective
subcategory of -Alg.

PROOQOF. Consider the construction exhibiting a free S-algebra on the
Y-algebra (X, s9). According to Corollary , the algebraic coequalizer ¢y :
(Xo, 80) — (X7, s1) in there is an epimorphism in %. Thus, so is I'ey and, as
L(X1,s1) oTeg = R(X7, s1) o eg, it follows that (X7, s;) is an S-algebra; the
free one on (Xj, s¢). O

Thus, under the hypothesis of Theorem [{.§ the construction of the free
S-algebra (Xoo, 5o0) on a X-algebra (X, s) with unit 7.y s : (X, 5) = (X, Soc)

13



is simplified as in the following diagram:

X 2L NX, T NX, 20Xy - NXa
J\ po\ pox e
¢ c c ¥
X co(e):q Xl - XQ . X3 Xoo colim (4>
L(X,s>HR<X7s> LKoo 0o R (Koo 500)

Fn(X,s) ‘

I'X

The intuition behind the construction of X; from X as the coequalizer of
L(X,s)and R(X,s) is that of quotienting the carrier object X by the equation
L = R. The construction of X, ., from X, for n > 1 as a pushout is intuitively
quotienting the object X,, by congruence rules. Therefore, the intuition behind
the construction of the free algebra X, is that of quotienting the object X
by both the equation L = R and the congruence rules.

5 Transfinite free constructions for equational systems

This technical section extends the finitary constructions and results of the
previous section to the transfinite case. Overall, the following theorem is es-
tablished.

Theorem 5.1 Let S= (¢ : X > T'F L = R) be an equational system. For €
finitely and chain cocomplete, if either of the following conditions hold

(1) ¥ and T" preserve colimits of k-chains for some limit ordinal k;

(2) 3 preserves colimits of k-chains for some limit ordinal k, and both ¥ and
I' preserve epimorphisms;

(3) € has no transfinite chain of proper epimorphisms, and ¥ preserves epi-
morphisms and colimits of k-chains for some limit ordinal Kk

then the forgetful functor S-Alg — € has a left adjoint.

Remark In item @ above, we take a transfinite chain in a category € to
be an Ord-indexed diagram for Ord the large linear order of ordinals. Main
examples of categories with no transfinite chain of proper epimorphisms are
those that are well-copowered.

Analogously to the development in Section [4] we consider the construction of
algebraic coequalizers, free Y-algebras, and free S-algebras in turn.

14



5.1 Algebraic coequalizers

Let ¥ be an endofunctor on a category ¢, and let (¢ : Z — Z' «+ XZ : t) be a
given Y-algebra cospan. For x an ordinal, we proceed to consider a (possibly
transfinite) construction as depicted below

EC2,w
» Y12 — YCw,w1
A c WA Yy e EZW >EZW+1 e X7,
t § / t t
ope N QI % po . - (%)
colim w
I N i RSN . RN
Z c Z C1,2 Z2 ZIW Cw,w+1 Zw+1 ZH Cr,rk+1 ZN+1

C2,w colim

yielding a chain {ca3 : Zo — Z5 }a<p<w+1 (With ¢g; = ¢) and morphisms
{ta : 3224 = Zat1 ta<s (with ty = t) such that

N7, ——e %7,

l J (5)

_
Zat1 Cat1,8+1 Zv1

commutes.
Precisely, the definitions are as follows: for A < &,

e when A =0,
Zy M5 7 AN, is Z -5 7' v

e when A\ is a successor ordinal o + 1,

CAA+1 t . ta Yca,a+1
7y 225 7\ <2 Y7, is a pushout of 7, <« Y7, =5 ¥Z,.1; and
A A+ A p a+ « a+1,

e when A\ is a limit ordinal,

* c*

Zy A2 Zyi1 N .7y is a pushout of 7, S Z; — XZ,, where
{Car @ Zo = Zx}acn and { ¢}, \ 1 XZy — Z} }a<x are respectively col-
imits of the A-chains { ¢ 3 ta<p<r and { Xca 3 fa<p<r, and where ¢ and ¢5
are respectively the mediating maps from the colimiting cone { ¢, \ }a<a to
the cones { Xca taca and { cay1.1 © Lo Faca of the A-chain { Xc, 5 ta<pen.

Whenever this construction can be performed for the ordinal k, we say that it
reaches k. Furthermore, we say that the construction stops if it does so at
some ordinal x in the sense that it reaches x and the map ¢, 11 : Z, — Zx11
is an isomorphism.

Theorem 5.2 Let X be an endofunctor on a category €. For a X-algebra
cospan (¢ : Z — Z' — XZ : t), if the construction for it stops, then a free

15



Y-algebra on it exists. If, in addition, the endofunctor ¥ preserves epimor-
phisms and the map c is epimorphic in €, then the components of the universal
map from the ¥-algebra cospan to the free ¥-algebra are epimorphic in € .

PROOF. Let (Z < Z' & XZ) be a S-algebra cospan and assume that the
construction for it stops at an ordinal k. We claim that the X-algebra
(Z, (Choprr) Loty : B2, — Z,)is free over (c: Z — Z' «— XZ : t). Indeed, we
show that (co ., c1.) 1 (Zo = 21 — XZy) — (Z, d Z, «— %Z,) is a universal
map in X-AlgCoSpan.

First, note that (co, ¢1,;) is indeed a map in ¥-AlgCoSpan; as we have that
(Conr1) P oty oo, = (Coms1) t ©CrLps1 ©tg = €1 0 to. Second, consider
amap (h1):(Z S 72 & %2) — (W LN g YW) and perform the

following (possibly transfinite) construction:

...... e N7
\

Zowi_ Iy
he

where

o for A =0,
hy is h and hyyq is B/;

e for a successor ordinal A = a + 1,
hy is het1, and hyyq is the mediating map from the pushout Z,.; to
W with respect to the cone (hy: Zy — W « X7, : wo Xhy) of the span
(ta: Zat1 «— X2y — XZpi1 : Xeaat); and

e for a limit ordinal A,
hy is the mediating map from the colimit Z) to W with respect to the cone
{ ha }a<x of the A-chain { ¢, 3 ta<p<r, and hyyq is the mediating map from
the pushout Z, 1 to W with respect to the cone (hy: Zy - W «XZy:u o0 Xh))
of the span (t} : Z\ «— Z5 — X7, : c}).

As hy o (Copr1) t oty = hyr1 0ot =uoXh,, it follows that h, is a Y-algebra
homomorphism (Z,, (¢, xt1) ' 0 t.) — (W, u). Hence, (h,h’) factors as the
composite (hy, hy) o (Cox, C1p)-

We finally establish the uniqueness of such factorizations. For any homomor-
phism ¢ : (Z,, (Cxpr1) ' oty) — (W, u) such that gocy, = R, it follows by (a

16



possibly transfinite) induction that goc, . = h, for all @ < k, and hence that
g = h,.

If 3 preserves epimorphisms and ¢ is an epimorphism in %, then, by (a pos-
sibly transfinite) induction, the morphisms ¢, 3 and Yc¢, s are shown to be
epimorphic in € for all ordinals o < 3 < k. Hence this is the case for ¢, and
Cl,k- 0

Corollary 5.3 Let 3 be an endofunctor on a category € with coequalizers. If
the construction stops for every ¥-algebra cospan (c: Z — Zy «— X7 : t)
with ¢ epimorphic in €, then Y-algebraic coequalizers exist. If, in addition,
Y preserves epimorphisms then Y-algebraic coequalizers are epimorphic in € .

PROOF. Let (Z,t : XZ — Z) be a Y-algebra and let [,r be a parallel pair
into Z in €. Consider a coequalizer ¢ : Z — Z; of [, in € and the X-algebra
cospan (Z < 7, &z ) as in the proof of Lemma As ¢ is an epimorphism,
by Theorem a free S-algebra (Z/,¢)) on (Z % Z, & $©7) exists. Let
(2,2): (25 2, 52) — (727 S 7 i ¥.Z") be the universal map. Then,
the homomorphism z = z; 0¢ : (Z,t) — (Z',t') is an algebraic coequalizer
of I,r.

If ¥ preserves epimorphisms, then, by Theorem [5.2] the maps z,z; are epi-
morphic in € as so is c. g

5.2 Free X-algebras

The following well-known result (see e.g. [2]) follows from Theorem [5.2]

Corollary 5.4 For an endofunctor ¥ on a category € with finite coprod-
ucts, let Xx, for X € €, be the endofunctor X + X(—) on €. For an ob-
ject X € €, if the construction with respect to the endofunctor Xx for the

initial Y x-algebra cospan (0 R >x0 “ Y.x0) stops, then it yields an initial
Y.x-algebra whose Y-algebra component is a free X-algebra on X .

Note that in the above particular case of the construction (), we have that
Xo = 0; that X,y; = X + XX, for all successor ordinals a + 1; and that X
is a colimit of the A-chain { ¢, g }a<p<a for all limit ordinals A.

5.8 Free S-algebras

Let S= (¢ :X>T'F L=R) be an equational system, and let (X,s) be a
given Y-algebra. For k an ordinal, we proceed to consider a (possibly transfi-
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nite) construction as depicted below

Yel,w
e et X(edoel)
X — N X, X, Sl Y X, e BX,
s 51% X:) ej po 55 reflect |Sw Sk
colim%’ i . (**)
X#)Xl\';'/)XS&)XLi)Xw X,
a'e coeq e . colim
L(SJ[R(S) L(Sl)WTR(Sl) o L(SW)H\R(SM) L(SNJTR(SN)
FXLFXl ...... rx, --- TIX,.
\\W—/
lei,w

yielding a chain { e, 5: (Xa, $a) — (X35, 55) ta<p<x (With sop = s) in X-Alg.
Precisely, the definitions are as follows: for A < &,

e when A =0,
(X, sy) s (X s);

e when A\ is a successor ordinal o + 1,
ean : (Xa,8a) — (X, sy) is an algebraic coequalizer of the parallel pair
L(Xa, 8a), R(Xa,8q) : T X, — X,; and

e when A\ is a limit ordinal,

-{etn t Xa = XJtacn and {€)\ : XX, — XJ }aca are respectively
colimits of the A-chains { e, g fa<p<r and { Xea g fa<par;

- ey X3 — XX} and sy ¢ Xy — X} are the mediating maps from the
colimiting cone { €}, , }a<x to the cones { Xe;, \ }acx and { g, 5 0 54 facr;

(X3 2 X3 & $X3) is a pushout of (X5 & X7 2 BX3):

- (X, s)) is a free S-algebra on the S-algebra cospan (X = X? & YX?)
with universal map (e$ o €3, e3); and

- € i Xo — Xy is the composite €5 o e} o€, ).

Whenever this construction can be performed for the ordinal x, we say that
it reaches k. Furthermore, we say that the construction stops if it does
so at some ordinal x in the sense that it reaches x + 1 and the map e ;41 :
X — X,y1 1s an isomorphism.

Theorem 5.5 Let S = (¢ : ¥ > I' = L = R) be an equational system. If
the construction stops for every X-algebra, then S-Alg is a full reflective
subcategory of Y-Alg.

PROOF. Let (X, s) be a X-algebra and assume that the construction for
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it stops at an ordinal k. We claim that the ¥-algebra (X, s, ) is a free S-algebra
on (X, s). First, note that (X, s,) is an S-algebra since e, 11 0 L(Xy, $x) =
ernt1 © R(Xy, s,) and ey .11 is an isomorphism. We will now show that the
homomorphism e, : (X, s) — (X, Sx) is universal.

Consider a homomorphism h : (X, s) — (W, u) and perform the following (pos-
sibly transfinite) construction:

where

e for a successor ordinal A = a + 1,
hy : (X, sx) — (W, u) is the factor of h, through the algebraic coequalizer
€a,a+1; and

e for a limit ordinal A,
- hS is the mediating map from the colimit X3 to W with respect to the
cone { hy }a<n;
- h% is the mediating map from the pushout X3 to W with respect to the
cone (hS : X5 — W «— XX5 : wo Xhg); and
< ha (X, sx) — (W, u) is the factor of

id

(h,h3) : (X3 2 X3 & 5x9) - (W 4w & sw)
through the universal map (e3 o €3, e3).

Thus, h, : (X, $x) — (W,u) is a factor of h : (X,s) — (W,u) through
eor: (X, 8) = (Xy, k).

We finally establish the uniqueness of such factorizations. Indeed, for any
homomorphism g : (X, s,) — (W, u) such that goeg, = h, it follows by (a
possibly transfinite) induction that g o e, = h, for all & < k, and hence that
g = hn- O
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5.4  Main results

We conclude the section by giving three sufficient conditions, respectively cor-
responding to the three conditions of Theorem[5.1] that permit the application
of Corollary and Theorem [5.5] and thus lead to transfinite constructions
of free algebras for equational systems.

Theorem 5.6 Let S = (¢ : X >1F L = R) be an equational system with €
finitely and chain cocomplete.

If 32 preserves colimits of k-chains for some limit ordinal k, then the construc-
tion stops at k for all ¥-algebra cospans.

In addition, if I' preserves colimits of k-chains, or if both X and I" preserve
epimorphisms, then the construction respectively stops at Kk, or at 1, for
every X-algebra.

PROOF. Assume that ¥ preserves colimits of k-chains for some limit or-
dinal k. As ¥ is finitely and chain cocomplete, the construction for a
Y-algebra cospan (¢ : Z — Z' « X.Z : t) reaches the ordinal k. As ¥ pre-
serves the colimiting cone { ¢, x }a<x Of the k-chain { ¢, 5 }a<p<x, the mediating
map c;, is an isomorphism and hence so is ¢, j41.

By Theorem free Y-algebras on X-algebraic cospans exist; and so do
Y-algebraic coequalizers by Corollary . Thus, the construction reaches
any ordinal.

In addition, assume that I' preserves colimits of x-chains, and consider the
construction for a ¥-algebra (X, s) up to the ordinal k+1. As ¥ preserves
the colimiting cone { €, ,, }a<x Of the r-chain { e, p fa<p<s, the mediating map

*

ey is an isomorphism and hence so are e], and ef. From this, we have that
{ €a.r ta<x 1s a colimiting cone of the k-chain { e, 5 }a<p<s. Since I' preserves
it and L(Xy,ss) o eqr = R(Xk,54) 0 leqy for all a < &, it follows that
L(X,,ss) = R(X,,s). Consequently, the algebraic coequalizer ey .1 is an

isomorphism.

Alternatively, besides ¥ preserving colimits of x-chains, assume both that
> and I' preserve epimorphisms, and consider the construction for a
Y-algebra (X, s) up to the ordinal 2. Then, by Corollary , the X-algebraic
coequalizer eg; is epimorphic in %', and thus so is I'eq ;. Moreover, since I'eq 3
equalizes L(X7,s1), R(X1, s1), it follows that L(Xy,s1) = R(X1,s1). As a re-
sult, the algebraic coequalizer e; 5 is an isomorphism. a

Theorem 5.7 Let S = (¢ : X > ' = L = R) be an equational system with
€ finitely and chain cocomplete. If € has no transfinite chain of proper epi-
morphisms and Y preserves epimorphisms, then the construction stops
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for all ¥-algebra cospans (¢ : Z — Z' «— X7 : t) with ¢ epimorphic, and the
construction stops for all ¥-algebras.

PROOF. As ¥ is finitely and chain cocomplete, the construction for a
Y-algebra cospan (¢ : Z — Z' «— XZ : t) with ¢ epimorphic reaches ev-
ery ordinal. As X preserves epimorphisms, it follows by transfinite induction
that the maps ¢, and Yc, g are epimorphic for all ordinals o < 3. Since
{ ¢a.3 ta<peora is a transfinite chain of epimorphisms, there exists, by hypoth-
esis, an isomorphic component c, g for some pair of ordinals a < 3. Thus the
construction stops.

By Theorem and Corollary [5.3] free Y-algebras on X-algebraic cospans
(¢c:Z — 7'« X7 : t) with ¢ epimorphic and Y-algebraic coequalizers exist,
and their associated universal maps are epimorphic in %. Consequently, it fol-
lows that the construction reaches every ordinal for all -algebras and,
by transfinite induction, that the maps e, g, €], ), €5 ), €}, €3, €} are epimor-
phisms in ¢, for all « < # € Ord and k < A € Ord with A\ a limit ordinal.
Since { €q3 ta<peora is a transfinite chain of epimorphisms, there exists, by
hypothesis, an isomorphic component e, 3 for some pair of ordinals a < (.
Thus the construction stops. O

The following two corollaries imply Theorem

Corollary 5.8 Let X be an endofunctor on a category €. For € finitely and
chain cocomplete, if 2 preserves colimits of k-chains for some limit ordinal k,
then 3-Alg is a full reflective subcategory of ¥X-AlgCoSpan and the forgetful
functor ¥X-Alg — € has a left adjoint.

PROOF. The first conclusion follows from Theorems and the sec-
ond one from Theorem [5.6) and Corollary [5.4] (as the endofunctors X + ¥(—)
preserve colimits of k-chains for all X € ¥). O

Corollary 5.9 LetS = (¢ : X > 't L = R) be an equational system. For €
finitely and chain cocomplete, if either of the following conditions hold

(1) ¥ and T' preserve colimits of k-chains for some limit ordinal k;

(2) 3 preserves colimits of k-chains for some limit ordinal k, and both ¥ and
I' preserve epimorphisms;

(3) € has no transfinite chain of proper epimorphisms and % preserves epi-
morphisms

then S-Alg is a full reflective subcategory of 3-Alg.

PROOF. Items and (|2]) follow from Theoremsand ; item (|3]) follows
from Theorems and .51 O
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6 Categories of algebras and monads for equational systems

We consider properties of categories of algebras and monads for equational
systems. The preceding results and those of this section jointly establish the
following theorems.

Theorem 6.1 Let S = (¢ : X > '+ L = R) be an equational system. For €
cocomplete, if 3 and I" preserve colimits of k-chains for some limit ordinal K
then the forgetful functor Us : S-Alg — € is monadic, the induced monad pre-
serves colimits of k-chains, and S-Alg is cocomplete.

Theorem 6.2 Let S = (¢ : ¥ > I' = L = R) be an equational system. For
& cocomplete, if 3 preserves both epimorphisms and colimits of k-chains for
some limit ordinal Kk, and if T preserves either epimorphisms or colimits of
k-chains, then the forgetful functor Us : S-Alg — € is monadic, the induced
monad preserves epimorphisms, and S-Alg is cocomplete.

Theorem 6.3 Let S = (¢ : ¥ > I' = L = R) be an equational system such
that the forgetful functor Us : S-Alg — € has a left adjoint. If € is cocom-
plete and has no transfinite chain of proper epimorphisms, and Y preserves
eptmorphisms, then Us : S-Alg — € is monadic and S-Alg is cocomplete.

Remark Theorem[6.1] and Theorem[6.3 follow from Corollaries|6.6 and[6.3,
and Proposition [6.10; Theorem follows from Propositions and
Corollary[5.9, Theorem and Corollary[5.5

6.1 Monadicily and cocompleteness

For an endofunctor ¥ on a category %, it is well known that if the forgetful
functor ¥-Alg — % has a left adjoint then it is monadic. This result extends
to categories of algebras for equational systems.

Proposition 6.4 Let S be an equational system. If the forgetful functor
Us : S-Alg — € has a left adjoint, then it is monadic.

PROOF. To show the monadicity of Us by Beck’s theorem [25], it is enough
to show that Us creates coequalizers of parallel pairs f,g: (X,r) — (Y,s) in
S-Alg for which f,g : X — Y has an absolute coequalizer, say e : Y — Z,
in @. In this case, then, Xe is a coequalizer of X f, ¥.¢g and I'e is a coequalizer
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of I'f,I'g, so that we have the following situation

b
ZX:;EY%EIZ

f
g
rl SJ (=18
f e +
%\( ? Y —coeq 1%\
L(X,r):‘R(X,r) L(Y,s):\R(Y,s) L(Zt)| |R(Z,t)
rf I
LX = —TY —Le »rz

for a unique ¥-algebra structure ¢ on Z for which L(Z,t) = R(Z,1).

It follows from the universal properties of e and Ye that e : (Y, s) — (Z,t) is a
coequalizer of f,g: (X,r) — (Y,s) in X-Alg, and hence also in S-Alg. a

A general condition for the cocompleteness of categories of algebras for equa-
tional systems follows.

Proposition 6.5 Let S = (¢ : ¥ > I' b L = R) be an equational system
with € cocomplete. If the forgetful functor Us : S-Alg — € has a left adjoint,
S-Alg is a full reflective subcategory of ¥-Alg, and X-Alg has coequalizers,
then the category S-Alg is cocomplete.

PROOF. S-Alg has coequalizers since it is a full reflective subcategory of
¥-Alg, which is assumed to have coequalizers. Also, by Proposition[6.4] S-Alg
is monadic over %. Being monadic over a cocomplete category and having
coequalizers, S-Alg is cocomplete (see e.g. [5l, Proposition 4.3.4]). a

Since the existence of Y-algebraic coequalizers implies that of coequalizers in
Y-Alg, we obtain the following corollary.

Corollary 6.6 LetS = (¢ : X > I't L = R) be an equational system. For €
cocomplete, if either of the following conditions hold

(1) ¥ and I" preserve colimits of k-chains for some infinite limit ordinal k;

(2) 3 preserves colimits of k-chains for some limit ordinal k, and both ¥ and
I' preserve epimorphisms;

(3) € has no transfinite chain of proper epimorphisms, and ¥ preserves epi-
morphisms and colimits of k-chains for some infinite limit ordinal K

then the forgetful functor Us :S-Alg — € is monadic and S-Alg is cocom-
plete.
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6.2 Cocontinuity

We show that the colimit-preservation properties of the functorial signature
and functorial context of an equational system are inherited by the free-algebra
monad.

Recall that a diagram in a category % is a functor from a small category to €.
We say that a class D of diagrams in % is closed under an endofunctor F' on ¢
if the diagram F ol :1— % is in D for all diagrams [ : I — % in D.

Proposition 6.7 Let S = (¢ : ¥ > ' L = R) be an equational system for
which Us : S-Alg — € has a left adjoint, and write (T,n, 1) for the induced
monad on €. For D a class of diagrams in € closed under T, if € has colimits
of diagrams in D and the endofunctors ¥ and I' preserve them, then so does
the endofunctor T .

PROOF. For a diagram [ :1— % in D, let {\; : Ii — colim[ },c and
{6; : TIi — colimTI };c; be colimiting cones. We show that the cones
{TX\; }icr and {6; }ier are isomorphic. Specifically, we construct an inverse
q : T(colimI) — colimT'I to the mediating map p : colim 7T/ — T'(colim [)
from { d; }ier to { TA; }ier as follows.

Let (TX,7x : ¥TX — TX) be the free S-algebra on X € ¥ induced by the
left adjoint to Us. The family 7 = { 7x : ¥TX — TX }xc¢ is natural. Hence,
the family {0; o 7y : XT1Ti — colimT1T };ep is a cone and, as {X0; }ier is
colimiting, we have a unique X-algebra structure ¢ on colim 7] such that the
diagram on the top below

STTi 2 S (colim TT)

I
TJ{ 13
di

4
TIi colim 7'
4 I
L(TIi,-rIi):‘R(TIi,T“) L(colim T1,t)1 | R(colim T'1 )
K
I'TIi I ['(colim T'1)

commutes for all 7 € I. Furthermore, the ¥-algebra (colim 7’7, t) is an S-algebra;
since { I'6; }ier is colimiting and L(colimT'1,t) o I'9; = R(colimT'1,t) o T'); for
all 7 € I.

By the universal property of free algebras, we define ¢ : T'(colim I) — colim T'1
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as the unique map making the following diagram commutative:

ST (colim ) - — = = 5 %(colim T'1)

Tcolim IJ/ lt

T(colimI)- - A eolim TT

Tlcolim IT .
colimny

colim [

This map is a morphism between the cones { T'A; }ier and { §; }ier; as follows
from the commutative diagrams below

TIPS ST (colim I) —22 S (colim TT) ST Ti——= 5 (colim T)

TI zJ/ Tcolim I l lt I ZJ Jt
TIi —2 1 (colim I) ———colim T'1 TIi i colimT'[
) . nri .

7711] ) Neolim IT % I T . Af

Ii—2 s colim [ Ii—=colim [

by the universal property of free algebras. It further follows that the endomap
gopon (colimT1T) is the identity, as it is an endomap on a colimiting cone.

Finally, that the endomap p o ¢ on T'(colim I) is the identity follows from the
commutativity of the diagram below

ST (colim I) —% % (colim T'T) —2- ST (colim 1)

Tcolim IJ Jt (B) J{Tcolim I

T(colim I) —%— colim T'T —2— T'(colim I)
4 (A)
Tcolim IT

colim [

colim I

by the universal property of free algebras.

The commutativity of the diagram (A) above follows from the commutativity
of the following diagram for each ¢ € 1

[i —2—— colim [ —22 L T (colim )
A TTi———ColimT1
oy P
colim T T(colim I)
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because { \; }ier1 is a colimiting cone.

The commutativity of diagram (B) above follows from the commutativity of
the following diagram for each i € I

STTi >0 (colim TT)
ST J
Xp
TIi

2d; TI; YT (colim I)

611 K) J{Tcolim I

Y(colim T'[) ————colim T ——5—— T (colim I)

because { X6; }ier is a colimiting cone. O

Corollary 6.8 LetS= (¢ : X > T+ L = R) be an equational system. For €
finitely and chain cocomplete, if the endofunctors ¥ and I' preserve colimits
of k-chains for some limit ordinal Kk then so does the monad induced by the
left adjoint to the forgetful functor Us : S-Alg — % .

6.3 FEpicontinuity

Let S= (¢ : ¥ > ' F L =R) be an equational system for which the for-
getful functor Us : S-Alg — % has a left adjoint, and write (7,7, u) for the
induced monad on % . It follows from Proposition that if ¥ and I' preserve
cokernel pairs (viz., pushouts of spans with identical legs) then so does T'; so
that, in particular, it also preserves epimorphisms. However, under the free
constructions of Sections [4] and [5 one can directly obtain epicontinuity.

Proposition 6.9 Let X be an endofunctor on a category €, and assume that
€ is finitely and chain cocomplete and that X preserves colimits of k-chains
for some limit ordinal k. If X2 preserves epimorphisms then so does the monad
Ts. induced by the left adjoint to the forgetful functor Uy : ¥-Alg — €.

PROOF. Recall from Theorem and Corollary that the construction
that sets

o for A\ =0,
(Xx — Xop1) = (0= X + 20);

e for A = a4+ 1 a successor ordinal,
(X)\ — X/\Jrl) = (X—FZXQ — X + EX)\), and
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e for A\ a limit ordinal,
X — X1 to be the mediating map from a colimiting cone { X, 11 — Xy }a<a
to the cone { X1 = X + XX, - X+ XX, = Xo41 }

stops at k, in that the map X,, — X, is an isomorphism, and yields an initial
(X + %(—))-algebra (X, [nx,7x] : X + ©X, — X,.) whose component 7y :
¥ X, — X, is a free X-algebra on X.

Given an epimorphism f : X — Y, one constructs a family of epimorphisms
{fa: Xo = Y, }a<s such that

XQHXﬁ

J

Ya E— Yg

by setting fo = id; for1 = f + X f4, for all successor ordinals a + 1; and f)
to be the unique mediating map from the colimiting cone { X, — X }o<x to

the cone { X, LN Yo — Y }a<n, for all limit ordinals A.

0— =X +20XAX 4+ (X +%0) - X,——X+32X, - X, =TpX

lo lHEO lerE(erEO) lfw lerEfw lfnzTg f
0— =Y + 30 Y + 2V +20) - Y,——=Y +3Y, - Y, =TvY

colim

By construction, and because the maps X, — X, and Y, — Y, are iso-
morphisms, it follows that f, onx = ny o f and f, o 7x = 7y o X f.. Thus,
Tsf = f. is an epimorphism. a

Proposition 6.10 Let S = (¢ : X > '+ L = R) be an equational system for
which € is finitely and chain cocomplete. If ¥ preserves both epimorphisms
and colimits of k-chains for some limit ordinal k, and if I' preserves either
epimorphisms or colimits of k-chains, then the monad Ts induced by the left
adjoint to the forgetful functor Us : S-Alg — € preserves epimorphisms.

PROOF. For X € ¥, the free S-algebra (T5X,7Tx) over the free ¥-algebra
(T X,7x) on X is given by means of the constructions and ; and,
as Y preserves epimorphisms, it follows that the universal homomorphism
gx : (IxX,7x) — (TsX, 7x) is epimorphic in €. Then, using Proposition [6.9]
for every epimorphism f : X — Y, we have the following situation

Tu X 5T X

| N |

and so Tsf is an epimorphism. O
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6.4

Ezxamples

We revisit the examples of equational systems given in Section [3in the light
of the above results.

(1)

For the equational system St = (Set : X7 > 't - Lt = Rr) representing
an algebraic theory T, the category St-Alg is monadic over Set and co-
complete, and the free-algebra monad is finitary (i.e., preserves filtered
colimits, or equivalently, colimits of A-chains for all limit ordinals ) by
Theorem [6.1], as Set is cocomplete and Y and I't are finitary. Further-
more, Y7 and 't preserve epimorphisms, and hence Theorems and

apply.

For the equational system Sy = (6, : (GB)o > (GE) - 79 = To) rep-
resenting an enriched algebraic theory T = (¥, B, E, 0, T), the category
Str-Alg is monadic over %, and cocomplete, and the free-algebra monad
is finitary by Theorem [6.1] as € is locally finitely presentable and thus
cocomplete, and (GB)y and (GE), are finitary.

One may apply Theorem to the equational system St representing
a monad T = (T,n,u) on a cocomplete category & as follows. If T’
preserves colimits of A-chains for some limit ordinal ), then Sp-Alg = €T
is cocomplete.

One may also apply Theorem as follows. If ¥ has no transfi-
nite chain of proper epimorphisms and 7" preserves epimorphisms, then
St-Alg = €T is cocomplete.

To the equational system Syon(#) of monoids in a monoidal cocomplete
category € we can apply Theorem as follows. If the tensor product is
finitary (as it happens, for instance, when it is biclosed) then Syions)-Alg
is monadic over ¥ and cocomplete, and the free-monoid monad is finitary.
If the tensor product also preserves epimorphisms (again, as it happens
when it is biclosed) then so does the free-monoid monad, by Theorem .

7 Applications

This section illustrates the theory of equational systems with three sample
modern applications: () pi-calculus algebras (Section [7.1)); (i) binding alge-
bras with substitution structure (Section [7.2)); and (44) nominal equational
theories (Section [7.3)).

Our presentation discusses the difficulties in representing these mathematical
structures as enriched algebraic theories, and shows how these are overcome
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by equational systems. The theory of equational systems is then applied to
study the applications.

7.1  Pi-calculus algebras

m-algebras are an algebraic model of the finitary m-calculus introduced by
Stark in [32]. Here we briefly discuss the concept as algebras for an equa-
tional system. The theory of equational systems is then applied to deduce the
existence of free models.

We need consider the presheaf category Set', for I the (essentially small)
category of finite sets and injections. The category Set! carries an affine doubly
closed structure (see [30]) given by:

e the cartesian closed structure (1, X, (:)(_)), and

e the symmetric monoidal closed structure (1,®, (—) — (:)) induced by

Day’s construction [9] from the symmetric monoidal structure (0),¥) on
I°P given by the empty set () and the disjoint-union tensor W.

Note that, as the tensor unit is terminal, the tensor product comes equipped
with projections:

P XY 2L X®1-5X,

1%

P XV - 10y Sy .

The presheaf of names N € Set! is the inclusion of I into Set.

A 7-algebra is an object A € Set' together with operations nil: 1 — A,
choice: A2 — A, out: N X NxA—A, in: NxAY — A tau: A — A, and
new : (IV — A) — A satisfying the equations of [32, Sections 3.1-3.3 and 3.5].
These algebras, and their homomorphisms, form the category PZ (Setﬂ).

As mentioned in [32], there is a difficulty in expressing m-algebras as alge-
bras for an enriched algebraic theory. Indeed, the concept of w-algebra relies
on the consideration of two enriching structures, but enriched algebraic the-
ories consider only one. More precisely, the operation new : (N — A) — A is
an operation in Set' enriched over itself with respect to the monoidal closed
structure; whilst the other operations are operations in Set! enriched over
itself with respect to the cartesian closed structure. Thus one cannot use en-
riched algebraic theories to represent m-algebras and thereby establish the
existence of free models (i.e., that of a left adjoint to the forgetful functor
U, : PZ(Set') — Set” mapping a 7-algebra to its carrier object).

As we now proceed to show, the operations and the equations for m-algebras
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yield a functorial signature together with functorial equations. The functorial
signature ¥, on Set' is given by setting

Y(A) =14+ A2+ (NXNxA) +(Nx AV)+ A+ (N — A).

In [32], the equations for m-algebras are expressed entirely in the internal
language of Set’ (see also [12]), and hence are shorthand for certain commuting
diagrams. One can easily see that these commuting diagrams directly define
functorial equations. As an example, we consider the equation establishing
the inactivity of a process that inputs on a restricted channel. In the internal
language, the equation is given by

p: N — AN + new(l/x:N. in(x,p@x)) =nil : A

This equation stands for the commutativity of the following diagram:

<P2)EIXN>

N —o AN —254N0 N o (N x AN) (i)

N —o A

! new

1 nil A

where (ps, €)y) is the transpose of the map
(P2, €an) + (N AY) @ N — (N x AY) .
The commuting diagram directly yields a parallel pair of functors

Se-Alg = (N — (=)V)-Alg

over Set’.

The functorial signature >, and the functorial equations induced from the
axioms of m-algebras constitute an equational system S, on Set' such that
S.-Alg = PZ(Set'). From the fact that the presheaves N and 2 are finitely
presentable in Set!, one can easily see that every endofunctor of S, is fini-
tary (or equivalently, that it preserves colimits of k-chains for every infinite
limit ordinal ). Thus the following result follows from Theorem [6.1]

Proposition 7.1 The category of m-algebras PZ(Set') = S,-Alg is cocom-
plete and monadic over Set® with the induced monad being finitary.

The above discussion also applies more generally to axiomatic settings as
in [12] and, in particular, to m-algebras over nominal sets, wCpo', etc.

30



7.2 Algebras with monoid structure

We present the concept of ¥-monoid for an endofunctor ¥ with a pointed
strength [I3[T0] and consider it from the point of view of equational systems.
The theory of equational systems is then used to provide an explicit descrip-
tion of free ¥-monoids. We then show that, for 3, the functorial signature
of the lambda-calculus, the 37 identities are straightforwardly expressible as
functorial equations. The theory of equational systems is further used to relate
the arising algebraic models by adjunctions.

7.2.1 Y-monoids

Let ¥ be an endofunctor on a monoidal category € = (¢,®,1,a,\,p). A
pointed strength for 3 is a natural transformation

sty (vyr—y) ¢ S(X)QY S N(XQY) : €x(I/€)—F

satisfying coherence conditions analogous to those of strengths [24]; that is,
such that the diagrams

StA (1,id}:I—1)

S(A) @I

S(A®T)

e e

(S(A) @ B) @ ¢ 4@ o4 o By g ¢ 2B, (A @ B) @ )

~|axn(A),B,C ~¥(aa,B,c)
2(A)® (B CO) Y(A® (B (0))
commute for all A € € and (B,b: 1 — B),(C,c: I - C)eI/¥%.

StA,(B@C,(b@c)opI_l:I—>B®C)

Remark The notion of pointed strength arises as a special case of that of
a strength for an action of a monoidal category on a category (see [10] and

also [22]).

For an endofunctor ¥ with a pointed strength st on a monoidal category %, the
category of ¥-monoids ¥-Mon (%) has objects given by quadruples (X, s, m, €)
where (X,s:3XX — X) is a X-algebra and (X,m: X @ X — X,e: [ — X)
is a monoid in € satisfying the compatibility law requiring that the diagram

D(X) @ X XXl 5 @ X)) 3 (X)

W{ l

X®X o X
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commutes; morphisms are maps of % that are both Y-algebra and monoid
homomorphisms.

7.2.2  Equational system for ¥-monoids

There are problems in presenting Y-monoids as algebras for an enriched alge-
braic theory. For one thing, if the monoidal category % is not closed, then €
is not enriched over itself. More importantly, however, even when % is closed,
the operation m : X ® X — X is not directly expressible as an operation of
an enriched algebraic theory. Equational systems overcome these problems.

Let ¢ = (¢,®,1,a, A\, p) be a monoidal category with binary coproducts. For
an endofunctor ¥ on % with a pointed strength st, the equational system My,
of ¥-monoids is defined as

(CK:FEDGzl_LZ:RE)

Fo(X) = 3(X)+ (X®X)+1

Ge(X) = (X9X)0X) + (IeX)+ (Xol)+ (B(X)®X)

Ls(X,[s,m,€])

=X, [ mo (m ®idy) ; Ax ; pPX , mo(s®idx) )
Rx(X,[s,m,e])

=(X,[mo(iddx ®m)oax xx,mo(e®idx),mo (idx ®e), soX(m)ostx x.e])

The functoriality of Ly and Ry follows from the naturality of a;, A, p, and st.
By construction, My-Alg is (isomorphic to) ¥-Mon(%).

7.2.8 Free Y-monoids

We now proceed to apply the theory of equational systems developed in this
paper to the algebra of -monoids. For instance, by Theorems and [4.8]
if € is cocomplete, and the endofunctor ¥ : % — % and the tensor prod-
uct ® : €2 — € preserve epimorphisms and colimits of w-chains, then the
category >-Mon(%’) is monadic over %, and free Y-monoids on objects in ¢

can be constructed as in diagram followed by .
While this provides an abstract construction of free X-monoids, when the

monoidal structure is closed, one can go further and give an explicit description
of free ¥-monoids by exploiting the following fact.
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When ¢ is monoidal closed, if the initial (I + X(—))-algebra uX.I 4+ XX
exists, then the initial 3-monoid exists and has carrier object uX.I + XX
equipped with an appropriate Y-monoid structure (see [13]).

Indeed, a free ¥-monoid over A € % is an initial Mg-algebra for M4 the equa-
tional system

(¢: (A+ Fo(-)) > Gs b Ly Us = RoUa)

where U, denotes the forgetful functor (A+Fg(—))—Alg — Fy-Alg. Further-
more, for the endofunctor (A ® —) + X(—) on ¥ with the pointed strength
given by the composite

(A X)+3(X)) Y
> (A X)QY)+2(X)®Y

@A XY TStx (v,y) (
—>

AR (X®Y)+3(X®Y),

one can establish the isomorphism p : Mg-Alg & Mag—)+5(-)-Alg : ¢ with p
and ¢ given by

p(X, la,s,m,e] : A+ XX + XX +1 — X)
— (X, [mo(a®idx),s,m,e] : AQX + X + X@X + [ — X)

X, [bys,mye] : AX + XX + XX + 1 — X)
= (X, bo(idda®e)opy',s,mye] : A+3XX + XX +1 — X).

Thus, we have the following result (see also [10]).

Proposition 7.2 Let € be a monoidal closed category with binary coprod-
ucts. For any object A € €, if the initial (] +(A® —) + E(—)g—algebm
uX. I+ A® X+ XX exists, then the free Y-monoid on A exists and has
carrier object uX. I + A® X + XX equipped with an appropriate X-monoid
structure.

7.2.4  Lambda-calculus algebras

As a concrete example of algebras with monoid structure, we start by consid-
ering the syntax of the A-calculus, with models given as certain Y,-monoids
on the presheaf category Set” for IF the (essentially small) category of finite
sets and functions.

We quickly review the structure of Set” needed here. Besides the cartesian

closed structure, the presheaf category Set™ is equipped with the substitution
monoidal structure (V,e), where the unit V' is the embedding of F into Set
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and the tensor e is given by the coend formula
keF
(XeV)m)= [ X(k) x (Yn)* .

This substitution monoidal structure is closed.

The endofunctor (—)" on Set” has the property of shifting presheaves; in that,
for any presheaf X € Set”, the set X" (n) can be presented as X (n + 1) for
all finite sets n € F.

A A-prealgebra [13] is a ¥)-monoid for the endofunctor £, X = XV + X? with
a suitable pointed strength on the presheaf category Set”. The operations of
a Xy-monoid

(X, [abs,app,sub,var] : XV + X? + (X ¢ X) + V — X))

provide interpretations of A-abstraction (abs : XV — X)), application (app :
X? — X), capture-avoiding simultaneous substitution (sub: X ¢ X — X)),
and variables (var: V — X).

The initial 3)-monoid has carrier object uX.V + XV + X2, It consists of
a-equivalence classes of A\-terms with variables from V', and thus provides an
abstract notion of syntax for the A-calculus (see [13]). The syntactic description
of free ¥y-monoids has been considered in [20/10].

The (7 identities for a \-prealgebra on X are expressed, in the internal lan-
guage, by the following equations

(B) f:XV,z:X b app(abs(f),x) = sub(f(z)) : X
n) z:X F abs()\v : V.app(a:,varv)) —z: X

where the map —(=) : X' x X — X ¢ X embeds X" x X into X e X. Indeed,
the equations stand for the following commuting diagrams

XV » XLX o X X z: X F Av:V.app(z,varv) XV

absxXl Jsub \ labs
idx
X x X 2pP X X

where the map x : X F Av: V.app(z,varv) is the transpose of the composite

X x VL X o X PP X
These commuting diagrams provide a functorial equation

Lﬁﬁ = Rﬁﬂ : FE/\—AIg — Gﬁn-Alg s
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for Gg, X = (XV x X) + X, and yield the equational system of A-algebras
My, /gy = (Set™: Fy, > (G, + Ggy) b [Ls,, Lgyl = [Rs,, Ray) )
from that of \-prealgebras My, = (Set” : Fx, > Gy, Ly, = Ry, ).

From the coend formula for the substitution tensor and the fact that in
the category of sets filtered colimits commute with finite limits, it follows
that e : Set! x Set” — Set” preserves filtered colimits, and it is also easily
seen that it preserves epimorphisms. Furthermore, also the endofunctors (—)V
and (—)? preserve filtered colimits and epimorphisms. Hence, so do the endo-
functors Fy,,, Gy, , and Gg,. Thus, from one application of Theorem and
two applications of Theorem [4.8] we obtain the adjunctions V 4 U, K; - Jy,
and K9 = J1 Jy

Ky 2

T
K2 Kl
My, /g,-Alg %MEA—Alg c% Fy,-Alg
2 1

v

Set”

and consequently have that Ky = K9 J; - Jy as in the diagram above.

Moreover, by examining the construction of the free My, /g,-algebra over
the initial My, -algebra along Ks, one sees that the presheaf of a-equivalence
classes of A-terms is first quotiented by the (7 identities, and then by the
congruence rules for the operations abs, app, and sub. It follows that the initial
My, /g,-algebra is the presheaf of afn-equivalence classes of A-terms.

7.8  Nominal equational theories

Clouston and Pitts [7] have recently introduced Nominal Equational Logic (NEL)
as an extension of equational logic with names and assertions on their fresh-
ness. We show in this section that every NEL theory can be represented as an
equational system in the sense that the respective categories of algebras co-
incide. By further showing that the equational system representation satisfies
the hypothesis of Theorems [£.7] and [4.8] the monadicity and cocompleteness
of categories of algebras for NEL theories follows (see Corollary . We also
give explicit descriptions of free algebras for NEL theories as derived from
their inductive construction. For brevity, we only consider the single-sorted
case; the multi-sorted one being treated analogously. All these results can be
also seen to apply to the nominal algebras of Gabbay and Mathijssen [15].
However, we do not dwell on this here.
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7.8.1 Nominal sets

For a fixed countably infinite set A of atoms, the group &y(A) of finite per-
mutations of atoms consists of the bijections on A that fix all but finitely
many elements of A. A &¢(A)-action X = (]X|,-) consists of a set |X]|
equipped with a function —-=: Gy(A) x | X| — |X| such that ida -z = =
and 7’ - (m-x) = (7'm) - x for all x € |X| and 7,7’ € Gy(A). So(A)-actions
form a category with morphisms X — Y given by equivariant functions; that
is, functions f : | X| — |Y| such that f(7-x) =x- (fz) for all 7 € &y(A) and
z e |X|.

By an element x of a Sg(A)-action X, denoted x € X, we mean that z is a
member of | X|. For a &y(A)-action X, a finite subset S of A is said to support
x € X if for all atoms a,a’ € S, (ad') - = x, where the transposition (ad’) is
the bijection that swaps a and a'. A nominal set is a Sy(A)-action in which
every element has finite support. As an example, note that the set of atoms
A becomes the nominal set of atoms A when equipped with the evaluation
action 7 - a = m(a). A further example is given by G((A) equipped with the
conjugation action 7 - ¢ = wor !, which we denote as Gy(A).

The supports of an element of a nominal set are closed under intersection,
and we write suppy (), or simply supp(z) when X is clear from the context,
for the intersection of the supports of x in the nominal set X. For instance,
suppy(a) = {a} and suppg,a)(0) = {a € A | o(a) # a}. For elements z and
y of two, possibly distinct, nominal sets X and Y, we write x # y whenever
suppy (z) and suppy (y) are disjoint. Thus, for a € A and = € X, a # x stands
for a & suppy (z); that is, a is fresh for x.

For an element x of a nominal set X, and 7, 7" € &y(A) such that 7(a) = 7'(a)
for all a € supp(x), we have that m -z = «’ - x. Thus, for a finite set of atoms
S D supp(z) and an injective function a : S — A it makes sense to define o -
as a - x for @ € Gy(A) any permutation extending c.

We let Nom be the full subcategory of the category of &y(A)-actions consist-
ing of nominal sets, and briefly consider its structure relevant to us here.

The coproduct [I,ecx Xy of a family of nominal sets { Xj }rex is the nominal
set with |[Tpex Xk| = Hper | Xk| and action 7 - (k,z) = (k, 7 - x). As usual we
write X +---+ X, for regr,ny Xk

The product TT;c; X; of a finite family of nominal sets { X; };cs is the nominal
set with |[Le;r Xi| = ILer | Xi| and action 7 - (2;)ier = (7 - x;)ier. As usual
we write Xy X -+ X X, for [[erq, oy Xi, and XT for [;e; X. More generally,
the exponential XY of nominal sets X and Y consists of all finitely supported
functions |Y'| — | X| with respect to the action that inversely acts on the input
and directly acts on the output; i.e., 7- f = Av.7- f(7m ! 2).
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The separating tensor #ieIXi of a finite family of nominal sets { X; }ics is
the subnominal set of [[;c; X; with underlying set given by

{(zi)ier | @i # zjforalli #j}.

,,,,,

stance, the nominal set A*! for a finite set I is the subset of A! consisting of
the injections ¢ : I — A with action given by post-composition; i.e., -1 = .
The separating tensor carries a symmetric monoidal closed structure.

For every set S, we define two nominal sets S and S: the nominal set S has
underlying set S and projection action 7 -s = s; the nominal set S is the
product Gy(A) x S.

For a nominal set X, the nominal set Py(X) has underlying set Py|X|, the
set of finite subsets of | X|, and pointwise action 7-S ={7-z |z € S} In
particular, Py(S) = Po(S) for every set S. Note also that, for A € Py(A) and
x € X, A# x stands for a # x for all a € A.

7.8.2 NEL theories

A NEL theory consists of a signature defining its operators together with the
set of axioms that these should obey.

A NEL signature 3 is specified by a family of nominal sets { £(n) },en, each
of which consists of operators of arity n € N.

The nominal set of terms Ts,(V') on a nominal set V' is inductively defined by
the following rules:

veV tieTs(V) (i=1,...,n)

veTs(V) oty...t, € Tx(V)

and equipped with the action inductively defined by:

T Te(V) VvV = Ty

™ “Ts (V) (O tl Ce tn) = (ﬂ' *Y(n) O) <7T "Ts(V) tl) . (7'(' T (V) tn) (0 S E(n))

We now fix a countably infinite set V of variables. The nominal set of freshness
contexts is defined as
[T (P » (Pop)?)
SEPy(V)
where X » Y denotes the subnominal set of X x Y with underlying set
{(z,y) € | X| x |Y]| | supp(z) 2 supp(y) }. Thus, the nominal set of freshness
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contexts has elements V = (|V/|, VA, V#) given by a finite set of variables
V| C V, a finite set of atoms VA C A, and a function V# : |V| — Py(VA4)
with the following action

7 (191,94, V%) = (19], 7 -pya V4, At € [V]. 7 -pyuy V¥(2) )
Note that supp(V) = VA.

If|\Vi=A{x,...,z,}, VA={a,...,an }, and V#(x;) = A; for i = 1,... n,

we write V as
ayy ..y Ay F g, A,
where we also abbreviate ) # = as x and {a} # x as a # .
By a term ¢ in a freshness context V, written V I ¢, we mean ¢t € Tx([V])

such that supp(t) C VA. That is, the grammar for terms in freshness contexts
is as follows:

tu=ox (0 € &¢(A) with supp(c) C VA, z € |V|)
|oty...t, (o€ X(n) with supp(o) C V4)
where we use the notational convention of abbreviating (o, x) as o x and fur-
ther abbreviating this as x when o is the identity. Note that V F ¢ implies

7-VEx-tforal me GyA).

A NEL theory is given by a NEL signature ¥ together with a set of azxioms
consisting of judgements of the form

VkEtat
where t and ¢’ are terms in the freshness context V.

We give the canonical example of NEL theory. The NEL signature 3, for the
untyped A-calculus [7] (see also [I5]) is given by the nominal sets of operators

Sy (0) = {ValacA}, S\(1)={L.JacA}l, 5,2 ={A},

with actions

The NEL theory for afn-equivalence of untyped A-terms consists of the fol-
lowing axioms.
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a,a/ wa #art Lyx=~ Ly ((ad)r) (a
avwapz ' A(L,x)r =x (
aw ' A(L,V,)d =~ (

a,a’ wx, d #rx'+A(L,(Lyx))x ~Ly(A(L,x)x) (
aw xry, vo, v+ A(L (Aa:lxg))a: ~A(A(Lyx)2") (A (Lyxe) 2 (
a,a wa #rt- AL, 2)Vy=(ad)x (
ava#rrr~L,(AzV,) (n

Remark The work reported in [7] is based on judgements of the form
VEA#t={

where A is a finite set of atoms that imposes name freshness conditions on
the terms of the equation. However, Clouston has shown that this extension,
though convenient, does not add expressive power; as every such axiom can be
equivalently encoded as one without freshness conditions (see also [15, Theo-
rem 5.5]). For instance, the a-equivalence axiom above is the encoding of the
following one

avrt{a}# Lx~L,x .

A Y-structure (M, e) for a NEL signature X is given by a nominal set M and
an N-indexed family e of equivariant functions e, : ¥(n) x M™ — M, referred
to as evaluation functions. The evaluation functions extend from operators
to terms to give the equivariant function &y : Tx(V) x MY — M, for each
nominal set V', inductively defined by:

ey(v,m) = m(v) ,
ey(oty...ty, m) = e,(0, €y (ty,m), ..., €y(ty,m)) .

By a waluation m of a freshness context V in a nominal set M, we mean
m € MV such that V#(x) # m(x) for all z € |V|. It follows that 7 - m is
a valuation of 7 -V in M for all 7 € Sy(A). For every valuation m of V,
the function m : [V| — M defined by setting m(m,z) = 7 - m(x) is finitely
supported with supp(m) = U,e|v| supp(m(z)) and hence provides an extension
me MV of me MV,

A Y-structure (M, e) is said to satisfy the judgement V F ¢ ~ ¢’ if

(t,m) = & (', )

e VI

for all valuations m of V in M.
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A T-algebra for a NEL theory T = (X, E) is a YX-structure that satisfies every
axiom in E. A homomorphism from a T-algebra (M, e) to another one (M’ ¢)
is an equivariant function h : M — M’ such that

h(e,(0,mq,...,my)) = e, (0o,h(mi),..., h(my,))

foralln € N, o € X(n), and my, ..., m, € M. T-algebras and homomorphisms
form the category T-Alg.

7.3.8 NEL theories as equational systems

We will now present every NEL theory T = (¥, E) as an equational system
T=(Nom: X >TIF L=R)in such a way that the respective categories of
algebras are isomorphic.

The functorial signature ¥ is simply defined as

S(M) = ][ Z(n) x M™,

neN
so that Z-algebras and Y-structures are in bijective correspondence.

Turning the set of axioms into a functorial equation is more involved. We
consider first the definition of the functorial context associated to a freshness
context. To this end, note that if a Y-structure satisfies the axiom V F ¢ ~ t/
then, by equivariance of the evaluation functions, it also satisfies the judgement
(m-V)E (m-t) = (7 -t) for all m € So(A) (see [7]). Hence the atoms in VA
for the freshness context V of a judgement can be conceptually understood
as atom place-holders (or meta-atoms). It follows that the functorial contexts
of freshness contexts should be given by a consistent interpretation of both
atoms and term variables. This is formalized by defining the functorial context
I'v on Nom of a freshness context V as

Iy(M) = {(a,m) € A*¥* x MV | m is a valuation of -V in M } .

Note that « - V, which stands for & - V where & € Gy(A) is any permutation
extending o : V4 — A_ is well defined because V4 is the support of V. The
above definition makes I'y into a functor because for (a,m) € I'y(M) and an
equivariant function f : M — N, we have that supp(f(m(z))) C supp(m(z))
for all € M and hence that f om € NIVl is a valuation of « - V in N, that
is, (o, fom) € I'y(N).

For a term in a freshness context V t- ¢, the functorial term

Fory: 3-Alg — I'g-Alg
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then maps (M, e) to
For(M,e): To(M) — M : (o,m) — e (a-t,m) .

Note that « - ¢, which stands for & - ¢t where & € G((A) is any permutation
extending a : VA — A is well defined because V4 includes the support of t.

The equivariance of Fyr(M,e) is established as follows:

Fy (M, e) <7T («, m)) = Fy(M,e)(ra,m-m)

= e ((ma) - t,7-m)

I
ol

(T (a-t),m-m)
= 7-er(a-t,m)
= 7w Fy(M,e)(a,m)

where the third identity follows because any extension & of o makes wa into
an extension of ma, and because T-m = 7 - M.

The equational system T = (Nom : ST - L= é) associated to the
NEL theory T = (X, F) is thus defined as

¥ = [hen E(”) X (—)n , I'= H(Vl—tzt/)eE I'y

L= [FW}

5 R = [FV)—t/}

(Vkt=t')eE (Vkt~t')eE

Theorem 7.3 The categories T-Alg and T—Alg are isomorphic.

PROOF. We prove that a 3-structure (M, e) satisfies the judgement V ¢ ~ ¢/
if and only if Fg¢(M, [en)nen) = Forv (M, [en]nen).

The if part is easily shown by considering the inclusion function ¢ € A#V4,
Indeed, for all valuations m of V in M, we have that

e (t,m) = Forte(M, [en)nen)(t,m) = Fyro (M, [ep]nen)(t,m) = éﬁ@/am)

where the first and last identities hold because the identity permutation ex-
tends ¢.

To prove the only-if part, assume that (M, e) satisfies the judgement V -t ~ t'.

Then, for (a,m) € I'v(M), as m is a valuation of - V in M and (M, e) also
satisfies (a- V) F (a-t) &~ (a - t'), we conclude that
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Fori(M, len]nen) (o, m) = Exq(a-t,m)
= ém (Oé . t/,m)

= Fore(M, [en]ner) (0, m) .

Aiming at applying Theorems [6.1] and [6.2] we establish the following result.

Theorem 7.4 The functorial signature and functorial context of the equa-
tional system associated to a NEL theory preserve filtered colimits and epi-
morphisms.

PROOF. Let & and I respectively be the functorial signature and functorial
context associated to a NEL theory T = (X, E).

As the product is closed, the functor (n) x (=)™ preserves filtered colimits
and epimorphisms for all n € N. Thus, the functorial signature &, being the
(pointwise) coproduct of these functors, also preserves filtered colimits and
epimorphisms.

Since the functorial context I is the (pointwise) coproduct of functorial con-
texts of the form I'y, it is enough to show that such functors preserve (i) fil-
tered colimits and (i7) epimorphisms.

To show (i), we make the key observation that for all freshness contexts V,
the following diagram is a pullback

I'v(M) %HIE\V\ (A#(V#(“T» # M)

! A M
"M

T )

where 1) is induced by the embedding of the separating tensor into the prod-
uct; 2, is the embedding determined by the definition of I'y (M ); and 7, is the

restriction of the equivariant function s : (a, m) +— ((a I V#(z), m(x))) "

where a [ V#(z) is the restriction of o to V#(z) (that is, the composite
V#(x) — VA 5 A).

Thus, since the category of nominal sets is locally finitely presentable, and
hence in it finite limits commute with filtered colimits, and since both the
product and separating tensor are closed, and hence preserve filtered colimits,
it follows that I'y preserves filtered colimits. Indeed, for D a filtered diagram
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of nominal sets, we have that
colim(I'y D)

A#YA 5 DIV HxGIWA#(V#(w))#D

= colim (lim ( \ / ))

H:EG\V|A#(V#($)) x D
colim(A#V4 x DIVI) colim([ ¢ g A#(V* @) D)

( COhm(Ha:E|V| A#VF () D) )
A#YA % (colim D)V [Toejv AV @D (colim D)
= lim ( — -

[Liew ARV (@) (colim D)
= T'y(colim D) .

To show (i7), we just need to show that I'y preserves surjectivity. To this end,
let f: P — @ be a surjective equivariant function and let («a,q) € I'v(Q).
Then, for every x € |V/|, there exists p, € P such that f(p,) = ¢(z). More-
over, since supp(p,) 2 supp(q(z)) and supp(q(x)) # (o - V)#(z), there exists
7Tz € Sg(A) such that

mz(a) = a for all a € supp(q(w)) and m(supp(ps)) # (o= V)*(2) .

It follows that f(ﬂxpx) - fo(p:c) - WxQ(m) = q({lf) and (a - V)#([E) # Tz Da-
Thus, setting p/(z) = 7, - p, for all x € |V|, we have (a,p’) € I'y(P) with
Lo (f)a,p') = (o, fp') = (e, q) as required. O

Corollary 7.5 The category of algebras for a NEL theory is cocomplete and
monadic over nominal sets, with the induced free-algebra monad being finitary
and epicontinuous. Moreover, free algebras on nominal sets are constructed
m w+ w steps by the construction (@ followed by the construction m
Section [{]

7.3.4 Presentation of free algebras
We proceed to give an inductive presentation of free algebras for NEL theories.

For a NEL theory T = (X, E') and its associated equational system T, we have
the following situation:

T-Alg =~ T-Alg L S Alg= ¥-Alg
_|

Nom
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me M m~gm ma~gm' m =~gm”
Ref ——— Sym ——— Trans

m~gm m ~pm m~g m'”

Axiom ki AobhA Sl ) ((V Ft~t) e E)

e (a-t.m) ~p ex(a-t'.m

m; ~pm, (1<i<k)
Cong (OEE(k))
omy...my Rgomy...m

Fig. 1. Rules for the relation ~g.

By the construction 1} the free i—algebra on a nominal set V' has as carrier
the nominal set 7%(V') inductively defined by the rules (6]).

We obtain a presentation of the free T-algebra on a S-algebra (M, [e,]nen) by
analyzing the construction ({4f). Since the forgetful functor | — | : Nom — Set
creates colimits, it follows from the standard construction of colimits in Set
that the underlying set of the carrier object of the free T-algebra on (M, [e,]nen)
is obtained as the colimit of the w-chain of quotients

|M] = M/ = - = [M] /5, > -+

where &, denotes the equivalence relation on |M| generated by the following
rules

for ~ : (@, m) € Ty (M) ) ((V Ftrt) e E)

e (a-t,m) = e (a-t',m

m =,_1 m m; 1 m, (1 <i<k)
for a2, (n>2) : . R (0 € B(k))
m 2, m' 0Mmy...mg Ry 0mMy...mj

Thus, the free T-algebra on (M, [e,]nen) has carrier object M/~, given by
the underlying set |M|/~, for ~p the equivalence relation on |M| given by
the rules in Figure [1| together with the action given by 7 - [m|~, = [7 - m]~,.
Furthermore, the quotient map M — M/~ sends m € M to [m]~,, and the

>-algebra structure [[en]zE] o o8 M/~ is given by

[en]%ﬁ;(()? [ml]%Ev SRR [mn]%E) - [en<07 my, ... 7mn)]zE

for all n € N, o € ¥(n), and m4,...,m, € M.

44



As a corollary, we now establish the following ground completeness result for
NEL [7, Theorem 9.4]:

For a NEL theory T, if a ground judgement (viz., a judgement with no
variables) is satisfied by all T-algebras, then the judgement is provable in
NEL.

The free T-algebra on the empty nominal set () consists of the nominal set
Tx(0)/~, of ground terms Tx (D) quotiented by ~p, equipped with the syntac-
tic X-structure e. Thus, for any ground judgement (aq,...,a, » { } Ft =1'),
we have that

every T-algebra satisfies (ay,...,a, » { } Ft=1)
= (Tx(0)/~,,e) satisfies (a1,...,am > { }Ft=1)
= &;(t, () = & (', () inTx(0)/~,
— tlsp = [tep I T5(0)/~g

— t ~pt is derivable from the rules in Figure

The ground completeness result follows by noticing that every proof of t ~g t/
is easily turned into a proof of the judgement (ay,...,a, »{}Ft=1¢) in
NEL.

8 Conclusion

The main and salient contribution of this paper can be summarised as the
introduction of a framework for the specification of equational systems (Sec-
tion[3) and the development of an associated theory of free constructions (Sec-
tions 4] and |p)) that is general (see Sections and and, most importantly,
practical as needed in modern applications (see Section .

In connection to related work, we have learnt during the course of this work
that variations on the concept of equational system, and its dual of equational
cosystem (wviz., an equational system on an opposite base category), had al-
ready been considered in the literature. For instance, Fokkinga [14] introduces
the more general concept of law between the so-called transformers, but only
studies initial algebras for the laws that are equational systems; Cirstea [0]
introduces the concept of coequation between abstract cosignatures, which
is equivalent to our notion of equational cosystem, and studies final coalge-
bras for them; Ghani, Liith, De Marchi, and Power [18] introduce the concept
of functorial coequational presentations, which is equivalent to our notion of
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equational cosystem on a locally presentable base category with an accessi-
ble functorial signature and an accessible functorial context, and study cofree
constructions for them.

In comparison, our theory of equational (co)systems is more general and com-
prehensive than that of [14] and [6], and it can be related to that of [1§]
as follows. The proof of the dual of Corollary together with the con-
struction of cofree coalgebras for endofunctors by terminal sequences of Wor-
rell [33], gives a construction of cofree coalgebras for equational cosystems
on a locally presentable base category with an accessible functorial signature
that preserves monomorphisms. This is a variation of a main result of the
theory developed by Ghani, Liith, De Marchi, and Power [I8] (see e.g. their
Lemmas 5.8 and 5.14); which is there proved by means of the theory of ac-
cessible categories without assuming the preservation of monomorphisms but
assuming an accessible arity endofunctor.

In the context of the enriched algebraic theories of Kelly and Power [23],
which we have exhibited as equational systems in Section , one may
also consider the categorical presentation of term rewriting via coinserters of
Ghani and Liuth [I7] in the setting of algebraic theories on the category of
preorders. In this vein, we have developed a theory of free constructions for
imequational systems in an abstract-rewriting enriched setting together with a
logical theory for rewriting modulo equations. Details will appear elsewhere.
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