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Abstract

The purpose of this paper is threefold: to present a general abstract, yet practical,
notion of equational system; to investigate and develop the finitary and transfinite
construction of free algebras for equational systems; and to illustrate the use of
equational systems as needed in modern applications.
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1 Introduction

The importance of equational theories in theoretical computer science is by
now well established. Traditional applications include the initial algebra ap-
proach to the semantics of computational languages and the specification of
abstract data types pioneered by the ADJ group [19], and the abstract de-
scription of powerdomain constructions as free algebras of non-determinism
advocated by Plotkin [21,26] (see also [1]). While these developments essen-
tially belong to the realm of universal algebra, more recent applications have
had to be based on the more general categorical algebra. Examples include
models of name-passing process calculi [12,32], theories of abstract syntax
with variable binding [13,16], and the algebraic treatment of computational
effects [27,28].

In the above and most other applications of equational theories, the existence
and construction of initial and/or free algebras, and consequently of monads,
plays a central role; as so does the study of categories of algebras. These
topics are investigated here in the context of equational systems, a very broad
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notion of equational theory introduced by the authors in [11]. Examples of
equational systems include enriched algebraic theories [23,31], algebras for a
monad, monoids in a monoidal category, etc. (see Section 3).

The original motivation for the development of the theory of equational sys-
tems arose from the need of a mathematical theory readily applicable to two
further examples of equational systems: (i) π-algebras (see Section 7.1), which
provide algebraic models of the finitary π-calculus [32], and (ii) Σ-monoids (see
Section 7.2), which are needed for the initial algebra approach to the semantics
of languages with variable binding and capture-avoiding simultaneous substi-
tution [13,10]. Indeed, these two examples respectively highlight two inade-
quacies of enriched algebraic theories in applications: (i) models may require
a theory based on more than one enrichment, as it is the case with π-algebras;
and (ii) the explicit presentation of an enriched algebraic theory may be hard
to give, as it is the case with Σ-monoids.

Further benefits of equational systems over enriched algebraic theories are
that the theory can be developed for cocomplete, not necessarily locally pre-
sentable, categories (examples of which are the category of topological spaces,
the category of directed-complete posets, and the category of complete semi-
lattices), and that the concept of equational system is straightforwardly dual-
izable: an equational cosystem on a category is simply an equational system on
the opposite category (thus, for instance, comonoids in a monoidal category
are algebras for an equational cosystem). On the other hand, the price paid for
all this generality is that the important connection between enriched algebraic
theories and enriched Lawvere theories [29] is lost for equational systems.

An equational system S = (C : Σ B Γ ` L = R) is defined as a parallel pair
L, R : Σ-Alg→ Γ-Alg of functors between categories of algebras over a base
category C . In this context, the endofunctor Σ on C , which generalizes the
notion of algebraic signature, is called a functorial signature; the functors L
and R over C generalize the notion of equation and are called functorial
terms; the endofunctor Γ on C , referred to as a functorial context, corre-
sponds to the context of the terms. The category of S-algebras is the equalizer
S-Alg ↪→ Σ-Alg of L, R. Thus, an S-algebra is a Σ-algebra (X, s : ΣX → X)
such that L(X, s) = R(X, s) as Γ-algebras on X.

Free constructions for equational systems are investigated in Sections 4 and 5.
For an equational system S = (C : Σ B Γ ` L = R), the existence of free
S-algebras on objects in C is considered in two stages: (i) the construction of
free Σ-algebras on objects in C , and (ii) the construction of free S-algebras
over Σ-algebras. The former captures the construction of freely generated
terms with operations from the functorial signature Σ; the latter that of quo-
tienting Σ-algebras by the equation L = R and congruence rules. We give fini-
tary and transfinite sufficient conditions for the existence of free S-algebras
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on Σ-algebras. The finitary condition can be used to deduce the existence of
free algebras for enriched algebraic theories, but it applies more generally. The
proofs of these results provide constructions of free algebras that may lead to
explicit descriptions. Indeed, as concrete examples of this situation, we con-
sider algebraic models of the untyped λ-calculus up to βη identities (see Sec-
tion 7.2) and the recently introduced nominal equational theories of Clouston
and Pitts [7] (see Section 7.3).

Monads and categories of algebras for equational systems are discussed in
Section 6. In the vein of the above results, we provide conditions under which
the monadicity and cocompleteness of categories of algebras follow. As a di-
rect application, we deduce that the categories of (i) π-algebras (Section 7.1),
(ii) λ-algebras (Section 7.2), and (iii) algebras for nominal equational theo-
ries (Section 7.3) are monadic and cocomplete.

2 Algebraic equational theories

To set our work in context, we briefly review the classical concept of al-
gebraic equational theory and some basic aspects of the surrounding the-
ory (see e.g. [8]).

An algebraic equational theory consists of a signature defining its operations
and a set of equations describing the axioms that it should obey.

A signature Σ = (O, [−]) is given by a set of operators O together with a
function [−] : O → N giving an arity to each operator. The set of terms TΣ(V )
on a set of variables V is built up from the variables and the operators of the
signature Σ by the following grammar

t ∈ TΣ(V ) ::= v | o(t1, . . . , tk)

where v ∈ V , o is an operator of arity k, and ti ∈ TΣ(V ) for all i = 1, . . . , k.

An equation of arity V for a signature Σ, written Σ B V ` l = r, is given by
a pair of terms l, r ∈ TΣ(V ).

An algebraic equational theory T = (Σ, E) is given by a signature Σ together
with a set of equations E.

An algebra for a signature Σ is a pair (X, J−KX) consisting of a carrier set
X together with interpretation functions JoKX : X [o] → X for each opera-
tor o in Σ. By structural induction, such an algebra induces interpretations
JtKX : XV → X of terms t ∈ TΣ(V ) as follows:
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JtKX =


XV πv //X , for t = v ∈ V

XV
〈Jt1KX ,...,JtkKX〉 //Xk

JoKX //X , for t = o(t1, . . . , tk)

An algebra for the theory T = (Σ, E) is an algebra for the signature Σ that sat-
isfies the constraints given by the equations in E, where a Σ-algebra (X, J−KX)
is said to satisfy the equation Σ B V ` l = r whenever JlKX~x = JrKX~x for
all ~x ∈ XV .

A homomorphism of T-algebras from (X, J−KX) to (Y, J−KY ) is a function
h : X → Y between their carrier sets that commutes with the interpretation of
each operator; that is, such that h(JoKX(x1, . . . , xk)) = JoKY (h(x1), . . . , h(xk))
for all xi ∈ X. Algebras and homomorphisms form the category T-Alg.

The existence of free algebras for algebraic theories is one of the most signifi-
cant properties that they enjoy. For an algebraic theory T = (Σ, E), the free
algebra over a set X has as carrier the set TΣ(X)/≈E

of equivalence classes
of terms on X under the equivalence relation ≈E defined by setting t ≈E t′

iff t is provably equal to t′ by the equations given in E and the congruence
rules. The interpretation of each operator on TΣ(X)/≈E

is given syntactically:
JoK([t1]≈E

, . . . , [tk]≈E
) = [o(t1, . . . , tk)]≈E

. This construction gives rise to a left
adjoint to the forgetful functor UT : T-Alg→ Set. Moreover, the adjunction
is monadic: T-Alg is equivalent to the category of algebras for the associated
monad on Set.

3 Equational systems

We develop abstract notions of signature and equation, leading to the concept
of equational system. Free constructions for equational systems are considered
in the following two sections.

3.1 Functorial signatures

We recall the notion of algebra for an endofunctor and how it generalizes that
of algebra for a signature.

An algebra for an endofunctor Σ on a category C is a pair (X, s) consisting of
a carrier object X in C together with an algebra structure map s : ΣX → X.
A homomorphism of Σ-algebras (X, s) → (Y, t) is a map h : X → Y in C
such that h ◦ s = t ◦ Σh. Σ-algebras and homomorphisms form the category

4



Σ-Alg, and the forgetful functor UΣ : Σ-Alg→ C maps a Σ-algebra (X, s) to
its carrier object X.

As it is well known, every algebraic signature can be turned into an endofunc-
tor on Set preserving its algebras. Indeed, for a signature Σ, one defines the
corresponding endofunctor as Σ(X) =

∐
o∈Σ X [o], so that Σ-Alg and Σ-Alg

are isomorphic. In this view, we will henceforth take endofunctors as a general
abstract notion of signature.

Definition 3.1 (Functorial signature) A functorial signature on a cate-
gory is an endofunctor on it.

3.2 Functorial terms

We motivate and present an abstract notion of term for functorial signatures.

Let t ∈ TΣ(V ) be a term on a set of variables V for a signature Σ. Re-
call from the previous section that for every Σ-algebra (X, J−KX), the term t
gives an interpretation function JtKX : XV → X. Thus, writing ΓV for the
endofunctor (−)V on Set, the term t determines a function t assigning to a
Σ-algebra (X, J−KX) the ΓV -algebra (X, JtKX). Note that the function t does
not only preserve carrier objects but, furthermore, by the uniformity of the
interpretation of terms, that a Σ-homomorphism (X, J−KX)→ (Y, J−KY ) is
also a ΓV -homomorphism (X, JtKX)→ (Y, JtKY ). In other words, the function
t extends to a functor Σ-Alg→ ΓV -Alg over Set (i.e. a functor preserving
carrier objects and homomorphisms). These considerations lead us to define
an abstract notion of term in context as follows.

Definition 3.2 (Functorial term) Let Σ be a functorial signature on a cat-
egory C . A functorial term C : Σ B Γ ` T consists of an endofunctor Γ on C ,
referred to as a functorial context, and a functor T : Σ-Alg→ Γ-Alg over C ;
that is, a functor such that UΓ ◦ T = UΣ.

Typically, when a syntactic signature Σ is turned into a functorial signature Σ
its algebras provide the models of the signature, giving interpretations to the
operators. Moreover, when a syntactic term in context Γ ` t is turned into a
functorial term t : Σ-Alg→ Γ-Alg, the object ΓX intuitively consists of all
valuations of the context Γ in X, and the functor t encodes the process of
evaluating a term to a value, parametrically on models and valuations.

We give a general example of functorial term that arises frequently in applica-
tions. To this end, let TΣ be the free monad on a functorial signature Σ on a
category C . For an object V ∈ C , to be thought of as an object of variables,
the object TΣV intuitively represents the terms built up from the variables by

5



means of the signature. Under this view, thus, we obtain an abstract notion
of term as a generalized element U → TΣV . Assume now that C is symmetric
monoidal closed (with structure I, ⊗, [−, =]) and that Σ is strong [24], with
strength stX,V : X ⊗ Σ(V )→ Σ(X ⊗ V ). It follows that TΣ is strong, say with
strength stX,V : X ⊗ TΣ(V ) → TΣ(X ⊗ V ) providing a means to distribute
parameters within terms as specified by st. In this situation, then, every ab-
stract term t : U → TΣV induces a functorial term t : Σ-Alg→ ΓU,V -Alg, for
the functorial context ΓU,V (−) = [V,−]⊗ U , as follows:

t(X, s : ΣX→X)

=
(
[V,X]⊗ U

id⊗t // [V,X]⊗ TΣ(V ) st // TΣ([V,X]⊗ V )
TΣ(ev)

// TΣX s // X
)

where (X, s : TΣX→X) is the TΣ-algebra corresponding to the Σ-algebra (X, s).

3.3 Equational systems

We define equational systems, our abstract notion of equational theory.

Definition 3.3 (Equational system) An equational system

S = (C : Σ B Γ ` L = R)

is given by a functorial signature Σ on a category C , and a pair of functorial
terms C : Σ B Γ ` L and C : Σ B Γ ` R referred to as a functorial equation.

We have restricted attention to equational systems subject to a single equation.
The consideration of multi-equational systems (C : Σ B {Γi ` Li = Ri }i∈I)
subject to a set of equations in what follows is left to the interested reader. We
remark however that our development is typically without loss of generality;
as, whenever C has I-indexed coproducts, a multi-equational system as above
can be expressed as the equational system (C : Σ B

∐
i∈I Γi ` [Li]i∈I = [Ri]i∈I)

with a single equation.

Recall that an equation Σ B V ` l = r in an algebraic theory is interpreted as
the constraint that the interpretation functions associated with the terms l and
r coincide. Hence, for an equational system S = (C : Σ B Γ ` L = R), it is nat-
ural to say that a Σ-algebra (X, s) satisfies the functorial equation Γ ` L = R
whenever L(X, s) = R(X, s) : ΓX → X, and consequently to define the cat-
egory of algebras for the equational system as the full subcategory of Σ-Alg
consisting of the Σ-algebras that satisfy the functorial equation Γ ` L = R.
Equivalently, we introduce the following definition.

Definition 3.4 For an equational system S = (C : Σ B Γ ` L = R), the
category S-Alg of S-algebras is the equalizer of L, R : Σ-Alg→ Γ-Alg (in the
large category of locally small categories over C ).
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3.4 Examples

Examples of equational systems together with their induced categories of al-
gebras follow.

(1) The equational system ST associated to an algebraic theory T = (Σ, E)
is given by (Set : ΣT B ΓT ` LT = RT), with ΣTX =

∐
o∈Σ X [o], ΓTX =∐

(V `l=r)∈E XV , and

LT(X, J−KX) =
(
X,

[
JlKX

]
(V `l=r)∈E

)
,

RT(X, J−KX) =
(
X,

[
JrKX

]
(V `l=r)∈E

)
.

It follows that T-Alg is isomorphic to ST-Alg.
(2) More generally, consider an enriched algebraic theory T = (C , B, E, σ, τ)

on a locally finitely presentable category C enriched over a suitable cat-
egory V , see [23]. Recall that this is given by functors B, E : |Cfp| → C0

and a pair of morphisms σ, τ : FE → FB between the free finitary mon-
ads FB and FE on C respectively arising from B and E. The equa-
tional system ST associated to such an enriched algebraic theory T is
given by (C0 : (GB)0 B (GE)0 ` σ0 = τ 0), where GB and GE are
the free finitary endofunctors on C respectively arising from B and E,
and where σ and τ are respectively the functors corresponding to σ
and τ by the bijection between morphisms FE → FB and functors
GB-Alg ∼= C FB → C FE ∼= GE-Alg over C . It follows that (T-Alg)0 is
isomorphic to ST-Alg.

(3) The definition of Eilenberg-Moore algebra for a monad T = (T, η, µ)
on a category C with binary coproducts can be directly encoded as the
equational system ST = (C : T B Γ ` L = R) with Γ(X) = X + T 2X
and

L(X, s) = ( X, [ s ◦ ηX , s ◦ µX ] ) ,

R(X, s) = ( X, [ idX , s ◦ Ts ] ) .

It follows that ST-Alg is isomorphic to the category C T of Eilenberg-
Moore algebras for T.

(4) The definition of monoid in a monoidal category (C ,⊗, I, α, λ, ρ) with
binary coproducts yields the equational system

SMon(C ) = (C : Σ B Γ ` L = R)

with Σ(X) = (X⊗X)+I, Γ(X) =
(
(X⊗X)⊗X

)
+(I⊗X)+(X⊗I), and

L(X, [m, e]) = ( X,
[

m ◦ (m⊗ idX) , λX , ρX

]
) ,

R(X, [m, e]) = ( X,
[

m ◦ (idX ⊗m) ◦ αX,X,X , m ◦ (e⊗ idX) , m ◦ (idX ⊗ e)
]
) .

It follows that SMon(C )-Alg is isomorphic to the category of monoids and
monoid homomorphisms in C .
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4 Finitary free constructions for equational systems

We give sufficient finitary conditions for the existence of free algebras for
equational systems; that is, for the existence of a left adjoint to the forgetful
functor US : S-Alg→ C , for S an equational system. Since, by definition, the
forgetful functor US decomposes as S-Alg � �

JS //Σ-Alg UΣ
//C , its left adjoint

can be described in two stages as the composition of a left adjoint to UΣ

followed by a left adjoint to JS. Conditions for the existence of the former
have been studied in the literature (see e.g. [3,4]). Thus, we concentrate here
on obtaining a reflection to the embedding of S-Alg into Σ-Alg.

4.1 Algebraic coequalizers

The construction of free algebras for an equational system explained in Sec-
tion 4.3 depends on the key concept of algebraic coequalizer, whose existence
and explicit construction is dealt with in here.

Definition 4.1 Let Σ be an endofunctor on a category C . By a Σ-algebraic
coequalizer of a parallel pair l, r in C into the carrier object Z of a Σ-algebra
(Z, t) we mean a universal Σ-algebra homomorphism z from (Z, t) coequalizing
the parallel pair.

ΣZ

t

��

Σz //

Σh
,,XXXXXXXXXXXXXXXXXXXX ΣZ ′

Σh′

))R
RRR

t′

��

ΣW

u

��

Y
l //

r
//Z

z //

h
,,XXXXXXXXXXXXXXXXXXXXXX Z ′

∃! h′

))R
RRRR

W

The following lemma, shows how algebraic coequalizers may be seen to arise
from coequalizers by reflecting algebra cospans to algebras.

Definition 4.2 For Σ an endofunctor on a category C , we let Σ-AlgCoSpan
be the category with Σ-algebra cospans (Z → Z1 ← ΣZ) as objects and homo-
morphisms (h, h1) between them as follows:

ΣZ

��

Σh

((QQQQQQQQQQQQQQ

Z

h
((PPPPPPPPPPPPPPPP //Z1

h1

((QQQQQQQQQQQQQQQQ ΣZ ′

��

Z ′ //Z ′
1
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We will henceforth regard Σ-Alg as a full subcategory of Σ-AlgCoSpan via

the embedding that maps (Z ← ΣZ) to (Z
id→ Z ← ΣZ).

Lemma 4.3 Let Σ be an endofunctor on a category C . If the embedding
Σ-Alg ↪→ Σ-AlgCoSpan has a left adjoint, then the existence of coequalizers
in C implies that of Σ-algebraic coequalizers.

PROOF.

ΣZ

t

��

Σz //

c ◦ t

!!C
CC

CC
CC

C ΣZ ′

t′

��

Y
l //

r
//Z

c // //
coeq

//Z1
z1 //

reflect

Z ′

Let l, r be a parallel pair into Z in C and let t : ΣZ → Z be an algebra
structure. Consider the coequalizer c : Z � Z1 of l, r in C and let (z, z1) :

(Z
c→ Z1

c ◦ t← ΣZ) −→ (Z ′ id→ Z ′ t′← ΣZ ′) be a universal reflection. Then, the
homomorphism z = z1 ◦ c : (Z, t)→ (Z ′, t′) is a Σ-algebraic coequalizer of l, r.

2

The missing ingredient for constructing algebraic coequalizers, thus, is the
construction of a reflection from Σ-AlgCoSpan to Σ-Alg.

Theorem 4.4 Let Σ be an endofunctor on a category C with finite colimits. If
C has colimits of ω-chains and Σ preserves them then Σ-Alg is a full reflective
subcategory of Σ-AlgCoSpan.

PROOF. Given a Σ-algebra cospan (c0 : Z0 → Z1 ← ΣZ0 : t0) we construct
a Σ-algebra t∞ : ΣZ∞ → Z∞ as follows:

ΣZ0
Σc0 //

t0

##F
FF

FF
FF

FF

po

ΣZ1

t1

##F
FF

FF
FF

FF
Σc1 //

po

ΣZ2

t2

##F
FF

FF
FF

FF
Σc2 //ΣZ3 · · · ΣZ∞

∃! t∞
��
�
�
�

Z0 c0
//Z1 c1

//Z2 c2
//Z3 · · · Z∞ colim

(1)

where

• Zn+1
cn+1−→ Zn+2

tn+1←− ΣZn+1 is a pushout of Zn+1
tn←− ΣZn

Σcn−→ ΣZn+1, for all
n ≥ 0;

• Z∞ with { cn : Zn → Z∞ }n≥0 is a colimit of the ω-chain { cn }n≥0; and

• t∞ is the mediating map from the colimiting cone {Σcn : ΣZn → ΣZ∞ }n≥0

to the cone { cn+1 ◦ tn }n≥0 of the ω-chain {Σcn }n≥0.

We now show that the homomorphism

(c0, c1) : (Z0 → Z1 ← ΣZ0) −→ (Z∞
id→ Z∞ ← ΣZ∞)
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in Σ-AlgCoSpan is universal. To this end, consider another homomorphism

(h0, h1) : (Z0 → Z1 ← ΣZ0) −→ (W
id→ W

u← ΣW ) and perform the following
construction

ΣZ0
Σc0 //

t0
��

;;
;;

;;
;;

;;
Σh0

VVVVVV

**VVVVVVVVVVVVVVVVVVVVVVVV
ΣZ1

t1
��

;;
;;

;;
;;

;;
Σc1 //

Σh1

SSSSS

))SSSSSSSSSSSSSSSS

ΣZ2 · · ·
Σh2

MM

&&MMMMMMMMMMM

ΣZ∞

t∞

��

Σh∞

��
<<

<<
<<

<<
<<

Z0
c0 //

h0
VVVVVVVVVVVVV

++VVVVVVVVVVVVVVVVVVVV

Z1
c1 //

h1
SSSSSSSSS

))SSSSSSSSSSSSSSS

Z2 · · ·

h2

NNNNNN

&&NNNNNNNNNN

Z∞

h∞

��
==

==
==

==
==

ΣW

u

��

W

where

• for n ≥ 0, hn+2 is the mediating map from the pushout Zn+2 to W with
respect to the cone (hn+1 : Zn+1 → W ← ΣZn+1 : u ◦ Σhn+1); and

• h∞ is the mediating map from the colimit Z∞ to W with respect to the
cone {hn }n≥0 of the ω-chain { cn }n≥0.

As, for all n ≥ 0, u ◦ Σh∞ ◦ Σcn = h∞ ◦ t∞ ◦ Σcn, it follows that h∞ is a
Σ-algebra homomorphism. Hence, (h0, h1) factors as (h∞, h∞) ◦ (c0, c1).

We finally establish the uniqueness of such factorizations. Indeed, for any
homomorphism h : (Z∞, t∞)→ (W, u) such that h ◦ c1 = h1, it follows by
induction that h ◦ cn = hn for all n ≥ 0, and hence that h = h∞. 2

Corollary 4.5 Let Σ be an endofunctor on a category C with finite colimits. If
C has colimits of ω-chains and Σ preserves them then Σ-algebraic coequalizers
exist. If, in addition, Σ preserves epimorphisms then Σ-algebraic coequalizers
are epimorphic in C .

PROOF. According to Lemma 4.3 and Theorem 4.4, the algebraic coequal-
izer of l, r : Y → Z0 with respect to the algebra structure t : ΣZ0 → Z0 is
given by c0 : (Z0, t) → (Z∞, t∞) in the construction (1) above where c0 is
taken to be the coequalizer of l, r in C and t0 is defined as c0 ◦ t.

If Σ preserves epimorphisms, then the ω-chain { cn : Zn → Zn+1 }n≥0 in (1)
consists of epimorphisms, and hence this is also the case for its colimiting cone
{ cn : Zn → Z∞ }n≥0. 2
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4.2 Finitary free Σ-algebras

The following result describes a well-known condition for the existence of free
Σ-algebras (see e.g. [2]).

Theorem 4.6 Let Σ be an endofunctor on a category C with finite coproducts.
If C has colimits of ω-chains and Σ preserves them, then the forgetful functor
UΣ : Σ-Alg→ C has a left adjoint.

The free Σ-algebra (TX, τX : Σ(TX)→ TX) on an object X ∈ C and the
unit map ηX : X → TX are constructed as follows. The object TX is given
as a colimit of the ω-chain { fn : Xn → Xn+1 }n≥0, inductively defined by
X0 = 0, f0 = ! and Xn+1 = X + ΣXn, fn+1 = X + Σfn for n ≥ 0, where
0 is an initial object and ! is the unique map. Since the functor X + Σ(−)
preserves colimits of ω-chains, the object X+Σ(TX) is a colimit of the ω-chain
{X + Σfn : X + ΣXn → X + ΣXn+1 }n≥0. The map [ηX , τX ] is the unique
mediating map as follows:

X + Σ0
X+Σ! //

=

((PPPPPPPPPPPPPP X + Σ(X + Σ0)
=

))TTTTTTTTTTTTTTT
· · · · · · X + Σ(TX)

∃! [ηX ,τX ]∼=
��
�
�
�

0 ! // X + Σ0
X+Σ! // X + Σ(X + Σ0) · · · · · · TX colim

(2)

The intuition behind this construction of TX, in which Σ represents a signa-
ture and X an object of variables, is that of taking the union of the sequence
of objects Xn of terms of depth at most n built from the operators in Σ and
variables in X.

Note that the (X + Σ(−))-algebra in the construction (2) is obtained as the

reflection of the initial (X + Σ(−))-algebra cospan (0
!→ X + Σ0

id← X + Σ0)
as given by the construction (1).

4.3 Finitary free S-algebras

We now turn our attention to finitary conditions for the existence of a left
adjoint to the embedding S-Alg ↪→ Σ-Alg. The construction of free S-algebras
on Σ-algebras follows.

Theorem 4.7 Let S = (C : Σ B Γ ` L = R) be an equational system for
which C is finitely cocomplete. If C has colimits of ω-chains, and Σ and Γ
preserve them then S-Alg is a full reflective subcategory of Σ-Alg.
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This result is proved by performing an iterative construction that associates a
free S-algebra to every Σ-algebra. The cocompleteness assumptions on the base
category allows one to perform the construction, while the other conditions
guarantee that the process stops.

PROOF. Given a Σ-algebra (X0, s0), we construct a free S-algebra (X∞, s∞)
on it as follows:

ΣX0

s0

��

Σe0 //ΣX1

s1

��

Σe1 //ΣX2

s2

��

· · · · · · ΣX∞

∃! s∞
��
�
�
�

X0
e0

alg coeq
//X1

e1

alg coeq
//X2 · · · · · · X∞ colim

ΓX0

L(X0,s0)

OO

R(X0,s0)

OO

Γe0 //ΓX1

L(X1,s1)

OO

R(X1,s1)

OO

Γe1 //ΓX2

L(X2,s2)

OO

R(X2,s2)

OO

· · · · · · ΓX∞

L(X∞,s∞)=R(X∞,s∞)

OO
(3)

where

• for n ≥ 0, en : (Xn, sn) → (Xn+1, sn+1) is an algebraic coequalizer of the
parallel pair L(Xn, sn), R(Xn, sn) : ΓXn → Xn;

• X∞ with { en : Xn → X∞ }n≥0 is a colimit of the ω-chain { en }n≥0; and

• s∞ is the mediating map from the colimiting cone {Σen }n≥0 to the cone
{ en ◦ sn }n≥0 of the ω-chain {Σen }n≥0.

As {Γen }n≥0 is a colimiting cone and L(X∞, s∞)◦Γen = R(X∞, s∞)◦Γen for
all n ≥ 0, it follows that (X∞, s∞) is an S-algebra.

We now show that the unit η = e0 : (X0, s0)→ (X∞, s∞) satisfies the universal
property that every homomorphism (X0, s0)→ (W, u) into an S-algebra (W, u)
uniquely factors through it.

Indeed, we construct a factor h∞ : (X∞, s∞)→ (W, u) of h0 : (X0, s0)→ (W, u)
through η as follows:

ΣX0

s0

��

Σe0 //

Σh0
YYYYYYYYYYYYYYYYYYYYY

,,YYYYYYYYYYYYYYYYYYYYY

ΣX1

s1

��

· · · · · ·
Σh1

VVVVVV

++VVVVVVVVVVVVVVVVVVVV
ΣX∞

s∞

��

Σh∞

&&NNNNNNNNNNNNNN

X0
e0 //

h0
YYYYYYYYYYYYYYYYYY

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYY

X1 · · · · · ·
h1

VVVVVVVVVV

++VVVVVVVVVVVVVVVVVVVV

X∞

h∞

&&NNNNNNNNNNNNNNN ΣW

u

��

ΓX0

L(X0,s0)

OO

R(X0,s0)

OO

Γe0 //

Γh0
YYYYYYYYYYYYYYYY

,,YYYYYYYYYYYYYYYYYYYYYYYYYYY

ΓX1

L(X1,s1)

OO

R(X1,s1)

OO

· · · · · ·
Γh1

WWWWWWWWWW

++WWWWWWWWWWWWWWWWW

ΓX∞

OO

Γh∞

''NNNNNNNNNNNNN W

ΓW

L(W,u)=R(W,u)

OO

12



where

• for n ≥ 0, hn+1 : (Xn+1, sn+1) → (W, u) is the factor of hn through the
algebraic coequalizer en; and

• h∞ is the mediating map from the colimit X∞ to W with respect to the
cone {hn }n≥0.

Then, h∞ ◦ η = h0 and, as u ◦ Σh∞ ◦ Σen = h∞ ◦ s∞ ◦ Σen for all n ≥ 0, it
follows that h∞ is a homomorphism (X∞, s∞)→ (W, u).

We finally establish the uniqueness of such factorizations: for any homomor-
phism h : (X∞, s∞) → (W, u) such that h ◦ η = h0, it follows by induction
that h ◦ en = hn for all n ≥ 0, and hence that h = h∞. 2

4.4 Inductive free S-algebras

As we have seen above, free S-algebras on Σ-algebras may be constructed by
a colimit of an ω-chain of algebraic coequalizers (Theorem 4.7), each of which
is in turn constructed by a coequalizer and a colimit of an ω-chain (Corol-
lary 4.5). Here we introduce an extra condition on the functorial signature
and functorial context of an equational system to accomplish the construction
of free algebras in just ω steps.

Theorem 4.8 Let S = (C : Σ B Γ ` L = R) be an equational system for
which C is finitely cocomplete. If C has colimits of ω-chains and Σ preserves
them, and both Σ and Γ preserve epimorphisms, then S-Alg is a full reflective
subcategory of Σ-Alg.

PROOF. Consider the construction (3) exhibiting a free S-algebra on the
Σ-algebra (X0, s0). According to Corollary 4.5, the algebraic coequalizer e0 :
(X0, s0) → (X1, s1) in there is an epimorphism in C . Thus, so is Γe0 and, as
L(X1, s1) ◦ Γe0 = R(X1, s1) ◦ Γe0, it follows that (X1, s1) is an S-algebra; the
free one on (X0, s0). 2

Thus, under the hypothesis of Theorem 4.8, the construction of the free
S-algebra (X∞, s∞) on a Σ-algebra (X, s) with unit η(X,s) : (X, s)→ (X∞, s∞)

13



is simplified as in the following diagram:

ΣX
Σc0 // //

s

��

s0

##F
FF

FF
FF

FF

po

ΣX1

s1

##G
GG

GG
GG

GG
Σc1 // //

po

ΣX2

s2

##G
GG

GG
GG

GG
Σc2 // //ΣX3 · · · ΣX∞

∃! s∞
��
�
�
�

X
c0

coeq
// //X1

c1 // //X2
c2 // //X3 · · · X∞ colim

ΓX

L(X,s)

OO

R(X,s)

OO

Γη(X,s)
// //ΓX∞

L(X∞,s∞)=R(X∞,s∞)

OO
(4)

The intuition behind the construction of X1 from X as the coequalizer of
L(X, s) and R(X, s) is that of quotienting the carrier object X by the equation
L = R. The construction of Xn+1 from Xn for n ≥ 1 as a pushout is intuitively
quotienting the object Xn by congruence rules. Therefore, the intuition behind
the construction of the free algebra X∞ is that of quotienting the object X
by both the equation L = R and the congruence rules.

5 Transfinite free constructions for equational systems

This technical section extends the finitary constructions and results of the
previous section to the transfinite case. Overall, the following theorem is es-
tablished.

Theorem 5.1 Let S = (C : Σ B Γ ` L = R) be an equational system. For C
finitely and chain cocomplete, if either of the following conditions hold

(1) Σ and Γ preserve colimits of κ-chains for some limit ordinal κ;

(2) Σ preserves colimits of κ-chains for some limit ordinal κ, and both Σ and
Γ preserve epimorphisms;

(3) C has no transfinite chain of proper epimorphisms, and Σ preserves epi-
morphisms and colimits of κ-chains for some limit ordinal κ

then the forgetful functor S-Alg→ C has a left adjoint.

Remark In item (3) above, we take a transfinite chain in a category C to
be an Ord-indexed diagram for Ord the large linear order of ordinals. Main
examples of categories with no transfinite chain of proper epimorphisms are
those that are well-copowered.

Analogously to the development in Section 4, we consider the construction of
algebraic coequalizers, free Σ-algebras, and free S-algebras in turn.
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5.1 Algebraic coequalizers

Let Σ be an endofunctor on a category C , and let (c : Z → Z ′ ← ΣZ : t) be a
given Σ-algebra cospan. For κ an ordinal, we proceed to consider a (possibly
transfinite) construction as depicted below

ΣZ
Σc //

t

��
>>

>>
>>

>>
>>

>

po

ΣZ ′

t1

��
??

??
??

??
??

?
Σc1,2 //ΣZ2 · · · · · ·

Σc2,ω
,,

. . .
,,c∗2,ω

ΣZω
Σcω,ω+1//

tω

!!D
DD

DD
DD

DD
DD

po

ΣZω+1 · · · ΣZκ

tκ

  
AA

AA
AA

AA
AA

A

Z∗
ω

colim
t∗ω
''NNNNNNN

c∗ω

77pppppp

Z c
//Z ′

c1,2
//Z2 · · · · · ·

c2,ω

22Zω
colim

cω,ω+1
//Zω+1 · · · Zκ cκ,κ+1

//Zκ+1

(∗)

yielding a chain { cα,β : Zα → Zβ }α≤β≤κ+1 (with c0,1 = c) and morphisms
{ tα : ΣZα → Zα+1 }α≤κ (with t0 = t) such that

ΣZα

tα
��

Σcα,β //ΣZβ

tβ
��

Zα+1 cα+1,β+1
//Zβ+1

(5)

commutes.

Precisely, the definitions are as follows: for λ ≤ κ,

• when λ = 0,

Zλ
cλ,λ+1−→ Zλ+1

tλ←− ΣZλ is Z
c−→ Z ′ t←− ΣZ;

• when λ is a successor ordinal α + 1,

Zλ
cλ,λ+1−→ Zλ+1

tλ←− ΣZλ is a pushout of Zα+1
tα←− ΣZα

Σcα,α+1−→ ΣZα+1; and

• when λ is a limit ordinal,

Zλ
cλ,λ+1−→ Zλ+1

tλ←− ΣZλ is a pushout of Zλ

t∗λ←− Z∗
λ

c∗λ−→ ΣZλ, where
{ cα,λ : Zα → Zλ }α<λ and { c∗α,λ : ΣZα → Z∗

λ }α<λ are respectively col-
imits of the λ-chains { cα,β }α≤β<λ and {Σcα,β }α≤β<λ, and where c∗λ and t∗λ
are respectively the mediating maps from the colimiting cone { c∗α,λ }α<λ to
the cones {Σcα,λ }α<λ and { cα+1,λ ◦ tα }α<λ of the λ-chain {Σcα,β }α≤β<λ.

Whenever this construction can be performed for the ordinal κ, we say that it
reaches κ. Furthermore, we say that the construction (∗) stops if it does so at
some ordinal κ in the sense that it reaches κ and the map cκ,κ+1 : Zκ → Zκ+1

is an isomorphism.

Theorem 5.2 Let Σ be an endofunctor on a category C . For a Σ-algebra
cospan (c : Z → Z ′ ← ΣZ : t), if the construction (∗) for it stops, then a free
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Σ-algebra on it exists. If, in addition, the endofunctor Σ preserves epimor-
phisms and the map c is epimorphic in C , then the components of the universal
map from the Σ-algebra cospan to the free Σ-algebra are epimorphic in C .

PROOF. Let (Z
c→ Z ′ t← ΣZ) be a Σ-algebra cospan and assume that the

construction (∗) for it stops at an ordinal κ. We claim that the Σ-algebra
(Zκ, (cκ,κ+1)

−1 ◦ tκ : ΣZκ → Zκ) is free over (c : Z → Z ′ ← ΣZ : t). Indeed, we

show that (c0,κ, c1,κ) : (Z0 → Z1 ← ΣZ0) −→ (Zκ
id→ Zκ ← ΣZκ) is a universal

map in Σ-AlgCoSpan.

First, note that (c0,κ, c1,κ) is indeed a map in Σ-AlgCoSpan; as we have that
(cκ,κ+1)

−1 ◦ tκ ◦ Σc0,κ = (cκ,κ+1)
−1 ◦ c1,κ+1 ◦ t0 = c1,κ ◦ t0. Second, consider

a map (h, h′) : (Z
c→ Z ′ t← ΣZ) −→ (W

id→ W
u← ΣW ) and perform the

following (possibly transfinite) construction:

ΣZ
Σc //

t

��
33

33
33

33
33

33
33

33
3

Σh[[[[[[[[[[[[[[[

--[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[
ΣZ ′

t1

��
33

33
33

33
33

33
33

33
Σc1,2 //

Σh′
[[[[[[[[[[[[[[[[[

--[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[
ΣZ2 · · · · · ·

Σc2,ω
,,

. . .
((

c∗2,ω

Σh2
ZZZZZZZZZZZZZZZZ

--ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
ΣZω

Σcω,ω+1//

tω

��
66

66
66

66
66

66
66

66
6

Σhω
WWWWWWWWWW

++WWWWWWWWWWWWWWWWW

ΣZω+1 · · ·
Σhω+1

SSS

))SSSSSSSSSSS

ΣZκ

Σhκ

##F
FFFFFFFF

Z∗
ω

t∗ω

""E
EE

EE
EE

EE

c∗ω

<<yyyyyyyyy

Zκ+1

hκ+1

��
99

99
99

99
99

99
9

��
tκ

OO
∼=cκ,κ+1

ΣW

u

��

Z
c //

h\\\\\\\\\\\\\\\\

--\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Z ′ c1,2 //

h′[[[[[[[[[[[[[[[[[[

--[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[
Z2 · · · · · ·

c2,ω
,,

h2
ZZZZZZZZZZZZZZZZZ

--ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
Zω

cω,ω+1 //

hω
XXXXXXXXXXX

++XXXXXXXXXXXXXXXXXX

Zω+1 · · ·
hω+1

TTTT

))TTTTTTTTTTTT

Zκ

hκ

GGG
G

##G
GGG

W
where

• for λ = 0,
hλ is h and hλ+1 is h′;

• for a successor ordinal λ = α + 1,
hλ is hα+1, and hλ+1 is the mediating map from the pushout Zλ+1 to
W with respect to the cone (hλ : Zλ → W ← ΣZλ : u ◦ Σhλ) of the span
(tα : Zα+1 ← ΣZα → ΣZα+1 : Σcα,α+1); and

• for a limit ordinal λ,
hλ is the mediating map from the colimit Zλ to W with respect to the cone
{hα }α<λ of the λ-chain { cα,β }α≤β<λ, and hλ+1 is the mediating map from
the pushout Zλ+1 to W with respect to the cone (hλ :Zλ �W �ΣZλ :u ◦ Σhλ)
of the span (t∗λ : Zλ ← Z∗

λ → ΣZλ : c∗λ).

As hκ ◦ (cκ,κ+1)
−1 ◦ tκ = hκ+1 ◦ tκ = u ◦ Σhκ, it follows that hκ is a Σ-algebra

homomorphism (Zκ, (cκ,κ+1)
−1 ◦ tκ) → (W, u). Hence, (h, h′) factors as the

composite (hκ, hκ) ◦ (c0,κ, c1,κ).

We finally establish the uniqueness of such factorizations. For any homomor-
phism g : (Zκ, (cκ,κ+1)

−1 ◦ tκ)→ (W, u) such that g ◦ c1,κ = h′, it follows by (a
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possibly transfinite) induction that g ◦ cα,κ = hα for all α ≤ κ, and hence that
g = hκ.

If Σ preserves epimorphisms and c is an epimorphism in C , then, by (a pos-
sibly transfinite) induction, the morphisms cα,β and Σcα,β are shown to be
epimorphic in C for all ordinals α ≤ β ≤ κ. Hence this is the case for c0,κ and
c1,κ. 2

Corollary 5.3 Let Σ be an endofunctor on a category C with coequalizers. If
the construction (∗) stops for every Σ-algebra cospan (c : Z → Z1 ← ΣZ : t)
with c epimorphic in C , then Σ-algebraic coequalizers exist. If, in addition,
Σ preserves epimorphisms then Σ-algebraic coequalizers are epimorphic in C .

PROOF. Let (Z, t : ΣZ → Z) be a Σ-algebra and let l, r be a parallel pair
into Z in C . Consider a coequalizer c : Z � Z1 of l, r in C and the Σ-algebra

cospan (Z
c→ Z1

c◦t← ΣZ) as in the proof of Lemma 4.3. As c is an epimorphism,

by Theorem 5.2, a free Σ-algebra (Z ′, t′) on (Z
c→ Z1

c◦t← ΣZ) exists. Let

(z, z1) : (Z
c→ Z1

c◦t← ΣZ) −→ (Z ′ id→ Z ′ t′← ΣZ ′) be the universal map. Then,
the homomorphism z = z1 ◦ c : (Z, t) → (Z ′, t′) is an algebraic coequalizer
of l, r.

If Σ preserves epimorphisms, then, by Theorem 5.2, the maps z, z1 are epi-
morphic in C as so is c. 2

5.2 Free Σ-algebras

The following well-known result (see e.g. [2]) follows from Theorem 5.2.

Corollary 5.4 For an endofunctor Σ on a category C with finite coprod-
ucts, let ΣX , for X ∈ C , be the endofunctor X + Σ(−) on C . For an ob-
ject X ∈ C , if the construction (∗) with respect to the endofunctor ΣX for the

initial ΣX-algebra cospan (0
!→ ΣX0

id← ΣX0) stops, then it yields an initial
ΣX-algebra whose Σ-algebra component is a free Σ-algebra on X.

Note that in the above particular case of the construction (∗), we have that
X0 = 0; that Xα+1 = X + ΣXα for all successor ordinals α + 1; and that Xλ

is a colimit of the λ-chain { cα,β }α≤β<λ for all limit ordinals λ.

5.3 Free S-algebras

Let S = (C : Σ B Γ ` L = R) be an equational system, and let (X, s) be a
given Σ-algebra. For κ an ordinal, we proceed to consider a (possibly transfi-
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nite) construction as depicted below

ΣX

s

��

Σe0,1 //ΣX1

Σe1,ω

%%

s1

��

· · · · · ·
. . .

Σe◦1,ω
,,

,,e∗1,ω

ΣX◦
ω

s◦ω

��
44

44
44

44
44

Σ(e•ω◦e◦ω)
//

po

ΣXω

sω

��

· · ·

reflect

ΣXκ

sκ

��

X∗
ω

colim

e∗ω

;;xxxx

s∗ω
##F

FFF

X
e0,1

alg coeq
//X1 · · · · · ·

e◦1,ω

22

e1,ω

77X◦
ω

colim

e◦ω //X•
ω

e•ω //Xω · · · Xκ

ΓX

L(s)

OO

R(s)

OO

Γe0,1 //ΓX1

L(s1)

OO

R(s1)

OO

· · · · · ·

Γe1,ω

44ΓXω

L(sω)

OO

R(sω)

OO

· · · ΓXκ

L(sκ)

OO

R(sκ)

OO

(∗∗)

yielding a chain { eα,β : (Xα, sα)→ (Xβ, sβ) }α≤β≤κ (with s0 = s) in Σ-Alg.

Precisely, the definitions are as follows: for λ ≤ κ,

• when λ = 0,
(Xλ, sλ) is (X, s);

• when λ is a successor ordinal α + 1,
eα,λ : (Xα, sα) → (Xλ, sλ) is an algebraic coequalizer of the parallel pair
L(Xα, sα), R(Xα, sα) : ΓXα → Xα; and

• when λ is a limit ordinal,

· { e◦α,λ : Xα → X◦
λ }α<λ and { e∗α,λ : ΣXα → X∗

λ }α<λ are respectively
colimits of the λ-chains { eα,β }α≤β<λ and {Σeα,β }α≤β<λ;
· e∗λ : X∗

λ → ΣX◦
λ and s∗λ : X∗

λ → X◦
λ are the mediating maps from the

colimiting cone { e∗α,λ }α<λ to the cones {Σe◦α,λ }α<λ and { e◦α,λ ◦ sα }α<λ;

· (X◦
λ

e◦λ→ X•
λ

s◦λ← ΣX◦
λ) is a pushout of (X◦

λ

s∗λ← X∗
λ

e∗λ→ ΣX◦
λ);

· (Xλ, sλ) is a free Σ-algebra on the Σ-algebra cospan (X◦
λ

e◦λ→ X•
λ

s◦λ← ΣX◦
λ)

with universal map (e•λ ◦ e◦λ, e
•
λ); and

· eα,λ : Xα → Xλ is the composite e•λ ◦ e◦λ ◦ e◦α,λ.

Whenever this construction can be performed for the ordinal κ, we say that
it reaches κ. Furthermore, we say that the construction (∗∗) stops if it does
so at some ordinal κ in the sense that it reaches κ + 1 and the map eκ,κ+1 :
Xκ → Xκ+1 is an isomorphism.

Theorem 5.5 Let S = (C : Σ B Γ ` L = R) be an equational system. If
the construction (∗∗) stops for every Σ-algebra, then S-Alg is a full reflective
subcategory of Σ-Alg.

PROOF. Let (X, s) be a Σ-algebra and assume that the construction (∗∗) for
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it stops at an ordinal κ. We claim that the Σ-algebra (Xκ, sκ) is a free S-algebra
on (X, s). First, note that (Xκ, sκ) is an S-algebra since eκ,κ+1 ◦ L(Xκ, sκ) =
eκ,κ+1 ◦ R(Xκ, sκ) and eκ,κ+1 is an isomorphism. We will now show that the
homomorphism e0,κ : (X, s)→ (Xκ, sκ) is universal.

Consider a homomorphism h : (X, s)→ (W, u) and perform the following (pos-
sibly transfinite) construction:

ΣX

s

��

Σe0,1 //ΣX1

s1
��

· · · · · ·
. . .

Σe◦1,ω
,,
ΣX◦

ω

s◦ω
��

44
44

44
44

44
Σ(e•ω◦e◦ω)

//ΣXω

sω
��

· · · ΣXκ

sκ
��

X∗
ω

&&
e∗1,ω e∗ω

AA�����

s∗ω
""E

EE ΣW--
Σh

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[--

Σh1ZZZZZZZZZZZZZZZZZZZZZZ

ZZZZZZZZZZZZZZZZZZZZ

,,

Σh◦ωXXXXXXXXXXXXXXXXXXXXX

XXXXXX

))

ΣhωSSSSSSSSSS

SSS

!!

Σhκ

DDDDDDDD

X
e0,1 //X1 · · · · · ·

e◦1,ω
++X◦

ω
e◦ω //X•

ω
e•ω //Xω · · · Xκ

W--
h

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[--

h1ZZZZZZZZZZZZZZZZZZZZZZZZZ

ZZZZZZZZZZZZZZZZZZZZ

,,

h◦ωXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXX

++

h•ωVVVVVVVVVVVVVVVV

VVVVVVV

))

hωSSSSSSSSSSS

SSSSS

!!

hκ

DDDDDDDD ��

u

OO

L(u)=R(u)ΓX

L(s)

OO

R(s)

OO

Γe0,1 //ΓX1

L(s1)

OO

R(s1)

OO

· · · · · ·
Γe1,ω

--ΓXω

L(sω)

OO

R(sω)

OO

· · · ΓXκ

L(sκ)=R(sκ)

OO

ΓW--
Γh

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[--

Γh1

ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ))
ΓhωSSSSSSS

SSSSSSS

!!

Γhκ

DDDDDDDD

where

• for a successor ordinal λ = α + 1,
hλ : (Xλ, sλ)→ (W, u) is the factor of hα through the algebraic coequalizer
eα,α+1; and

• for a limit ordinal λ,

· h◦λ is the mediating map from the colimit X◦
λ to W with respect to the

cone {hα }α<λ;
· h•λ is the mediating map from the pushout X•

λ to W with respect to the
cone (h◦λ : X◦

λ → W ← ΣX◦
λ : u ◦ Σh◦λ); and

· hλ : (Xλ, sλ)→ (W, u) is the factor of

(h◦λ, h
•
λ) : (X◦

λ

e◦λ→ X•
λ

s◦λ← ΣX◦
λ)→ (W

id→ W
u← ΣW )

through the universal map (e•λ ◦ e◦λ, e
•
λ).

Thus, hκ : (Xκ, sκ) → (W, u) is a factor of h : (X, s) → (W, u) through
e0,κ : (X, s)→ (Xκ, sκ).

We finally establish the uniqueness of such factorizations. Indeed, for any
homomorphism g : (Xκ, sκ)→ (W, u) such that g ◦ e0,κ = h, it follows by (a
possibly transfinite) induction that g ◦ eα,κ = hα for all α ≤ κ, and hence that
g = hκ. 2
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5.4 Main results

We conclude the section by giving three sufficient conditions, respectively cor-
responding to the three conditions of Theorem 5.1, that permit the application
of Corollary 5.4 and Theorem 5.5, and thus lead to transfinite constructions
of free algebras for equational systems.

Theorem 5.6 Let S = (C : Σ B Γ ` L = R) be an equational system with C
finitely and chain cocomplete.

If Σ preserves colimits of κ-chains for some limit ordinal κ, then the construc-
tion (∗) stops at κ for all Σ-algebra cospans.

In addition, if Γ preserves colimits of κ-chains, or if both Σ and Γ preserve
epimorphisms, then the construction (∗∗) respectively stops at κ, or at 1, for
every Σ-algebra.

PROOF. Assume that Σ preserves colimits of κ-chains for some limit or-
dinal κ. As C is finitely and chain cocomplete, the construction (∗) for a
Σ-algebra cospan (c : Z → Z ′ ← ΣZ : t) reaches the ordinal κ. As Σ pre-
serves the colimiting cone { cα,κ }α<κ of the κ-chain { cα,β }α≤β<κ, the mediating
map c∗κ is an isomorphism and hence so is cκ,κ+1.

By Theorem 5.2, free Σ-algebras on Σ-algebraic cospans exist; and so do
Σ-algebraic coequalizers by Corollary 5.3. Thus, the construction (∗∗) reaches
any ordinal.

In addition, assume that Γ preserves colimits of κ-chains, and consider the
construction (∗∗) for a Σ-algebra (X, s) up to the ordinal κ+1. As Σ preserves
the colimiting cone { e◦α,κ }α<κ of the κ-chain { eα,β }α≤β<κ, the mediating map
e∗κ is an isomorphism and hence so are e◦κ and e•κ. From this, we have that
{ eα,κ }α<κ is a colimiting cone of the κ-chain { eα,β }α≤β<κ. Since Γ preserves
it and L(Xκ, sκ) ◦ Γeα,κ = R(Xκ, sκ) ◦ Γeα,κ for all α < κ, it follows that
L(Xκ, sκ) = R(Xκ, sκ). Consequently, the algebraic coequalizer eκ,κ+1 is an
isomorphism.

Alternatively, besides Σ preserving colimits of κ-chains, assume both that
Σ and Γ preserve epimorphisms, and consider the construction (∗∗) for a
Σ-algebra (X, s) up to the ordinal 2. Then, by Corollary 5.3, the Σ-algebraic
coequalizer e0,1 is epimorphic in C , and thus so is Γe0,1. Moreover, since Γe0,1

equalizes L(X1, s1), R(X1, s1), it follows that L(X1, s1) = R(X1, s1). As a re-
sult, the algebraic coequalizer e1,2 is an isomorphism. 2

Theorem 5.7 Let S = (C : Σ B Γ ` L = R) be an equational system with
C finitely and chain cocomplete. If C has no transfinite chain of proper epi-
morphisms and Σ preserves epimorphisms, then the construction (∗) stops
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for all Σ-algebra cospans (c : Z → Z ′ ← ΣZ : t) with c epimorphic, and the
construction (∗∗) stops for all Σ-algebras.

PROOF. As C is finitely and chain cocomplete, the construction (∗) for a
Σ-algebra cospan (c : Z → Z ′ ← ΣZ : t) with c epimorphic reaches ev-
ery ordinal. As Σ preserves epimorphisms, it follows by transfinite induction
that the maps cα,β and Σcα,β are epimorphic for all ordinals α ≤ β. Since
{ cα,β }α≤β∈Ord is a transfinite chain of epimorphisms, there exists, by hypoth-
esis, an isomorphic component cα,β for some pair of ordinals α < β. Thus the
construction stops.

By Theorem 5.2 and Corollary 5.3, free Σ-algebras on Σ-algebraic cospans
(c : Z → Z ′ ← ΣZ : t) with c epimorphic and Σ-algebraic coequalizers exist,
and their associated universal maps are epimorphic in C . Consequently, it fol-
lows that the construction (∗∗) reaches every ordinal for all Σ-algebras and,
by transfinite induction, that the maps eα,β, e◦κ,λ, e∗κ,λ, e∗λ, e◦λ, e•λ are epimor-
phisms in C , for all α ≤ β ∈ Ord and κ < λ ∈ Ord with λ a limit ordinal.
Since { eα,β }α≤β∈Ord is a transfinite chain of epimorphisms, there exists, by
hypothesis, an isomorphic component eα,β for some pair of ordinals α < β.
Thus the construction stops. 2

The following two corollaries imply Theorem 5.1.

Corollary 5.8 Let Σ be an endofunctor on a category C . For C finitely and
chain cocomplete, if Σ preserves colimits of κ-chains for some limit ordinal κ,
then Σ-Alg is a full reflective subcategory of Σ-AlgCoSpan and the forgetful
functor Σ-Alg→ C has a left adjoint.

PROOF. The first conclusion follows from Theorems 5.6 and 5.2; the sec-
ond one from Theorem 5.6 and Corollary 5.4 (as the endofunctors X + Σ(−)
preserve colimits of κ-chains for all X ∈ C ). 2

Corollary 5.9 Let S = (C : Σ B Γ ` L = R) be an equational system. For C
finitely and chain cocomplete, if either of the following conditions hold

(1) Σ and Γ preserve colimits of κ-chains for some limit ordinal κ;

(2) Σ preserves colimits of κ-chains for some limit ordinal κ, and both Σ and
Γ preserve epimorphisms;

(3) C has no transfinite chain of proper epimorphisms and Σ preserves epi-
morphisms

then S-Alg is a full reflective subcategory of Σ-Alg.

PROOF. Items (1) and (2) follow from Theorems 5.6 and 5.5; item (3) follows
from Theorems 5.7 and 5.5. 2
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6 Categories of algebras and monads for equational systems

We consider properties of categories of algebras and monads for equational
systems. The preceding results and those of this section jointly establish the
following theorems.

Theorem 6.1 Let S = (C : Σ B Γ ` L = R) be an equational system. For C
cocomplete, if Σ and Γ preserve colimits of κ-chains for some limit ordinal κ
then the forgetful functor US : S-Alg→ C is monadic, the induced monad pre-
serves colimits of κ-chains, and S-Alg is cocomplete.

Theorem 6.2 Let S = (C : Σ B Γ ` L = R) be an equational system. For
C cocomplete, if Σ preserves both epimorphisms and colimits of κ-chains for
some limit ordinal κ, and if Γ preserves either epimorphisms or colimits of
κ-chains, then the forgetful functor US : S-Alg → C is monadic, the induced
monad preserves epimorphisms, and S-Alg is cocomplete.

Theorem 6.3 Let S = (C : Σ B Γ ` L = R) be an equational system such
that the forgetful functor US : S-Alg → C has a left adjoint. If C is cocom-
plete and has no transfinite chain of proper epimorphisms, and Σ preserves
epimorphisms, then US : S-Alg→ C is monadic and S-Alg is cocomplete.

Remark Theorem 6.1 and Theorem 6.2 follow from Corollaries 6.6 and 6.8,
and Proposition 6.10; Theorem 6.3 follows from Propositions 6.4 and 6.5,
Corollary 5.9, Theorem 5.7, and Corollary 5.3.

6.1 Monadicity and cocompleteness

For an endofunctor Σ on a category C , it is well known that if the forgetful
functor Σ-Alg→ C has a left adjoint then it is monadic. This result extends
to categories of algebras for equational systems.

Proposition 6.4 Let S be an equational system. If the forgetful functor
US : S-Alg→ C has a left adjoint, then it is monadic.

PROOF. To show the monadicity of US by Beck’s theorem [25], it is enough
to show that US creates coequalizers of parallel pairs f, g : (X, r) → (Y, s) in
S-Alg for which f, g : X → Y has an absolute coequalizer, say e : Y � Z,
in C . In this case, then, Σe is a coequalizer of Σf, Σg and Γe is a coequalizer
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of Γf, Γg, so that we have the following situation

ΣX

r

��

Σf
//

Σg
//ΣY

s

��

Σe // //ΣZ

∃! t
��
�
�
�

X
f

//

g
//Y

e
coeq

// //Z

ΓX

L(X,r)=R(X,r)

OO

Γf
//

Γg
//ΓY

L(Y,s)=R(Y,s)

OO

Γe // //ΓZ

L(Z,t)

OO�
�
� R(Z,t)

OO�
�
�

for a unique Σ-algebra structure t on Z for which L(Z, t) = R(Z, t).

It follows from the universal properties of e and Σe that e : (Y, s)→ (Z, t) is a
coequalizer of f, g : (X, r)→ (Y, s) in Σ-Alg, and hence also in S-Alg. 2

A general condition for the cocompleteness of categories of algebras for equa-
tional systems follows.

Proposition 6.5 Let S = (C : Σ B Γ ` L = R) be an equational system
with C cocomplete. If the forgetful functor US : S-Alg→ C has a left adjoint,
S-Alg is a full reflective subcategory of Σ-Alg, and Σ-Alg has coequalizers,
then the category S-Alg is cocomplete.

PROOF. S-Alg has coequalizers since it is a full reflective subcategory of
Σ-Alg, which is assumed to have coequalizers. Also, by Proposition 6.4, S-Alg
is monadic over C . Being monadic over a cocomplete category and having
coequalizers, S-Alg is cocomplete (see e.g. [5, Proposition 4.3.4]). 2

Since the existence of Σ-algebraic coequalizers implies that of coequalizers in
Σ-Alg, we obtain the following corollary.

Corollary 6.6 Let S = (C : Σ B Γ ` L = R) be an equational system. For C
cocomplete, if either of the following conditions hold

(1) Σ and Γ preserve colimits of κ-chains for some infinite limit ordinal κ;

(2) Σ preserves colimits of κ-chains for some limit ordinal κ, and both Σ and
Γ preserve epimorphisms;

(3) C has no transfinite chain of proper epimorphisms, and Σ preserves epi-
morphisms and colimits of κ-chains for some infinite limit ordinal κ

then the forgetful functor US : S-Alg→ C is monadic and S-Alg is cocom-
plete.
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6.2 Cocontinuity

We show that the colimit-preservation properties of the functorial signature
and functorial context of an equational system are inherited by the free-algebra
monad.

Recall that a diagram in a category C is a functor from a small category to C .
We say that a class D of diagrams in C is closed under an endofunctor F on C
if the diagram F ◦ I : I→ C is in D for all diagrams I : I→ C in D.

Proposition 6.7 Let S = (C : Σ B Γ ` L = R) be an equational system for
which US : S-Alg → C has a left adjoint, and write (T, η, µ) for the induced
monad on C . For D a class of diagrams in C closed under T , if C has colimits
of diagrams in D and the endofunctors Σ and Γ preserve them, then so does
the endofunctor T .

PROOF. For a diagram I : I→ C in D, let {λi : Ii → colim I }i∈I and
{ δi : TIi→ colim TI }i∈I be colimiting cones. We show that the cones
{Tλi }i∈I and { δi }i∈I are isomorphic. Specifically, we construct an inverse
q : T (colim I) → colim TI to the mediating map p : colim TI → T (colim I)
from { δi }i∈I to {Tλi }i∈I as follows.

Let (TX, τX : ΣTX → TX) be the free S-algebra on X ∈ C induced by the
left adjoint to US. The family τ = { τX : ΣTX → TX }X∈C is natural. Hence,
the family { δi ◦ τIi : ΣTIi → colim TI }i∈I is a cone and, as {Σδi }i∈I is
colimiting, we have a unique Σ-algebra structure t on colim TI such that the
diagram on the top below

ΣTIi
Σδi //

τIi

��

Σ(colim TI)

∃! t
��
�
�
�

TIi
δi // colim TI

ΓTIi

L(TIi,τIi)=R(TIi,τIi)

OO

Γδi //Γ(colim TI)

L(colim TI,t)

OO�
�
� R(colim TI,t)

OO�
�
�

commutes for all i ∈ I. Furthermore, the Σ-algebra (colim TI, t) is an S-algebra;
since {Γδi }i∈I is colimiting and L(colim TI, t) ◦ Γδi = R(colim TI, t) ◦ Γδi for
all i ∈ I.

By the universal property of free algebras, we define q : T (colim I)→ colim TI
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as the unique map making the following diagram commutative:

ΣT (colim I)
Σq

//_____

τcolim I

��

Σ(colim TI)

t

��

T (colim I)
∃! q

//_______ colim TI

colim I

ηcolim I

OO

colim ηI

44jjjjjjjjjjjjjjjjj

This map is a morphism between the cones {Tλi }i∈I and { δi }i∈I; as follows
from the commutative diagrams below

ΣTIi
ΣTλi //

τIi

��

ΣT (colim I)
Σq

//

τcolim I

��

Σ(colim TI)

t

��

TIi
Tλi //T (colim I)

q
// colim TI

Ii

ηIi

OO

λi // colim I

ηcolim I

OO

colim ηI

55llllllllllllll

ΣTIi
Σδi //

τIi

��

Σ(colim TI)

t
��

TIi
δi // colim TI

Ii

ηIi

OO

λi // colim I
colim ηI

88qqqqqqqqqq

by the universal property of free algebras. It further follows that the endomap
q ◦ p on (colim TI) is the identity, as it is an endomap on a colimiting cone.

Finally, that the endomap p ◦ q on T (colim I) is the identity follows from the
commutativity of the diagram below

ΣT (colim I)
Σq
//

τcolim I

��

Σ(colim TI)
Σp
//

t

��

ΣT (colim I)

τcolim I

��

(B)

T (colim I)
q

// colim TI
p

//T (colim I)

colim I

ηcolim I

OO

ηcolim I

22fffffffffffffffffffffffffff

(A)

by the universal property of free algebras.

The commutativity of the diagram (A) above follows from the commutativity
of the following diagram for each i ∈ I

Ii
λi //

λi

��

ηIi

((QQQQQQQQQQQQQQQQ colim I
ηcolim I //

colim ηI

))RRRRRRRRRRRRRRR T (colim I)

q

��

TIi
δi //

Tλi
))RRRRRRRRRRRRRR colim TI

p

��

colim I ηcolim I
//T (colim I)
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because {λi }i∈I is a colimiting cone.

The commutativity of diagram (B) above follows from the commutativity of
the following diagram for each i ∈ I

ΣTIi
Σδi //

Σδi

��

ΣTλi

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Σ(colim TI)

Σp

��

TIi
((

τIi

QQQQQQQQQQQQQQQQQQ

δi
��

Tλi

**UUUUUUUUUUUUUUU
ΣT (colim I)

τcolim I

��

Σ(colim TI) t
// colim TI p

//T (colim I)

because {Σδi }i∈I is a colimiting cone. 2

Corollary 6.8 Let S = (C : Σ B Γ ` L = R) be an equational system. For C
finitely and chain cocomplete, if the endofunctors Σ and Γ preserve colimits
of κ-chains for some limit ordinal κ then so does the monad induced by the
left adjoint to the forgetful functor US : S-Alg→ C .

6.3 Epicontinuity

Let S = (C : Σ B Γ ` L = R) be an equational system for which the for-
getful functor US : S-Alg → C has a left adjoint, and write (T, η, µ) for the
induced monad on C . It follows from Proposition 6.7 that if Σ and Γ preserve
cokernel pairs (viz., pushouts of spans with identical legs) then so does T ; so
that, in particular, it also preserves epimorphisms. However, under the free
constructions of Sections 4 and 5, one can directly obtain epicontinuity.

Proposition 6.9 Let Σ be an endofunctor on a category C , and assume that
C is finitely and chain cocomplete and that Σ preserves colimits of κ-chains
for some limit ordinal κ. If Σ preserves epimorphisms then so does the monad
TΣ induced by the left adjoint to the forgetful functor UΣ : Σ-Alg→ C .

PROOF. Recall from Theorem 5.6 and Corollary 5.4 that the construction
that sets

• for λ = 0,
(Xλ → Xλ+1) = (0→ X + Σ0);

• for λ = α + 1 a successor ordinal,
(Xλ → Xλ+1) = (X + ΣXα → X + ΣXλ); and
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• for λ a limit ordinal,
Xλ → Xλ+1 to be the mediating map from a colimiting cone {Xα+1 → Xλ }α<λ

to the cone {Xα+1 = X + ΣXα → X + ΣXλ = Xλ+1 }

stops at κ, in that the map Xκ → Xκ+1 is an isomorphism, and yields an initial

(X + Σ(−))-algebra (Xκ, [ηX , τX ] : X + ΣXκ

∼=−→ Xκ) whose component τX :
ΣXκ → Xκ is a free Σ-algebra on X.

Given an epimorphism f : X � Y , one constructs a family of epimorphisms
{ fα : Xα � Yα }α≤κ such that

Xα

fα
����

//Xβ

fβ
����

Yα
//Yβ

by setting f0 = id; fα+1 = f + Σfα, for all successor ordinals α + 1; and fλ

to be the unique mediating map from the colimiting cone {Xα → Xλ }α<λ to

the cone {Xα
fα−→ Yα → Yλ }α<λ, for all limit ordinals λ.

0 ! //

0
����

X + Σ0
X+Σ! //

f+Σ0
����

X + Σ(X + Σ0)

f+Σ(f+Σ0)
����

· · · Xω

fω

����

//X + ΣXω

f+Σfω

����

· · · Xκ

fκ=TΣf
����

= TΣX

0 ! //Y + Σ0
Y +Σ! //Y + Σ(Y + Σ0) · · ·

colim

Yω
//Y + ΣYω · · · Yκ = TΣY

By construction, and because the maps Xκ → Xκ+1 and Yκ → Yκ+1 are iso-
morphisms, it follows that fκ ◦ ηX = ηY ◦ f and fκ ◦ τX = τY ◦ Σfκ. Thus,
TΣf = fκ is an epimorphism. 2

Proposition 6.10 Let S = (C : Σ B Γ ` L = R) be an equational system for
which C is finitely and chain cocomplete. If Σ preserves both epimorphisms
and colimits of κ-chains for some limit ordinal κ, and if Γ preserves either
epimorphisms or colimits of κ-chains, then the monad TS induced by the left
adjoint to the forgetful functor US : S-Alg→ C preserves epimorphisms.

PROOF. For X ∈ C , the free S-algebra (TSX, τ̃X) over the free Σ-algebra
(TΣX, τX) on X is given by means of the constructions (∗) and (∗∗); and,
as Σ preserves epimorphisms, it follows that the universal homomorphism
qX : (TΣX, τX)→ (TSX, τ̃X) is epimorphic in C . Then, using Proposition 6.9,
for every epimorphism f : X � Y , we have the following situation

TΣX

## ##G
GG

GG
GG

GG

TΣf
����

qX // //TSX

TSf
��

TΣY qY
// //TSY

and so TSf is an epimorphism. 2
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6.4 Examples

We revisit the examples of equational systems given in Section 3 in the light
of the above results.

(1) For the equational system ST = (Set : ΣT B ΓT ` LT = RT) representing
an algebraic theory T, the category ST-Alg is monadic over Set and co-
complete, and the free-algebra monad is finitary (i.e., preserves filtered
colimits, or equivalently, colimits of λ-chains for all limit ordinals λ) by
Theorem 6.1, as Set is cocomplete and ΣT and ΓT are finitary. Further-
more, ΣT and ΓT preserve epimorphisms, and hence Theorems 4.8 and 6.2
apply.

(2) For the equational system ST = (C0 : (GB)0 B (GE)0 ` σ0 = τ 0) rep-
resenting an enriched algebraic theory T = (C , B, E, σ, τ), the category
ST-Alg is monadic over C0 and cocomplete, and the free-algebra monad
is finitary by Theorem 6.1, as C0 is locally finitely presentable and thus
cocomplete, and (GB)0 and (GE)0 are finitary.

(3) One may apply Theorem 6.1 to the equational system ST representing
a monad T = (T, η, µ) on a cocomplete category C as follows. If T
preserves colimits of λ-chains for some limit ordinal λ, then ST-Alg ∼= C T

is cocomplete.
One may also apply Theorem 6.3 as follows. If C has no transfi-

nite chain of proper epimorphisms and T preserves epimorphisms, then
ST-Alg ∼= C T is cocomplete.

(4) To the equational system SMon(C ) of monoids in a monoidal cocomplete
category C we can apply Theorem 6.1 as follows. If the tensor product is
finitary (as it happens, for instance, when it is biclosed) then SMon(C )-Alg
is monadic over C and cocomplete, and the free-monoid monad is finitary.
If the tensor product also preserves epimorphisms (again, as it happens
when it is biclosed) then so does the free-monoid monad, by Theorem 6.2.

7 Applications

This section illustrates the theory of equational systems with three sample
modern applications: (i) pi-calculus algebras (Section 7.1); (ii) binding alge-
bras with substitution structure (Section 7.2); and (iii) nominal equational
theories (Section 7.3).

Our presentation discusses the difficulties in representing these mathematical
structures as enriched algebraic theories, and shows how these are overcome
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by equational systems. The theory of equational systems is then applied to
study the applications.

7.1 Pi-calculus algebras

π-algebras are an algebraic model of the finitary π-calculus introduced by
Stark in [32]. Here we briefly discuss the concept as algebras for an equa-
tional system. The theory of equational systems is then applied to deduce the
existence of free models.

We need consider the presheaf category SetI, for I the (essentially small)
category of finite sets and injections. The category SetI carries an affine doubly
closed structure (see [30]) given by:

• the cartesian closed structure
(
1,×, (=)(−)

)
, and

• the symmetric monoidal closed structure
(
1,⊗, (−) ( (=)

)
induced by

Day’s construction [9] from the symmetric monoidal structure (∅,]) on
Iop given by the empty set ∅ and the disjoint-union tensor ].

Note that, as the tensor unit is terminal, the tensor product comes equipped
with projections:

p1 : X ⊗ Y
X⊗ ! //X ⊗ 1

∼= //X ,

p2 : X ⊗ Y
!⊗Y // 1⊗ Y

∼= //Y .

The presheaf of names N ∈ SetI is the inclusion of I into Set.

A π-algebra is an object A ∈ SetI together with operations nil : 1→ A,
choice : A2 → A, out : N ×N × A→ A, in : N × AN → A, tau : A→ A, and
new : (N ( A)→ A satisfying the equations of [32, Sections 3.1–3.3 and 3.5].
These algebras, and their homomorphisms, form the category PI(SetI).

As mentioned in [32], there is a difficulty in expressing π-algebras as alge-
bras for an enriched algebraic theory. Indeed, the concept of π-algebra relies
on the consideration of two enriching structures, but enriched algebraic the-
ories consider only one. More precisely, the operation new : (N ( A)→ A is
an operation in SetI enriched over itself with respect to the monoidal closed
structure; whilst the other operations are operations in SetI enriched over
itself with respect to the cartesian closed structure. Thus one cannot use en-
riched algebraic theories to represent π-algebras and thereby establish the
existence of free models (i.e., that of a left adjoint to the forgetful functor
Uπ : PI(SetI)→ SetI mapping a π-algebra to its carrier object).

As we now proceed to show, the operations and the equations for π-algebras
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yield a functorial signature together with functorial equations. The functorial
signature Σπ on SetI is given by setting

Σπ(A) = 1 + A2 + (N ×N × A) + (N × AN) + A + (N ( A) .

In [32], the equations for π-algebras are expressed entirely in the internal
language of SetI (see also [12]), and hence are shorthand for certain commuting
diagrams. One can easily see that these commuting diagrams directly define
functorial equations. As an example, we consider the equation establishing
the inactivity of a process that inputs on a restricted channel. In the internal
language, the equation is given by

p : N ( AN ` new
(
νx : N. in(x , p @ x)

)
= nil : A

This equation stands for the commutativity of the following diagram:

N ( AN

!

��

〈p2,εN
AN 〉

//N ( (N × AN)
N( (in)

//N ( A

new

��

1 nil //A

where 〈p2, εN
AN 〉 is the transpose of the map

〈 p2 , εN
AN 〉 : (N ( AN)⊗N −→ (N × AN) .

The commuting diagram directly yields a parallel pair of functors

Σπ-Alg //
//

(
N ( (−)N

)
-Alg

over SetI.

The functorial signature Σπ and the functorial equations induced from the
axioms of π-algebras constitute an equational system Sπ on SetI such that
Sπ-Alg ∼= PI(SetI). From the fact that the presheaves N and 2 are finitely
presentable in SetI, one can easily see that every endofunctor of Sπ is fini-
tary (or equivalently, that it preserves colimits of κ-chains for every infinite
limit ordinal κ). Thus the following result follows from Theorem 6.1.

Proposition 7.1 The category of π-algebras PI(SetI) ∼= Sπ-Alg is cocom-
plete and monadic over SetI with the induced monad being finitary.

The above discussion also applies more generally to axiomatic settings as
in [12] and, in particular, to π-algebras over nominal sets, ωCpoI, etc.
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7.2 Algebras with monoid structure

We present the concept of Σ-monoid for an endofunctor Σ with a pointed
strength [13,10] and consider it from the point of view of equational systems.
The theory of equational systems is then used to provide an explicit descrip-
tion of free Σ-monoids. We then show that, for Σλ the functorial signature
of the lambda-calculus, the βη identities are straightforwardly expressible as
functorial equations. The theory of equational systems is further used to relate
the arising algebraic models by adjunctions.

7.2.1 Σ-monoids

Let Σ be an endofunctor on a monoidal category C = (C ,⊗, I, α, λ, ρ). A
pointed strength for Σ is a natural transformation

stX,(Y,y:I→Y ) : Σ(X)⊗ Y
.→ Σ(X ⊗ Y ) : C × (I/C )→ C

satisfying coherence conditions analogous to those of strengths [24]; that is,
such that the diagrams

Σ(A)⊗ I
stA,(I,idI :I→I)

//

ρΣ(A)

∼=

**UUUUUUUUUUUUUUUUUU Σ(A⊗ I)

Σ(ρA)∼=
��

Σ(A)

(Σ(A)⊗B)⊗ C
stA,(B,b:I→B)⊗C

//

αΣ(A),B,C∼=
��

Σ(A⊗B)⊗ C
stA⊗B,(C,c:I→C)

//Σ((A⊗B)⊗ C)

Σ(αA,B,C)∼=
��

Σ(A)⊗ (B ⊗ C)
st

A,(B⊗C,(b⊗c)◦ρ−1
I

:I→B⊗C)
//Σ(A⊗ (B ⊗ C))

commute for all A ∈ C and (B, b : I → B), (C, c : I → C) ∈ I/C .

Remark The notion of pointed strength arises as a special case of that of
a strength for an action of a monoidal category on a category (see [10] and
also [22]).

For an endofunctor Σ with a pointed strength st on a monoidal category C , the
category of Σ-monoids Σ-Mon(C ) has objects given by quadruples (X, s,m, e)
where (X, s : ΣX → X) is a Σ-algebra and (X, m : X ⊗X → X, e : I → X)
is a monoid in C satisfying the compatibility law requiring that the diagram

Σ(X)⊗X

s⊗X
��

stX,(X,e:I→X)
//Σ(X ⊗X)

Σ(m)
//Σ(X)

s

��

X ⊗X m //X
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commutes; morphisms are maps of C that are both Σ-algebra and monoid
homomorphisms.

7.2.2 Equational system for Σ-monoids

There are problems in presenting Σ-monoids as algebras for an enriched alge-
braic theory. For one thing, if the monoidal category C is not closed, then C
is not enriched over itself. More importantly, however, even when C is closed,
the operation m : X ⊗X → X is not directly expressible as an operation of
an enriched algebraic theory. Equational systems overcome these problems.

Let C = (C ,⊗, I, α, λ, ρ) be a monoidal category with binary coproducts. For
an endofunctor Σ on C with a pointed strength st, the equational system MΣ

of Σ-monoids is defined as

(C : FΣ B GΣ ` LΣ = RΣ)

with

FΣ(X) = Σ(X) + (X ⊗X) + I

GΣ(X) =
(
(X ⊗X)⊗X

)
+ (I ⊗X) + (X ⊗ I) + (Σ(X)⊗X)

LΣ( X, [s,m, e] )

=(X, [ m ◦ (m⊗ idX) , λX , ρX , m ◦ (s⊗ idX) ])

RΣ( X, [s,m, e] )

=(X, [ m ◦ (idX ⊗m) ◦ αX,X,X , m ◦ (e⊗ idX) , m ◦ (idX ⊗ e) , s ◦ Σ(m) ◦ stX,(X,e) ])

The functoriality of LΣ and RΣ follows from the naturality of α, λ, ρ, and st.
By construction, MΣ-Alg is (isomorphic to) Σ-Mon(C ).

7.2.3 Free Σ-monoids

We now proceed to apply the theory of equational systems developed in this
paper to the algebra of Σ-monoids. For instance, by Theorems 4.6 and 4.8,
if C is cocomplete, and the endofunctor Σ : C → C and the tensor prod-
uct ⊗ : C 2 → C preserve epimorphisms and colimits of ω-chains, then the
category Σ-Mon(C ) is monadic over C , and free Σ-monoids on objects in C
can be constructed as in diagram (2) followed by (4).

While this provides an abstract construction of free Σ-monoids, when the
monoidal structure is closed, one can go further and give an explicit description
of free Σ-monoids by exploiting the following fact.
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When C is monoidal closed, if the initial (I + Σ(−))-algebra µX. I + ΣX
exists, then the initial Σ-monoid exists and has carrier object µX. I + ΣX
equipped with an appropriate Σ-monoid structure (see [13]).

Indeed, a free Σ-monoid over A ∈ C is an initial MA
Σ-algebra for MA

Σ the equa-
tional system (

C : (A + FΣ(−)) B GΣ ` LΣ UA = RΣ UA

)
,

where UA denotes the forgetful functor
(
A+FΣ(−)

)
-Alg→ FΣ-Alg. Further-

more, for the endofunctor (A ⊗ −) + Σ(−) on C with the pointed strength
given by the composite(

(A⊗X) + Σ(X)
)
⊗ Y

∼=
(
(A⊗X)⊗ Y ) + Σ(X)⊗ Y

αA,X,Y +stX,(Y,y)
//
(
A⊗ (X ⊗ Y )

)
+ Σ(X ⊗ Y ) ,

one can establish the isomorphism p : MA
Σ-Alg ∼= M(A⊗−)+Σ(−)-Alg : q with p

and q given by

p(X, [a, s, m, e] : A + ΣX + X ⊗X + I −→ X)

= (X, [m ◦ (a⊗ idX), s, m, e] : A⊗X + ΣX + X ⊗X + I −→ X)

q(X, [b, s, m, e] : A⊗X + ΣX + X ⊗X + I −→ X)

= (X, [b ◦ (idA ⊗ e) ◦ ρ−1
A , s, m, e] : A + ΣX + X ⊗X + I −→ X) .

Thus, we have the following result (see also [10]).

Proposition 7.2 Let C be a monoidal closed category with binary coprod-
ucts. For any object A ∈ C , if the initial

(
I + (A ⊗ −) + Σ(−)

)
-algebra

µX. I + A⊗X + ΣX exists, then the free Σ-monoid on A exists and has
carrier object µX. I + A⊗X + ΣX equipped with an appropriate Σ-monoid
structure.

7.2.4 Lambda-calculus algebras

As a concrete example of algebras with monoid structure, we start by consid-
ering the syntax of the λ-calculus, with models given as certain Σλ-monoids
on the presheaf category SetF for F the (essentially small) category of finite
sets and functions.

We quickly review the structure of SetF needed here. Besides the cartesian
closed structure, the presheaf category SetF is equipped with the substitution
monoidal structure (V, •), where the unit V is the embedding of F into Set
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and the tensor • is given by the coend formula

(X • Y )(n) =
∫ k∈F

X(k)× (Y n)k .

This substitution monoidal structure is closed.

The endofunctor (−)V on SetF has the property of shifting presheaves; in that,
for any presheaf X ∈ SetF, the set XV (n) can be presented as X(n + 1) for
all finite sets n ∈ F.

A λ-prealgebra [13] is a Σλ-monoid for the endofunctor ΣλX = XV +X2 with
a suitable pointed strength on the presheaf category SetF. The operations of
a Σλ-monoid

(X, [abs, app, sub, var] : XV + X2 + (X •X) + V −→ X)

provide interpretations of λ-abstraction (abs : XV → X), application (app :
X2 → X), capture-avoiding simultaneous substitution (sub : X •X → X),
and variables (var : V → X).

The initial Σλ-monoid has carrier object µX. V + XV + X2. It consists of
α-equivalence classes of λ-terms with variables from V , and thus provides an
abstract notion of syntax for the λ-calculus (see [13]). The syntactic description
of free Σλ-monoids has been considered in [20,10].

The βη identities for a λ-prealgebra on X are expressed, in the internal lan-
guage, by the following equations

(β) f : XV , x : X ` app(abs(f), x) = sub(f〈x〉) : X

(η) x : X ` abs
(
λv : V. app(x, var v)

)
= x : X

where the map −〈=〉 : XV ×X → X •X embeds XV ×X into X •X. Indeed,
the equations stand for the following commuting diagrams

XV ×X
−〈=〉

//

abs×X
��

X •X

sub

��

X ×X
app

//X

X
x:X ` λv:V. app(x,var v)

//

idX
**VVVVVVVVVVVVVVVVVVVVVVVV XV

abs
��

X

where the map x : X ` λv : V. app(x, var v) is the transpose of the composite

X × V
X×var //X ×X

app
//X .

These commuting diagrams provide a functorial equation

Lβη = Rβη : FΣλ
-Alg→ Gβη-Alg ,
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for GβηX = (XV ×X) + X, and yield the equational system of λ-algebras

MΣλ
/βη =

(
SetF : FΣλ

B (GΣλ
+ Gβη) ` [LΣλ

, Lβη] = [RΣλ
, Rβη]

)
from that of λ-prealgebras MΣλ

= (SetF : FΣλ
B GΣλ

` LΣλ
= RΣλ

).

From the coend formula for the substitution tensor and the fact that in
the category of sets filtered colimits commute with finite limits, it follows
that • : SetF × SetF → SetF preserves filtered colimits, and it is also easily
seen that it preserves epimorphisms. Furthermore, also the endofunctors (−)V

and (−)2 preserve filtered colimits and epimorphisms. Hence, so do the endo-
functors FΣλ

, GΣλ
, and Gβη. Thus, from one application of Theorem 4.6 and

two applications of Theorem 4.8, we obtain the adjunctions V a U , K1 a J1,
and K1,2 a J1 J2

MΣλ
/βη-Alg � �

J2

//⊥ MΣλ
-Alg

K2oo
� �

J1

//⊥ FΣλ
-Alg

K1oo

K1,2

ss ⊥

a U
��

SetF

V

OO

and consequently have that K2 = K1,2 J1 a J2 as in the diagram above.

Moreover, by examining the construction (4) of the free MΣλ
/βη-algebra over

the initial MΣλ
-algebra along K2, one sees that the presheaf of α-equivalence

classes of λ-terms is first quotiented by the βη identities, and then by the
congruence rules for the operations abs, app, and sub. It follows that the initial
MΣλ

/βη-algebra is the presheaf of αβη-equivalence classes of λ-terms.

7.3 Nominal equational theories

Clouston and Pitts [7] have recently introduced Nominal Equational Logic (NEL)
as an extension of equational logic with names and assertions on their fresh-
ness. We show in this section that every NEL theory can be represented as an
equational system in the sense that the respective categories of algebras co-
incide. By further showing that the equational system representation satisfies
the hypothesis of Theorems 4.7 and 4.8, the monadicity and cocompleteness
of categories of algebras for NEL theories follows (see Corollary 6.6). We also
give explicit descriptions of free algebras for NEL theories as derived from
their inductive construction. For brevity, we only consider the single-sorted
case; the multi-sorted one being treated analogously. All these results can be
also seen to apply to the nominal algebras of Gabbay and Mathijssen [15].
However, we do not dwell on this here.
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7.3.1 Nominal sets

For a fixed countably infinite set A of atoms, the group S0(A) of finite per-
mutations of atoms consists of the bijections on A that fix all but finitely
many elements of A. A S0(A)-action X = (|X|, ·) consists of a set |X|
equipped with a function − ·= : S0(A)× |X| → |X| such that idA · x = x
and π′ · (π · x) = (π′π) · x for all x ∈ |X| and π, π′ ∈ S0(A). S0(A)-actions
form a category with morphisms X → Y given by equivariant functions; that
is, functions f : |X| → |Y | such that f(π · x) = π · (fx) for all π ∈ S0(A) and
x ∈ |X|.

By an element x of a S0(A)-action X, denoted x ∈ X, we mean that x is a
member of |X|. For a S0(A)-action X, a finite subset S of A is said to support
x ∈ X if for all atoms a, a′ 6∈ S, (a a′) · x = x, where the transposition (a a′) is
the bijection that swaps a and a′. A nominal set is a S0(A)-action in which
every element has finite support. As an example, note that the set of atoms
A becomes the nominal set of atoms A when equipped with the evaluation
action π · a = π(a). A further example is given by S0(A) equipped with the
conjugation action π · σ = πσπ−1, which we denote as S0(A).

The supports of an element of a nominal set are closed under intersection,
and we write suppX(x), or simply supp(x) when X is clear from the context,
for the intersection of the supports of x in the nominal set X. For instance,
suppA(a) = { a } and suppS0(A)(σ) = { a ∈ A | σ(a) 6= a }. For elements x and
y of two, possibly distinct, nominal sets X and Y , we write x # y whenever
suppX(x) and suppY (y) are disjoint. Thus, for a ∈ A and x ∈ X, a # x stands
for a 6∈ suppX(x); that is, a is fresh for x.

For an element x of a nominal set X, and π, π′ ∈ S0(A) such that π(a) = π′(a)
for all a ∈ supp(x), we have that π · x = π′ · x. Thus, for a finite set of atoms
S ⊇ supp(x) and an injective function α : S � A it makes sense to define α ·x
as α̃ · x for α̃ ∈ S0(A) any permutation extending α.

We let Nom be the full subcategory of the category of S0(A)-actions consist-
ing of nominal sets, and briefly consider its structure relevant to us here.

The coproduct
∐

k∈K Xk of a family of nominal sets {Xk }k∈K is the nominal
set with |∐k∈K Xk| =

∐
k∈K |Xk| and action π · (k, x) = (k, π · x). As usual we

write X1 + · · ·+ Xn for
∐

k∈{ 1,...,n } Xk.

The product
∏

i∈I Xi of a finite family of nominal sets {Xi }i∈I is the nominal
set with |∏i∈I Xi| =

∏
i∈I |Xi| and action π · (xi)i∈I = (π · xi)i∈I . As usual

we write X1 × · · · ×Xn for
∏

i∈{ 1,...,n } Xi, and XI for
∏

i∈I X. More generally,
the exponential XY of nominal sets X and Y consists of all finitely supported
functions |Y | → |X| with respect to the action that inversely acts on the input
and directly acts on the output; i.e., π · f = λx. π · f(π−1 · x).
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The separating tensor #i∈IXi of a finite family of nominal sets {Xi }i∈I is
the subnominal set of

∏
i∈I Xi with underlying set given by

{ (xi)i∈I | xi # xj for all i 6= j } .

We write X1# · · ·#Xn for #i∈{ 1,...,n }Xi, and X#I for #i∈IX. Thus, for in-

stance, the nominal set A#I for a finite set I is the subset of AI consisting of
the injections ı : I � A with action given by post-composition; i.e., π · ı = πı.
The separating tensor carries a symmetric monoidal closed structure.

For every set S, we define two nominal sets S and S: the nominal set S has
underlying set S and projection action π · s = s; the nominal set S is the
product S0(A)× S.

For a nominal set X, the nominal set P0(X) has underlying set P0|X|, the
set of finite subsets of |X|, and pointwise action π · S = { π · x | x ∈ S }. In
particular, P0(S) = P0(S) for every set S. Note also that, for A ∈ P0(A) and
x ∈ X, A # x stands for a # x for all a ∈ A.

7.3.2 NEL theories

A NEL theory consists of a signature defining its operators together with the
set of axioms that these should obey.

A NEL signature Σ is specified by a family of nominal sets {Σ(n) }n∈N, each
of which consists of operators of arity n ∈ N.

The nominal set of terms TΣ(V ) on a nominal set V is inductively defined by
the following rules:

v ∈ V

v ∈ TΣ(V )

ti ∈ TΣ(V ) (i = 1, . . . , n)

o t1 . . . tn ∈ TΣ(V )

(o ∈ Σ(n)) (6)

and equipped with the action inductively defined by:

π ·TΣ(V ) v = π ·V v

π ·TΣ(V ) (o t1 . . . tn) = (π ·Σ(n) o) (π ·TΣ(V ) t1) . . . (π ·TΣ(V ) tn) (o ∈ Σ(n))

We now fix a countably infinite set V of variables. The nominal set of freshness
contexts is defined as ∐

S∈P0(V)

(
P0A I (P0A)S

)
where X I Y denotes the subnominal set of X × Y with underlying set
{ (x, y) ∈ |X| × |Y | | supp(x) ⊇ supp(y) }. Thus, the nominal set of freshness
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contexts has elements ∇ = (|∇|,∇A ,∇≈�) given by a finite set of variables
|∇| ⊂ V, a finite set of atoms ∇A ⊂ A, and a function ∇≈� : |∇| → P0(∇A)
with the following action

π · (|∇|,∇A ,∇≈�) = ( |∇| , π ·P0(A) ∇A , λx ∈ |∇|. π ·P0(A) ∇≈�(x) ) .

Note that supp(∇) = ∇A .

If |∇| = {x1, . . . , xn }, ∇A = { a1, . . . , am }, and ∇≈�(xi) = Ai for i = 1, . . . , n,
we write ∇ as

a1, . . . , am I A1 ≈� x1, . . . , An ≈� xn

where we also abbreviate ∅ ≈� x as x and {a} ≈� x as a ≈� x.

By a term t in a freshness context ∇, written ∇ ` t, we mean t ∈ TΣ( |∇| )
such that supp(t) ⊆ ∇A . That is, the grammar for terms in freshness contexts
is as follows:

t ::= σ x (σ ∈ S0(A) with supp(σ) ⊆ ∇A , x ∈ |∇|)

| o t1 . . . tn (o ∈ Σ(n) with supp(o) ⊆ ∇A)

where we use the notational convention of abbreviating (σ, x) as σ x and fur-
ther abbreviating this as x when σ is the identity. Note that ∇ ` t implies
π · ∇ ` π · t for all π ∈ S0(A).

A NEL theory is given by a NEL signature Σ together with a set of axioms
consisting of judgements of the form

∇ ` t ≈ t′

where t and t′ are terms in the freshness context ∇.

We give the canonical example of NEL theory. The NEL signature Σλ for the
untyped λ-calculus [7] (see also [15]) is given by the nominal sets of operators

Σλ(0) = {V a | a ∈ A } , Σλ(1) = {La | a ∈ A } , Σλ(2) = {A } ,

Σλ(n) = ∅ (n ≥ 3)

with actions

π · V a = V π(a) , π ·La = Lπ(a) , π ·A = A .

The NEL theory for αβη-equivalence of untyped λ-terms consists of the fol-
lowing axioms.
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a, a′ I a′ ≈� x ` La x ≈ La′ ((a a′) x) (α)

a I a ≈� x, x′ ` A (La x) x′ ≈ x (β-1)

a I x′ ` A (La V a) x′ ≈ x′ (β-2)

a, a′ I x, a′ ≈� x′ ` A (La (La′ x)) x′ ≈ La′ (A (La x) x′) (β-3)

a I x1, x2, x′ ` A (La (A x1 x2)) x′ ≈ A (A (La x1) x′) (A (La x2) x′) (β-4)

a, a′ I a′ ≈� x ` A (La x) V a′ ≈ (a a′) x (β-5)

a I a ≈� x ` x ≈ La (A x V a) (η)

Remark The work reported in [7] is based on judgements of the form

∇ ` A ≈� t ≈ t′

where A is a finite set of atoms that imposes name freshness conditions on
the terms of the equation. However, Clouston has shown that this extension,
though convenient, does not add expressive power; as every such axiom can be
equivalently encoded as one without freshness conditions (see also [15, Theo-
rem 5.5]). For instance, the α-equivalence axiom above is the encoding of the
following one

a I x ` {a} ≈� La x ≈ La x .

A Σ-structure (M, e) for a NEL signature Σ is given by a nominal set M and
an N-indexed family e of equivariant functions en : Σ(n)×Mn →M , referred
to as evaluation functions. The evaluation functions extend from operators
to terms to give the equivariant function eV : TΣ(V ) ×MV → M , for each
nominal set V , inductively defined by:

eV (v, m) = m(v) ,

eV (o t1 . . . tn, m) = en(o, eV (t1, m), . . . , eV (tn, m)) .

By a valuation m of a freshness context ∇ in a nominal set M , we mean
m ∈M |∇| such that ∇≈�(x) # m(x) for all x ∈ |∇|. It follows that π · m is
a valuation of π · ∇ in M for all π ∈ S0(A). For every valuation m of ∇,
the function m : |∇| → M defined by setting m(π, x) = π · m(x) is finitely
supported with supp(m) =

⋃
x∈|∇| supp(m(x)) and hence provides an extension

m ∈M |∇| of m ∈M |∇|.

A Σ-structure (M, e) is said to satisfy the judgement ∇ ` t ≈ t′ if

e |∇| (t,m) = e |∇| (t
′, m)

for all valuations m of ∇ in M .
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A T-algebra for a NEL theory T = (Σ, E) is a Σ-structure that satisfies every
axiom in E. A homomorphism from a T-algebra (M, e) to another one (M ′, e′)
is an equivariant function h : M →M ′ such that

h(en(o, m1, . . . ,mn)) = e′n(o, h(m1), . . . , h(mn))

for all n ∈ N, o ∈ Σ(n), and m1, . . . ,mn ∈M . T-algebras and homomorphisms
form the category T-Alg.

7.3.3 NEL theories as equational systems

We will now present every NEL theory T = (Σ, E) as an equational system
T̃ = (Nom : Σ̃ B Γ̃ ` L̃ = R̃) in such a way that the respective categories of
algebras are isomorphic.

The functorial signature Σ̃ is simply defined as

Σ̃(M) =
∐
n∈N

Σ(n)×Mn ,

so that Σ̃-algebras and Σ-structures are in bijective correspondence.

Turning the set of axioms into a functorial equation is more involved. We
consider first the definition of the functorial context associated to a freshness
context. To this end, note that if a Σ-structure satisfies the axiom ∇ ` t ≈ t′

then, by equivariance of the evaluation functions, it also satisfies the judgement
(π · ∇) ` (π · t) ≈ (π · t′) for all π ∈ S0(A) (see [7]). Hence the atoms in ∇A
for the freshness context ∇ of a judgement can be conceptually understood
as atom place-holders (or meta-atoms). It follows that the functorial contexts
of freshness contexts should be given by a consistent interpretation of both
atoms and term variables. This is formalized by defining the functorial context
Γ∇ on Nom of a freshness context ∇ as

Γ∇(M) = { (α, m) ∈ A#∇A ×M |∇| | m is a valuation of α · ∇ in M } .

Note that α · ∇, which stands for α̃ · ∇ where α̃ ∈ S0(A) is any permutation
extending α : ∇A � A, is well defined because ∇A is the support of ∇. The
above definition makes Γ∇ into a functor because for (α, m) ∈ Γ∇(M) and an
equivariant function f : M → N , we have that supp(f(m(x))) ⊆ supp(m(x))
for all x ∈ M and hence that f ◦m ∈ N |∇| is a valuation of α · ∇ in N , that
is, (α, f ◦m) ∈ Γ∇(N).

For a term in a freshness context ∇ ` t, the functorial term

F∇`t : Σ̃-Alg→ Γ∇-Alg
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then maps (M, e) to

F∇`t(M, e) : Γ∇(M)→M : (α, m) 7→ e |∇| (α · t,m) .

Note that α · t, which stands for α̃ · t where α̃ ∈ S0(A) is any permutation
extending α : ∇A � A, is well defined because ∇A includes the support of t.

The equivariance of F∇`t(M, e) is established as follows:

F∇`t(M, e)
(
π · (α, m)

)
= F∇`t(M, e)(πα, π ·m)

= e |∇| ((πα) · t, π ·m)

= e |∇| (π · (α · t), π ·m)

= π · e |∇| (α · t,m)

= π · F∇`t(M, e)(α, m)

where the third identity follows because any extension α̃ of α makes πα̃ into
an extension of πα, and because π ·m = π ·m.

The equational system T̃ = (Nom : Σ̃ B Γ̃ ` L̃ = R̃) associated to the
NEL theory T = (Σ, E) is thus defined as

Σ̃ =
∐

n∈N Σ(n)× (−)n , Γ̃ =
∐

(∇`t≈t′)∈E Γ∇

L̃ =
[
F∇`t

]
(∇`t≈t′)∈E

, R̃ =
[
F∇`t′

]
(∇`t≈t′)∈E

Theorem 7.3 The categories T-Alg and T̃-Alg are isomorphic.

PROOF. We prove that a Σ-structure (M, e) satisfies the judgement∇ ` t ≈ t′

if and only if F∇`t(M, [en]n∈N) = F∇`t′(M, [en]n∈N).

The if part is easily shown by considering the inclusion function ι ∈ A#∇A .
Indeed, for all valuations m of ∇ in M , we have that

e |∇| (t,m) = F∇`t(M, [en]n∈N)(ι, m) = F∇`t′(M, [en]n∈N)(ι, m) = e |∇| (t
′, m)

where the first and last identities hold because the identity permutation ex-
tends ι.

To prove the only-if part, assume that (M, e) satisfies the judgement∇ ` t ≈ t′.
Then, for (α, m) ∈ Γ∇(M), as m is a valuation of α · ∇ in M and (M, e) also
satisfies (α · ∇) ` (α · t) ≈ (α · t′), we conclude that
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F∇`t(M, [en]n∈N)(α, m) = e |∇| (α · t,m)

= e |∇| (α · t
′, m)

= F∇`t′(M, [en]n∈N)(α, m) 2

Aiming at applying Theorems 6.1 and 6.2 we establish the following result.

Theorem 7.4 The functorial signature and functorial context of the equa-
tional system associated to a NEL theory preserve filtered colimits and epi-
morphisms.

PROOF. Let Σ̃ and Γ̃ respectively be the functorial signature and functorial
context associated to a NEL theory T = (Σ, E).

As the product is closed, the functor Σ(n) × (−)n preserves filtered colimits
and epimorphisms for all n ∈ N. Thus, the functorial signature Σ̃, being the
(pointwise) coproduct of these functors, also preserves filtered colimits and
epimorphisms.

Since the functorial context Γ̃ is the (pointwise) coproduct of functorial con-
texts of the form Γ∇, it is enough to show that such functors preserve (i) fil-
tered colimits and (ii) epimorphisms.

To show (i), we make the key observation that for all freshness contexts ∇,
the following diagram is a pullback

Γ∇(M)
′M //

� _

ı′M
��

∏
x∈|∇|

(
A#(∇≈�(x)) # M

)
� _

ıM

��

A#∇A ×M |∇|
M

//
∏

x∈|∇|

(
A#(∇≈�(x)) ×M

)
where ıM is induced by the embedding of the separating tensor into the prod-
uct; ı′M is the embedding determined by the definition of Γ∇(M); and ′M is the

restriction of the equivariant function M : (α, m) 7→
(
(α� ∇≈�(x), m(x))

)
x∈|∇|

,

where α � ∇≈�(x) is the restriction of α to ∇≈�(x) (that is, the composite
∇≈�(x) ↪→ ∇A α→ A).

Thus, since the category of nominal sets is locally finitely presentable, and
hence in it finite limits commute with filtered colimits, and since both the
product and separating tensor are closed, and hence preserve filtered colimits,
it follows that Γ∇ preserves filtered colimits. Indeed, for D a filtered diagram
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of nominal sets, we have that

colim(Γ∇D)

∼= colim
(

lim
( A#∇A ×D|∇|

**UUUUUUUU

∏
x∈|∇| A#(∇≈�(x))#D

E e
ssggggg∏

x∈|∇| A#(∇≈�(x)) ×D

))

∼= lim
( colim(A#∇A ×D|∇|)

++XXXXXXX
colim(

∏
x∈|∇| A#(∇≈�(x))#D)

D d
rreeeeeee

colim(
∏

x∈|∇| A#(∇≈�(x)) ×D)

)

∼= lim
( A#∇A × (colim D)|∇|

++VVVVVVVVV

∏
x∈|∇| A#(∇≈�(x))#(colim D)
E e

ssffffff∏
x∈|∇| A#(∇≈�(x)) × (colim D)

)
∼= Γ∇(colim D) .

To show (ii), we just need to show that Γ∇ preserves surjectivity. To this end,
let f : P � Q be a surjective equivariant function and let (α, q) ∈ Γ∇(Q).
Then, for every x ∈ |∇|, there exists px ∈ P such that f(px) = q(x). More-
over, since supp(px) ⊇ supp(q(x)) and supp(q(x)) # (α · ∇)≈�(x), there exists
πx ∈ S0(A) such that

πx(a) = a for all a ∈ supp(q(x)) and πx(supp(px)) # (α · ∇)≈�(x) .

It follows that f(πx·px) = πx·f(px) = πx·q(x) = q(x) and (α · ∇)≈�(x) # πx·px.
Thus, setting p′(x) = πx · px for all x ∈ |∇|, we have (α, p′) ∈ Γ∇(P ) with
Γ∇(f)(α, p′) = (α, fp′) = (α, q) as required. 2

Corollary 7.5 The category of algebras for a NEL theory is cocomplete and
monadic over nominal sets, with the induced free-algebra monad being finitary
and epicontinuous. Moreover, free algebras on nominal sets are constructed
in ω + ω steps by the construction (2) followed by the construction (4) in
Section 4.

7.3.4 Presentation of free algebras

We proceed to give an inductive presentation of free algebras for NEL theories.

For a NEL theory T = (Σ, E) and its associated equational system T̃, we have
the following situation:

T-Alg ∼= T̃-Alg � � //⊥ Σ̃-Alg
oo ∼= Σ-Alg

��

a

Nom

OO
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Ref
m ∈M

m ≈E m
Sym

m ≈E m′

m′ ≈E m
Trans

m ≈E m′ m′ ≈E m′′

m ≈E m′′

Axiom
(α, m) ∈ Γ∇(M)

e |∇| (α · t,m) ≈E e |∇| (α · t
′, m)

(
(∇ ` t ≈ t′) ∈ E

)

Cong
mi ≈E m′

i (1 ≤ i ≤ k)

o m1 . . . mk ≈E o m′
1 . . . m′

k

(
o ∈ Σ(k)

)

Fig. 1. Rules for the relation ≈E .

By the construction (2), the free Σ̃-algebra on a nominal set V has as carrier
the nominal set TΣ(V ) inductively defined by the rules (6).

We obtain a presentation of the free T̃-algebra on a Σ̃-algebra (M, [en]n∈N) by
analyzing the construction (4). Since the forgetful functor | − | : Nom→ Set
creates colimits, it follows from the standard construction of colimits in Set
that the underlying set of the carrier object of the free T̃-algebra on (M, [en]n∈N)
is obtained as the colimit of the ω-chain of quotients

|M |� |M |/≈1 � · · ·� |M |/≈n � · · ·

where ≈n denotes the equivalence relation on |M | generated by the following
rules

for ≈1 :
(α, m) ∈ Γ∇(M)

e |∇| (α · t,m) ≈1 e |∇| (α · t
′, m)

(
(∇ ` t ≈ t′) ∈ E

)

for ≈n (n ≥ 2) :
m ≈n−1 m′

m ≈n m′

mi ≈n−1 m′
i (1 ≤ i ≤ k)

o m1 . . . mk ≈n o m′
1 . . . m′

k

(o ∈ Σ(k))

Thus, the free T̃-algebra on (M, [en]n∈N) has carrier object M/≈E
given by

the underlying set |M |/≈E
for ≈E the equivalence relation on |M | given by

the rules in Figure 1 together with the action given by π · [m]≈E
= [π ·m]≈E

.
Furthermore, the quotient map M � M/≈E

sends m ∈ M to [m]≈E
, and the

Σ̃-algebra structure
[
[en]≈E

]
n∈N

on M/≈E
is given by

[en]≈E
(o, [m1]≈E

, . . . , [mn]≈E
) = [en(o, m1, . . . ,mn)]≈E

for all n ∈ N, o ∈ Σ(n), and m1, . . . ,mn ∈M .
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As a corollary, we now establish the following ground completeness result for
NEL [7, Theorem 9.4]:

For a NEL theory T, if a ground judgement (viz., a judgement with no
variables) is satisfied by all T-algebras, then the judgement is provable in
NEL.

The free T-algebra on the empty nominal set ∅ consists of the nominal set
TΣ(∅)/≈E

of ground terms TΣ(∅) quotiented by ≈E, equipped with the syntac-
tic Σ-structure e. Thus, for any ground judgement (a1, . . . , am I { } ` t ≡ t′),
we have that

every T-algebra satisfies (a1, . . . , am I { } ` t ≡ t′)

=⇒ (TΣ(∅)/≈E
, e) satisfies (a1, . . . , am I { } ` t ≡ t′)

=⇒ e ∅ ( t , () ) = e ∅ ( t′ , () ) in TΣ(∅)/≈E

=⇒ [t]≈E
= [t′]≈E

in TΣ(∅)/≈E

=⇒ t ≈E t′ is derivable from the rules in Figure 1

The ground completeness result follows by noticing that every proof of t ≈E t′

is easily turned into a proof of the judgement (a1, . . . , am I { } ` t ≡ t′) in
NEL.

8 Conclusion

The main and salient contribution of this paper can be summarised as the
introduction of a framework for the specification of equational systems (Sec-
tion 3) and the development of an associated theory of free constructions (Sec-
tions 4 and 5) that is general (see Sections 3.4 and 6.4) and, most importantly,
practical as needed in modern applications (see Section 7).

In connection to related work, we have learnt during the course of this work
that variations on the concept of equational system, and its dual of equational
cosystem (viz., an equational system on an opposite base category), had al-
ready been considered in the literature. For instance, Fokkinga [14] introduces
the more general concept of law between the so-called transformers, but only
studies initial algebras for the laws that are equational systems; Ĉırstea [6]
introduces the concept of coequation between abstract cosignatures, which
is equivalent to our notion of equational cosystem, and studies final coalge-
bras for them; Ghani, Lüth, De Marchi, and Power [18] introduce the concept
of functorial coequational presentations, which is equivalent to our notion of
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equational cosystem on a locally presentable base category with an accessi-
ble functorial signature and an accessible functorial context, and study cofree
constructions for them.

In comparison, our theory of equational (co)systems is more general and com-
prehensive than that of [14] and [6], and it can be related to that of [18]
as follows. The proof of the dual of Corollary 5.9 (3) together with the con-
struction of cofree coalgebras for endofunctors by terminal sequences of Wor-
rell [33], gives a construction of cofree coalgebras for equational cosystems
on a locally presentable base category with an accessible functorial signature
that preserves monomorphisms. This is a variation of a main result of the
theory developed by Ghani, Lüth, De Marchi, and Power [18] (see e.g. their
Lemmas 5.8 and 5.14); which is there proved by means of the theory of ac-
cessible categories without assuming the preservation of monomorphisms but
assuming an accessible arity endofunctor.

In the context of the enriched algebraic theories of Kelly and Power [23],
which we have exhibited as equational systems in Section 3.4 (2), one may
also consider the categorical presentation of term rewriting via coinserters of
Ghani and Lüth [17] in the setting of algebraic theories on the category of
preorders. In this vein, we have developed a theory of free constructions for
inequational systems in an abstract-rewriting enriched setting together with a
logical theory for rewriting modulo equations. Details will appear elsewhere.

Acknowledgements. We are grateful to Sam Staton for discussions.
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[2] J. Adámek. Free algebras and automata realizations in the language of
categories. Comment. Math. Univ. Carolin., 15:589–602, 1974.
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