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A Message Passing Example:

No Data Race

D = 42

LOCK(L)

F = 1

UNLOCK(L)

while (1) {

LOCK(L)

f = F

UNLOCK(L)

if (f) break

}

d = D

Initially:  D = F = 0

Finally:  d = 42
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Sequentially Consistent Concurrency

D = 42

F = 1

while (1) {

f = F

if (f) break

}

d = D

Initially:  D = F = 0

Finally:  d = 42
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Relaxed-Memory Concurrency

D = 42

F = 1

while (1) {

f = F

if (f) break

}

d = D

Initially:  D = F = 0

Finally:  d = 42 or 0

F = 1

D = 42

HW out of order exec
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Release & Acquire

D = 42

F = 1

while (1) {

f = F

if (f) break

}

d = D

Initially:  D = F = 0

Finally:  d = 42

[ rel ]

[ acq ]
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Release & Acquire

D = 42

F = 1

while (1) {

f = F

if (f) break

}

d = D

Initially:  D = F = 0

Finally:  d = 42

[ rel ]

[ acq ]

Run as if 
in a single thread
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Release & Acquire with Tweak

D = 42

F = 1

f = F

if (f) {

d = D  // d = 42?

}

D = 10

Initially:  D = F = 0

[ rel ]

[ acq ]
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Concurrency Models

ÅSemantics of multi -threaded programs?

- Sequential consistency (SC): simple but expensive

ÅRelaxed memory model (C/C++, Java)

- Many consistency modes (cost vs. consistency tradeoff)

- Open problem 9 vg`s hr sgd Śright ś rdl`mshbr>
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ŗRightŘ Concurrency Semantics?

Conflicting goals of compilers, hardware &
programmers

ÅCompiler/hardware : validating optimizations
(e.g. reordering, merging)

ÅProgrammer : supporting reasoning principles
(e.g. DRF theorem, program logic)
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ŗOut-of-thin -airŘ problem (1/3)

Load-Buffering (LB)

a = X
Y = a

b = Y
X = 42

Thread 1 Thread 2

(allowed: a=b=42)
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ŗOut-of-thin -airŘ problem (1/3)

Load-Buffering (LB)

a = X
Y = a

b = Y
X = 42

Thread 1 Thread 2

(allowed: a=b=42)

Registers
Shared 

Locations

C11
Relaxed
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ŗOut-of-thin -airŘ problem (1/3)

Load-Buffering (LB)

a = X
Y = a

b = Y
X = 42

Thread 1 Thread 2

(allowed: a=b=42)

X = 42
b = Y

Read X,42

Write Y,42

Read Y,42

Write X,42

(X=Y=0)

(read-from)

(sequenced-
before)

Justification is 
too loose!
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ŗOut-of-thin -airŘ problem (2/3)

Classical Out-of-thin -air (OOTA)

a = X
Y = a

b = Y
X = b

Thread 1 Thread 2

(forbidden : a=b=42)
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ŗOut-of-thin -airŘ problem (2/3)

Classical Out-of-thin -air (OOTA)

a = X
Y = a

b = Y
X = b

Thread 1 Thread 2

(forbidden : a=b=42)

Reasoning principles
(e.g. invariant a=b=X=Y=0)

Read X,42

Write Y,42

Read Y,42

Write X,42

(X=Y=0)

(read-from)

(sequenced-
before)

What does 
hardware do?
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ŗOut-of-thin -airŘ problem (3/3)

Tracking Syntactic Dependency?

11

a = X
Y = a

b = Y
X = 42

Thread 1 Thread 2

(a=b=42?)

a = X
Y = a

b = Y
X = b

Thread 1 Thread 2

(a=b=42?)
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ŗOut-of-thin -airŘ problem (3/3)

Tracking Syntactic Dependency?

12

a = X
Y = a

b = Y
X = b+42- b

Thread 1 Thread 2

(a=b=42?)

a = X
Y = a

b = Y
X = b

Thread 1 Thread 2

(a=b=42?)

(dep)
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Promising Semantics

ÅSolving the out -of -thin -air problem

ÅSupporting optimizations & reasoning principles

ÅCovering most C/C++ concurrency features

ÅOperational semantics w/o undefined behavior

ÅMost results are verified in Coq

http ://sf.snu.ac.kr/promise-concurrency

13
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Key Idea 1: Messages & Views

ÅMemory: pool of messages (loc, val, timestamp)

ÅPer-thread view on the memory

14

Timestamp

Loc.

X

Y

0

0 37

85

42
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readable/writable

Thread 1

Key Idea 1: Messages & Views

ÅMemory: pool of messages (loc, val, timestamp)

ÅPer-thread view on the memory

14

Timestamp

Loc.
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readable/writable

Thread 1 Thread 2

Key Idea 1: Messages & Views

ÅMemory: pool of messages (loc, val, timestamp)

ÅPer-thread view on the memory

14

Timestamp

Loc.

X

Y

0

0 37

85

42

42



/2 8

Example

Store Buffering

Y = 42 
a = X

X = 42
b = Y

Timestamp

Loc.

X

Y

0

0

(allowed: a=b=0)Thread 1 Thread 2
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Example

Load Buffering (LB)

a = X
Y = a

b = Y
X = 42

Timestamp

Loc.

X

Y

0

0

Thread 1 Thread 2 (allowed: a=b=42)
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Key Idea 2: Promises

ÅA thread can promise to write X=V in the future,
after which other threads can read X=V.

ÅTo avoid OOTA, the promising thread must
certify that it can write X=V in isolation .

ÅUntil all its promises are fulfilled, the thread can 
take certifiable steps only.
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Example

Load Buffering (LB)

a = X
Y = a

b = Y
X = 42

Timestamp

Loc.

X

Y

0

0

Thread 1 Thread 2 (allowed: a=b=42)
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Example

Certification

42
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