
ROSAEC MEMO

2014-03

November 24, 2014

Towards Scalable Translation Validation of

Static Analyzers

Jeehoon Kang, Sungkeun Cho, Joonwon Choi, Chung-Kil Hur, Kwangkeun Yi

November 24, 2014

Abstract

Static analyzers, which have been successfully deployed in real world to statically find
software errors, are complex pieces of software whose reliability is very hard to establish by
testing. Testing is not so effective because analysis results are hard to validate manually
for the following reasons: (i) even valid outputs can contain false alarms (or even false
negatives if the analyzer is deliberately unsound), and (ii) internal data such as an abstract
state of an input program are too big to manually inspect.

In this paper, we claim that the translation validation approach is a scalable and
effective method to establish reliability of such software. To demonstrate scalability, we
developed a verified validator for a real-world static analyzer, which uses various complex
algorithms. To demonstrate effectiveness, using our validator we validated the analysis
results of the analyzer for 16 open-source programs, during which we effectively identified
and fixed 13 bugs using the validation results.

1 Introduction

Formal verification of functional correctness of software can be practically useful only when the
following conditions are met: (i) the verification effort should not be too costly; and (ii) relia-
bility of the software should be either very important or hard to establish by other means such
as testing. The former condition is hard to be met for many applications because, for instance,
their specifications are too complex to formalize, or their implementations are too big to for-
malize. However, there are some large applications such as compilers that have simple specifica-
tions. Also, if the translation validation approach [Pnueli et al.(1998)Pnueli, Siegel, and Singerman]
is applicable, instead of target programs, we can verify their (possibly much smaller) validators
that validate runtime results of the target programs. Similarly, the latter condition is also not
the case for many applications. However, there are some safety-critical programs such as flight
control systems whose reliability is extremely important. Or, sometimes reliability is hard to
establish only by testing because, for instance, the programs are highly concurrent, or it is not
easy to determine which behaviours are faulty.

Static analyzers based on abstract interpretation are ideal examples of such software that
satisfy the two conditions. First of all, reliability of a static analyzer is hard to establish only
by testing, especially when it is designed to be unsound (usually due to unavailable library
code and for the sake of precision, i.e., reduction of false alarms). The reason is that whether
an analysis result is valid is not evident because both valid and invalid results can contain
false alarms and moreover, if the analyzer is unsound, even can miss true alarms. Also, it is
infeasible to detect bugs by manually examining intermediate data such as an abstract state
of the analyzed program because such data are simply too big unless the analyzed program
is very small. However, reliability of a static analyzer is important, especially when it is
applied to safety-critical software, because reliability of analyzed software depends on that of
the analyzer. This argument is still valid even if the analyzer is deliberately unsound, although
the importance gets slightly weakened.



November 24, 2014 ROSAEC-2014-03 2

Second, the formal verification cost of a static analyzer based on abstract interpretation
is not too expensive. First, such an analyzer has a simple specification for its main part:
the resulting abstract state should include all possible concrete states that can occur during
executions of the analyzed program. Second, the verification cost can be reduced by using
translation validation. The idea is to develop a validator (to some extent specialized for a
particular analyzer1) that checks whether a given analysis result is valid or not, and then
formally verify that the validator is correct. By validating each analysis result using the
verified validator, we can trust the result if it passes the validator; or otherwise detect bugs of
the analyzer. In this way we can greatly reduce the verification effort because the validator is
much smaller and simpler than the analyzer. The validation algorithm would typically amount
to checking whether some derived abstract state is a prefixed point of a given abstract semantic
function.

However, a downside of translation validation is that the runtime cost of validation might
become too expensive. If we implement a naive validator in order to reduce its verification
effort, then the runtime cost of the validator may be much larger than that of the analyzer.
Indeed, an early version of our validator was 100 times slower than the associated highly-
optimized analyzer. Thus there is a trade-off between development scalability and runtime
scalability. By the former we mean scalability regarding development cost (i.e., implementation
and verification cost) of a validator, and by the latter regarding runtime cost of a validator.

In this paper, we demonstrate that translation validation is a scalable method for static
analyzers based on abstract interpretation by developing a verified validator2 for a real-world
analyzer, Sparrow, which is designed to be unsound. In this work, our contributions are
summarized as follows.

• We gave a formal specification of Sparrow. It is a variant of the usual soundness statement
that properly captures the deliberate unsoundness of Sparrow.

• We struck a balance between development and runtime scalability. By optimizing the
naive validator, we could be able to reduce the runtime cost of the validator to be on
average twice as high as that of Sparrow.

• We developed a simple method to identify bugs of the analyzer from a validation result
when the validation fails. Using this method, we found and fixed 13 bugs of Sparrow.

2 Overview

In this section, we will first introduce our framework for translation validation of static an-
alyzers. Then we present several approaches that have different development and runtime
scalability, and discuss their pros and cons in a general setting. In the following sections, as a
case study, we discuss in detail how we develop our validator for Sparrow.

2.1 Framework for Translation Validation

In our framework, as depicted in Figure 1, a static analyzer consists of two parts: a main
analyzer and an alarm generator. The former, given an input program P , produces a core
abstract state Ŝc, from which together with the input program P the latter produces alarms
for potential program errors. A program P consists of function blocks, which in turn consist
of basic blocks In Figure 2 is shown example basic blocks and control flow edges. An abstract
state Ŝ in general is a map from basic blocks to abstract memories, where Ŝ(b) is considered as
an over-approximation of all concrete memories that can occur when an execution reaches the

1Developing a general validator is undecidable [Rice(1953)].
2Formal verification in the theorem prover Coq is available at http://sf.snu.ac.kr/jeehoon.kang/assets/

sparrowberry.tar.gz.



November 24, 2014 ROSAEC-2014-03 3

main analyzer

alarm generator

verified
validator

P

P,H, Ŝc

P, Ŝc
yes/no

alarms

densifier
P,H, Ŝc

P,H, Ŝc

Ŝ′

V

D

Figure 1: Framework for Translation Validation of Static Analyzers.

...

x = 1
y = 2

z = x z = y

print(z)

...

x 1

y 2

x 1

y 2

z [1, 2]

x 1

y 2

abstract state

core state

Figure 2: Basic Blocks, Control Flow Edges, and (Core) Abstract States

block b. A core (abstract) state Ŝc is a substate of an abstract state such that Ŝc(b) defines only
those variables that are used in the block b. In Figure 2, the abstract state Ŝ(b) is attached to
each block b, of which the shaded part denotes the core state Ŝc(b) that has only used variables
in the block b.

It is for generality of our framework that we consider core states Ŝc as input to alarm gener-
ators, instead of whole states Ŝ. One can easily see that core states are just enough information
for alarm generators to correctly produce alarms because core states define all used variables.
Thus requiring a whole state as output of main analyzers is too restrictive because some an-
alyzer may not compute a whole state at all. Indeed, it is the case for many analyzers including
Sparrow [Oh et al.(2012)Oh, Heo, Lee, Lee, and Yi, Oh et al.(2013)Oh, Heo, Park, Kang, and Yi,
Choi et al.(1991)Choi, Cytron, and Ferrante, Ramalingam(2002), Reif and Lewis(1977), Wegman and Zadeck(1991),
Dhamdhere et al.(1992)Dhamdhere, Rosen, and Zadeck, Chase et al.(1990)Chase, Wegman, and Zadeck,
Tok et al.(2006)Tok, Guyer, and Lin, Cytron and Ferrante(1995), Johnson and Pingali(1993),
Hardekopf and Lin(2009), Hardekopf and Lin(2011)].

Among the two components of static analyzers, only main analyzers are worth being verified
due to their complexity. Alarm generators are usually so simple that they are unlikely to have
software bugs. Thus considering their verification effort, it might not be so useful to verify
alarm generators.

In order to verify a main analyzer, the first step is to formalize its specification. As we
have discussed in the introduction, an analyzer has a clear specification: a core state Ŝc of a



November 24, 2014 ROSAEC-2014-03 4

program P is valid if the following holds:

∀(b,m) ∈ JP K. m|useb ∈ γ(Ŝc(b)) .

Here, by (b,m) ∈ JP K we mean that m is a concrete memory that can occur when an execution
of P reaches the basic block b. By m|useb we denote the concrete memory m restricted to the

variables used in the block b. Finally, by γ(Ŝc(b)) we denote the set of concretized memories
of the core abstract memory Ŝc(b).

The second step is to implement and verify a validator for a main analyzer. As shown in
Figure 1, a validator first takes input and output of the analyzer (i.e., an input program P and
its core state Ŝc) together with hints H for why Ŝc is valid. (Ignore dashed parts in Figure 1
for now.) Then it determines whether Ŝc is a valid abstraction of the program P . A standard
way of proving that an abstract state Ŝ of P is valid is to show that Ŝ is a prefixed point of a
sound abstract semantic function F̂P of P (i.e., F̂P (Ŝ) v Ŝ). From this, it is not hard to see
that a core state Ŝc is valid w.r.t. P if there exists a (whole) abstract state Ŝ such that Ŝ is
valid w.r.t. P and Ŝ extends Ŝc (denoted Ŝc ⊆use

P Ŝ) in the following sense: Ŝ(b) and Ŝc(b)
agree on the used variables of each block b.

2.2 Trade-off Between Development and Runtime Scalability

From now on we discuss how to strike a balance between development cost and runtime cost
of a validator.

Densifier Verification Approach An obvious approach, which we call densifier verification
approach, is to validate Ŝc directly and then verify the validation. This verification amounts
to showing that if the validation succeeds, there exists a valid Ŝ′ that extends Ŝc, formulated
as follows:

V(P,H, Ŝc)⇒ ∃Ŝ′. (F̂P (Ŝ′) v Ŝ′) ∧ (Ŝc ⊆use
P Ŝ′).

One of the important benefits of this approach is that the computation of Ŝ′ is a part of the
correctness proof and never needs to be performed at runtime. Thus this would greatly reduce
runtime cost of the validator because, as we will discuss later, the computation cost of Ŝ′ is
high.

However, in this approach we may have to pay high cost of verification for the following
reasons. In order to validate Ŝc, we first need a hint H such as semantic dependence graph for
technical reasons (see Section 4 for details). Then, we have to check whether the dependence
graph H is correct and the core state Ŝc is valid. In order to prove that the validation is
valid, we have to show the existence of a function D, which we call densifier, that constructs
the extended state Ŝ′ from a core state Ŝc, and then show that if the validation V(P,H, Ŝc)
succeeds, D(P,H, Ŝc) is a valid abstract state of P . In other words, we have to verify the
densifier D rather than just validate its result. The verification would involve complicated
soundness proofs of the dependence graph checker and the densifier, but the validation would
not.

Moreover, this approach may require the validator to be tightly coupled with the analyzer.
Given a program, there are many dependence graph that correctly approximates the actual
semantic dependence in the program. Thus the validator has to know exactly how the analyzer
generates a dependence graph and then check whether a given graph is generated as such. As
a result, we may have to revise the implementation and verification of the validator as the
analyzer gets improved.

Densifier Validation Approach The opposite approach, which we call densifier validation
approach, is to just validate results of the densifier D instead of verifying the densifier itself.
As depicted as dashed parts in Figure 1, we first compute D(P,H, Ŝc), say Ŝ′, and then just



November 24, 2014 ROSAEC-2014-03 5

validate the result Ŝ′. We also have to verify the validation, which amounts to showing that
if the validation succeeds, Ŝ′ is a valid abstract state of P and Ŝ′ extends Ŝc, formulated as
follows:

V(P,H, Ŝc, Ŝ
′)⇒ (F̂P (Ŝ′) v Ŝ′) ∧ (Ŝc ⊆use

P Ŝ′).

It is important to note that Ŝ′ is given as an argument to the validator, whereas in the densifier
verification approach we have to prove that such Ŝ′ exists.

This approach benefits from usual merits of translation validation over verification. First, we
do not need to implement the densifier D in theorem provers such as Coq. Writing programs in
theorem provers is in general much more difficult than doing so in usual programming languages
because of, for example, termination checking and lack of libraries. Second, more importantly,
showing that a given state Ŝ′ is a prefixed point is much easier than showing the existence of
such Ŝ′.

Moreover, the validator is loosely coupled with the analyzer for the following reasons. The
validation of Ŝ′ uses a control flow graph rather than a dependence graph, and unlike the
latter, the former is much less dependent on the implementation of the analyzer. As a result,
we may not have to often revise and reverify the validator as the analyzer gets improved. Note
that we may have to revise the densifier, which however does not need to be verified.

A downside of the densifier validation approach, however, is that runtime cost of the val-
idation might be problematic. Though each block typically uses only tiny fraction of whole
variables, the densifier extends the core state Ŝc to Ŝ′ in such a way that Ŝ′ includes the
whole variables. Thus the densified state Ŝ′ is much larger than the core state Ŝc, which may
cause high runtime cost of the densification and the validation. Indeed, an early version of
our validator, which used this approach, was more than 100 times slower than the analyzer
Sparrow.

Hybrid Approach Another approach that we used, which we call hybrid approach, is to use
the both densifier validation and verification approaches. The idea is to first split the densifier
D into two parts D1 and D2 and then to validate the former and verify the latter. The first
part, which amounts to validating D1, is to compute D1(P,H, Ŝc), say Ŝ′, and validate the
result Ŝ′. The second part, which amounts to verifying D2, is to show that if the validation
of Ŝ′ succeeds, there exists Ŝ′′ (which will be instantiated with D2(P,H, Ŝc, Ŝ

′) in the proof)
such that Ŝ′′ is valid and extends Ŝc, formulated as follows:

V(P,H, Ŝc, Ŝ
′)⇒ ∃Ŝ′′. (F̂P (Ŝ′′) v Ŝ′′) ∧ (Ŝc ⊆use

P Ŝ′′).

An important point in this hybrid approach is that one has to split D in an appropriate
way. To maximize its benefit, D has to be split into D1 and D2 in such a way that D1 has low
runtime cost and high verification cost, while D2 has high runtime cost and low verification
cost. Our validator, to be presented later, uses this hybrid approach. In the development, we
could be able to keep the verification cost to be twice as high as that of its earlier version using
the densifier validation approach. On the other hand, we reduced its runtime cost to be on
average twice as high as the analyzer Sparrow’s, rather than 100 times.

We will further discuss how we develop our validator using the hybrid approach in Section 4.
The other two contributions of our work, (i) how we formalize the deliberate unsoundness of
the analyzer Sparrow and (ii) how we identify bugs from unsuccessful validation results, will
be discussed in Section 3 and 5 respectively. Finally, we conclude by discussing our experiment
results in detail in Section 6 and discussing future work and related work in Section 7.



November 24, 2014 ROSAEC-2014-03 6

3 Formal Specifications of Unsound Analyzers

3.1 Our Model of Unsound Analyzers

Soundness and preciseness are two valuable properties of a static analyzer. The former means
that the analyzer raises alarms for all bugs of certain types. The latter means that the analyzer
raises a relatively small number of false alarms. However, it is hard to achieve both properties
for a static analyzer that is to analyze a large class of programs. For example, suppose an
analyzer analyzes an open program. When an unknown library function is called, the only way
for an analyzer to be sound is to give the top(>) abstract memory after the function call, which
denotes that any location can contain any value. The reason is because the unknown function
can potentially do anything it likes, such as overwriting the whole memory. However, this way
the analyzer loses preciseness. The imprecise approximation caused by the top memory may be
propagated throughout the whole program, which may result in a huge number of false alarms.

In practice, many analyzers give up soundness in order to increase precision. For example,
one can treat any unknown library function call as no operation.

A natural question would be whether such an unsound analyzer guarantees nothing about
its result. Even for an unsound analyzer, would it not be possible to talk about the degree of
unsoundness? Since an unsound analyzer is also software, clearly it will have its own specifi-
cation, though it may be complicated.

To answer the question, we model an unsound analyzer as one that transforms a given
input program and performs a sound analysis for the transformed program. The degree of
unsoundness can be also simply modelled as how much different the two programs are. In
case of the above example, all unknown library function calls in an input program P will be
replaced by the no-op statement in the transformed program P ′. Clearly, what the unsound
analyzer does for P amounts to a sound analysis for P ′.

We successfully formalized the specification of the analyzer Sparrow using this model. We
believe that many other unsound analyzers can be modelled in this way.

3.2 Case Study: Sparrow

We illustrate the three unsound features of Sparrow and how to model them using our approach.
As in the above example, the first unsound feature of Sparrow is to handle unknown library

calls as no operations. For example, suppose we analyze the following C code fragment.

10: int p[2] = {0, 0};
11: unknown f(p + sizeof(int));

12: assert(p[0] == 0);

Suppose that we do not have the source code for the function unknown f invoked at line 11.
Then, in principle, the assert at line 12 may fail since unknown f may be able to update the
variable p[0] by accessing the argument pointer backward. Thus, a sound analyzer should
raise an alarm at line 12. However, this is very likely to be a false alarm because accessing a
pointer backward is rare. For the sake of precision, the analyzer Sparrow treats the function
call as no operation. To model this unsoundness, we can simply comment out the line 11 in
the transformation.

The second unsound feature is to treat an update of the value in an unknown location as
no operation. During the analysis, one can reach a statement such as *p = v; that writes a
value to a location p. At that time, if the location p is approximated as the top value, the
assignment is treated as no operation because otherwise a huge number of false alarms may
be generated for the same reason as before. We can also simply model this unsound feature
by commenting out the assignment statement in the transformation. Note that we have to
use the analyzer’s analysis result to perform this transformation because we have to determine
whether a location is approximated as the top value or not.



November 24, 2014 ROSAEC-2014-03 7

The last unsound feature is to treat float and double values as integers. The reason for
this feature is that the main goal of Sparrow is to find buffer-overrun bugs. While float and
double values are hard to analyze soundly, they are unlikely to influence on buffer-overruns in
practice. This feature can be easily modelled by syntactically changing the type of float and
double variables to int.

In the current stable version of Sparrow that we verified, we model its unsound features
by simple transformations as we have seen above. However, in an experimental version that
employs more advanced techniques such as context-sensitive analysis, modelling its unsound
features may require more complex transformations. See Section 7 for details.

Using this model of unsoundness, we can easily adapt the framework shown in Figure 1
to allow unsound analyzers. The main analyzer needs to simply pass to the validator the
transformed program P ′ instead of the input program P .

4 Translation Validation for Sparrow

In this section, we will discuss how we develop our validator for Sparrow. We first look into an
example program and its core state from Sparrow. Then we apply three approaches discussed
in Section 2 to translation validation for Sparrow, and discuss their pros and cons.

Example from Sparrow Given an example program P , Sparrow produces the core abstract
state Ŝc, as shown in Figure 3 (a). In the figure, the comment in a basic block b represents the
abstract (approximated) pre-state Ŝc(b) right before executing b, where each line is considered
as a block. For expository purposes, in this section we assume that all concrete values are
integers and an abstract memory at each block is a partial map from variables to intervals
(for example, Ŝc(11) = [x 7→ [1, 1]]). For an abstract memory m̂, by γ(m̂) we mean the set of
concrete memories approximated by m̂.

The core state Ŝc contains enough information to generate alarms. This is because for each
block b, the core state Ŝc(b) has all those variables that are used in the block b. For example,
Ŝc(14) has the variables x and y that are used in the block 14 (assert(x<y)) in Figure 3 (a).

The core state Ŝc is valid w.r.t. the program P since there exists a whole state Ŝ, presented
in Figure 3 (b), that extends Ŝc and is a prefixed point of a sound abstract semantic function

F̂P . Here, F̂P is defined as follows. First, an abstract semantic function f̂b for each block is
defined to soundly estimate the concrete execution fb of the block b, formulated as follows:

∀m∀m̂. m ∈ γ(m̂)⇒ fb(m) ∈ γ(f̂b(m̂))

where m and m̂ represent a concrete memory and an abstract memory respectively. Second,
F̂P (Ŝ)(b) is defined as the join of all abstract memories at those block b′ from which b is
reachable via a control flow edge (denoted b′ → b), formulated as follows:

F̂P (Ŝ)(b) =
⊔
b′→b

f̂b′(Ŝ(b′)).

Densifier Verification Approach In theory [Oh et al.(2012)Oh, Heo, Lee, Lee, and Yi, Oh et al.(2013)Oh, Heo, Park, Kang, and Yi],
it is possible to validate the core state Ŝc in densifier verification approach. More specifically,
using a semantic dependence graph (generated as a hint by Sparrow) we can validate Ŝc without
actually computing the whole state Ŝ. The semantic dependence graph H of the program P is

depicted in Figure 3 (c). By a dashed line from 10 to 12 with label x (denoted 10
x
99K 12) we

mean the variable x defined at 10 is used at 12. Assuming the semantic dependence graph is cor-
rect, the validation for the block 12 amounts to checking whether f̂10(Ŝc(10))(x) v Ŝc(12)(x).
Generally, we can validate a core state by checking whether F̂ c

P (Ŝc) v Ŝc, where F̂ c
P (b) is



November 24, 2014 ROSAEC-2014-03 8

(a)

10: x=y=1; // [] (before execution)

11: z=1; // []
12: if (rand()) x=x+1; // [x 7→ [1, 1]]
13: else y=y+2; // [y 7→ [1, 1]]
14: assert(x<y); // [x 7→ [1, 2], y 7→ [1, 3]]

(b)

10: []
11: [x 7→ [1, 1], y 7→ [1, 1]]
12: [x 7→ [1, 1], y 7→ [1, 1], z 7→ [1, 1]]
13: [x 7→ [1, 1], y 7→ [1, 1], z 7→ [1, 1]]
14: [x 7→ [1, 2], y 7→ [1, 3], z 7→ [1, 1]]

(c)

10

11

12 13

14

x

y

x
y

x,y

(d)

10

11

12 13

14

x,y

z
z

x
y

x,y

x,y

z

x,y

Figure 3: (a) a program P and a core abstract state Ŝc from Sparrow. (b) a whole abstract state
Ŝ that extends Ŝc and is a prefixed point of an abstract semantic function. (c) the semantic
dependence graph H of P from Sparrow. Bold lines represent control flow and dashed lines
represent data flow of the labeled variable. (d) the extended semantic dependence graph H ′ of
P . Squiggly lines represent extended semantic dependence.



November 24, 2014 ROSAEC-2014-03 9

defined as follows:
F̂ c
P (Ŝc)(b) =

⊔
b′

x
99Kb

f̂b′(Ŝc(b
′))|x

where m̂|x denotes the submemory of the abstract memory m̂ that only has x.
In addition, we have to validate the dependence graph as well as the core state Ŝc since the

dependence graph H is from an untrusted source, Sparrow. A dependence edge b′
x
99K b is valid

if x defined at the block b′ reaches the block b following edges in the control flow graph without

being redefined by another definition of x. For example, the dependence edge 10
y
99K 14 is

valid since y is defined at 10, and reaches 11, 12, and then 14 without being redefined.
If the dependence graph H and the core state Ŝc are validated, there exists Ŝ that extends

Ŝc and is a prefixed point of the abstract semantic function F̂P .
However, we have to pay high cost of verification in this approach. We have to verify the

complex implementation of Sparrow. This means the relevant parts of the implementation
should be specified and proved in the verification of the validator. Also, we have to revise the
implementation and verification of the validator as the analyzer gets improved on the semantic
dependence graph generation.

Densifier Validation Approach In this approach we densify the core state Ŝc into a whole
state D(P,H, Ŝc) and validate it. As discussed in Section 2, this approach has clear advantage
that we do not need to verify the densifier D and we just need to check whether the whole
state D(P,H, Ŝc) is a prefixed point of the abstract semantic function F̂P and extends the core
state Ŝc.

Densification D fills out what is missing in the core state Ŝc using an extended semantic
dependence graph. In Figure 3 (d) is depicted the extended semantic dependence graph H ′

of the program P shown in (a). By a squiggly line from 10 to 12 with the label x,y (denoted

10
x,y
 12) we mean the variables x and y defined at the block 10 reaches the block 12 without

being redefined. The extended dependence is different from the ordinary dependence in that
for the extended semantic dependence, the variable is not necessarily used in the destination

block. For example, 10
y
 12 since y defined at 10 reaches 12, but not 10

y
99K 12 since y is not

used in 12.
Densification D is defined as follows [Oh et al.(2013)Oh, Heo, Park, Kang, and Yi]:

D(P,H, Ŝc)(b) =
⊔
b′

x
 b

f̂b′(Ŝc(b
′))|x .

Here, the extended semantic dependence graph H ′ is used in b′
x
 b and can be derived from

the ordinary semantic dependence graph H. Note that the densification D is similar to the
abstract semantic function F̂ c

P used to directly validate the core state Ŝc, with the difference
that D uses the extended semantic dependence rather than the ordinary one.

The problem of this approach is that the runtime cost of the validation is impractically high
for Sparrow. An early version of our validator, which used this approach, was more than 100
times slower than Sparrow. This is because the densified state Ŝ is much larger than the core
state Ŝc. For example, Ŝ is 85 times larger than Ŝc for the benchmark program gzip-1.2.4a.

Hybrid Approach Before explaining in detail, let us recap the hybrid approach. The ap-
proach is divided into two parts. The first part is the validation of D1, i.e., to compute
D1(P,H, Ŝc), say Ŝ′, and validate the result Ŝ′. The second part is the verification of D2,
i.e., to show that if the validation of Ŝ′ succeeds, there exists Ŝ′′ (which will be instantiated
with D2(P,H, Ŝc, Ŝ

′) in the proof) such that Ŝ′′ is valid and extends Ŝc.
The key design choice in the hybrid approach is how to split the densifier D into the part

to be validated (D1) and the other part to be verified (D2). To maximize the benefit, D has
to be split in such a way that D1 has low runtime cost and D2 has low verification cost.



November 24, 2014 ROSAEC-2014-03 10

We choose to split D into D1 and D2 in such a way that D1 only densifies locally inside the
scope of each function, andD2 densifies among functions. Here, by inside the scope of a function
f we mean considering only semantic dependence edges inside the function f . For example,
consider the program P and its core state Ŝc depicted in Figure 4 (a). A semantic dependence

graph for P is depicted in Figure 4 (c). In the semantic dependence graph, 10
x
99K 12 and

10
y
99K 11 are inside the scope of main and 20

y
99K 21 is inside the scope of foo. The densified

state D1(P,H, Ŝc), say Ŝ′, is shown in Figure 4 (b).
The result D1(P,H, Ŝc) of local densification can be validated using only the dependence

edges among functions. This is because we already locally densified using edges inside the
scope of each function. We explain the general way to validate a locally densified state with an
example. Consider the locally densified state Ŝ′ shown in Figure 4 (b) of the program P shown
in (a). The semantic dependence edges among functions are shown in Figure 4 (d). Around
the function call from main to foo, we check whether:

• f̂11(Ŝ′(11))(y) v Ŝ′(20)(y), for the dependence edge of the function call;

• f̂21(Ŝ′(21))(y) v Ŝ′(12)(y), for the dependence edge of the function return; and

• f̂11(Ŝ′(11))(x) v Ŝ′(12)(x), for those variables that are not accessed in the callee foo.

The verification of the local densification D2 in this approach is easier than that of the full
densification D. You may wonder why the verification cost of is reduced, while the verification
task is largely similar. This is because the edges among functions are regularly drawn. More
specifically, edges are always drawn in pairs of a call and its corresponding return with the
same variables labeled, as shown in Figure 4 (d). Thus the densifier D2 is simpler than D
and its verification is not too expensive. In the development, we could be able to keep the
verification cost to be twice as high as that of its earlier version using the densifier validation
approach.

At the same time, we reduced the runtime cost to be on average twice as high as the analyzer
Sparrow’s, rather than 100 times (the early version’s runtime overhead). The validator in this
approach is much faster because an intermediate state Ŝ′ has less variables (abstract locations)
than a fully densified state Ŝ′′ [Oh et al.(2011)Oh, Brutschy, and Yi].

5 Identifying Bugs from Validation Failures

We explain the details of how we identify bugs in the analyzer Sparrow from unsuccessful
validation results. We could effectively fixed 13 tricky bugs of the analyzer Sparrow.

5.1 Finding Reasons of Validation Failures

We explain how to identify the reasons of validation failures. Note that a validation fails if (i)
the densified state Ŝ′ is not a prefixed point of the abstract semantic function, or (ii) it does
not extend the input core state Ŝc.

There are three reasons of validation failures: bugs in the analyzer, bugs in the densifier,
and mismatches between the abstract semantic functions used in the analyzer and the validator.

For Sparrow, the reason of a validation failure can be identified as follows. When Ŝ′ does
not extend Ŝc, the reason is obviously bugs in the densifier because it should densify Ŝc with
keeping intact the values of the used variables. On the other hand, when Ŝ′ is not a prefixed
point, we have to further investigate the failure. We will explain with the following examples.

• We find a bug of the analyzer using the following code as follows:

10: x = 1; // [x 7→ ⊥] (before execution)

11: y = x; // [x 7→ ⊥]



November 24, 2014 ROSAEC-2014-03 11

(a)

main() {
10: x=y=1; // [x 7→ [0, 0], y 7→ [0, 0]]
11: foo(); // [y 7→ [1, 1]]
12: assert(x<y); // [x 7→ [1, 1], y 7→ [2, 2]]

}
foo() {

20: assert(1<y); // [y 7→ [1, 1]]
21: y=y+1; // [y 7→ [1, 1]]

}

(b)

main() {
10: x=y=1; // [x 7→ [0, 0], y 7→ [0, 0]]
11: foo(); // [x 7→ [1, 1], y 7→ [1, 1]]
12: assert(x<y); // [x 7→ [1, 1], y 7→ [2, 2]]

}
foo() {
20: assert(1<y); // [y 7→ [1, 1]]
21: y=y+1; // [y 7→ [1, 1]]

}

(c)

10

11

12

20

21

main

foo

x

y
y

y

y

(d)

main foo

y (call from 11)

y (return to 12)

Figure 4: (a) an example program P and the core state Ŝc from Sparrow. (b) densified state
Ŝ′ = D1(P,H, Ŝc). (c) the semantic dependence graph H of P for Ŝc from Sparrow. (d) the
semantic dependence edges among functions.



November 24, 2014 ROSAEC-2014-03 12

Note that the comment in a line l represents the abstract pre-state right before executing
l. Our validator’s abstract semantic function calculates that the output memory of the
line 10 is [x 7→ [1, 1]]. Thus the validation fails because [1, 1] 6v ⊥. In this case, we
can deduce that the analyzer has a bug in (i) its abstract semantic function, or (ii) its
semantic dependence generation. In the former case, the analyzer incorrectly calculates
that the output memory of the line 10 is [x 7→ ⊥]. In the latter case, the analyzer ignores
to deliver the value of x from the line 10 to the line 11.

• We find a bug of the densifier using the following code as follows:

10: x = 1; // [x 7→ ⊥]
11: y = 1; // [x 7→ ⊥]

Our validator’s abstract semantic function calculates that the output memory of the
line 10 is [x 7→ [1, 1]] and the validation fails. Unlike the previous example, The failure of
this example is due to a bug in the densifier. In this example, the core state at 11 does
not have x since x is not defined in 11. Thus it is the densifier which should have filled x

in the abstract state in 11. On the other hand, in the previous example, the core state
at 11 already should have x.

• We find a mismatch between the abstract semantic functions of the analyzer and the
validator as follows:

10: x = 1; // [x 7→ [0, 0]]
11: y = x; // [x 7→ [1, 1]]

// (validator: [x 7→ [0, 1]])

Suppose that the validator calculates that the output memory of the line 10 is [x 7→ [0, 1]].
Then the validation fails even though the analyzer’s result is sound. This is because the
abstract semantic function of the validator is less precise than that of the analyzer. In
this case, we have to modify the semantics of the validator and the corresponding part
of the soundness proof.

5.2 Subtle Bug Found

Using our validator and the previous simple method, we effectively found and fixed 13 bugs of
Sparrow on the way of validating 16 real-world benchmark programs. These subtle bugs had
not been detected for years in spite of extensive testing using large benchmark programs. We
discuss the subtleties of some of the bugs we found to illustrate how effective the validation
approach is in debugging static analyzers.

We present an example that illustrates such subtle false-negative bugs that are specially
hard to detect.

10: void f(){

11: int *p = malloc (4);

12: *p = 0;

13: h(p);

14: }

15:

16: void g(){

17: int x = 10;

18: h(&x);

19: }

20:

21: void h(int *q){

22: int array[5];

23: array[*q] = 0;

24: }



November 24, 2014 ROSAEC-2014-03 13

Table 1: Bugs of the target analyzer found by the validator: Category summarize the origin of
a bug by three sorts - dependence graph, semantics, and parser. Description briefly describes
the bugs.

Category Description
Dynamic locations were not included in a definition set when arrays are declared.
Graph edges were not drawn correctly when weak-update occurs.

dependence graph Graph edges were not drawn correctly when an encoded library function is called.
Graph edges for fields were not drawn correctly.
Return edges should be definition points.
Field values should be top if the struct itself is top.
Local variables should not be removed on an exit node in some cases.
Field values should not be declared as dynamic values.

semantics Typing errors on abstract interval operations.
0 and null worked inconsistently in some cases.
Values from address-taken locations should not be removed on exit nodes.
Weak update conditions for local variables were incorrect.

parser Functions and local variables should be treated individually, even if their names are same.

Using the above example, we explain one of the bugs we found that caused a true alarm not
to be raised. Here, in order to be sound, semantic dependence edges to the entry point of the
function h at line 21 should be drawn from the call sites of h at line 13 for p and at line 18 for
&x, respectively. However, Sparrow only drew the former dependence edge but not the latter
one. More specifically, Sparrow did not draw such a dependence edge when the address passed
is taken from a variable.

To see the problem, let us consider the set of possible values of *q at the entry point of h

at line 21. It is not hard to see that it should contain 0 and 10 because h is invoked at line 13

and at line 18. However, Sparrow infers that *q can be only 0 due to the missing edge from the
line 18. As a result, it does not raise any buffer overrun alarm at line 23, which is unsound.

6 Experiment

In this section, we evaluate our validator and confirm its stability, scalability, and effectiveness
as a debugger. During the experiment, we used the machine with Linux 3.0 operating system
equipped with a quad-core of Intel 3.07GHz box with 24GB of main memory.

Stability Our validator succeeded to validate 16 real-world benchmarks. The benchmarks
are open-source software, mostly from GNU projects. They include well-known applications
such as make, screen, and lsh. It is impossible to formally guarantee that the validator always
succeeds for correct analysis result. However, we regard that our current validator achieve the
stability in some degree. This is because the number and the variety of benchmarks represent
general properties of real-world applications.

Scalability Our validator generally takes less time and consumes less memory than the
analyzer. Table 2 presents overall elapsed time and memory consumption of the analyzer and
the validator. Averagely, the validator is faster by 2.5 times and consumes less memory by
0.8 times than the analyzer. This result directly demonstrates the runtime scalability of the
validator.

Effectiveness as a Debugger While trying to validate with real-world benchmarks, we
found 13 major bugs of the target analyzer. Table 1 presents the bugs we found. The origin
of bugs largely fall into three categories: dependence graph, semantics, and parser. We only
discuss the bugs by dependence graph, which is a core component of the analyzer. Dependence
graph type of bugs can be generated due to insufficient graph nodes or edges. An incorrect
dependence graph results in invalid abstract states, thus leads to validation fails. Note that



November 24, 2014 ROSAEC-2014-03 14

Table 2: Performance of the validator: times (in seconds) and memory consumptions (in
megabytes) are represented for all benchmarks with respect to the analyzer and the validator.
The performance is evaluated for the analyzer that bugs are fixed by validation (Analyzerfixed).
LOC shows the number of lines of code, calculated with wc. The validator has largely three
phases: Trs reports the data translation time. Dns reports the densification time. Lastly,
Val reports the time for whole validations, including the prefixed point validation. CmpTime

indicates how much the validator is faster than the analyzer. Similarly, CmpMem indicates
how less the validator consumes memory than the analyzer.

Programs LOC AnalyzerFixed Validator CmpTime CmpMem
Time Mem Trs Dns Val Time Mem

spell-1.0 2K 1.2 46 0.1 0.2 0.1 0.4 4 3.34 x 0.09 x
gzip-1.2.4a 7K 13 126 1 3 1 5 37 2.76 x 0.29 x
combine-0.3.3 11K 24 196 2 3 1 6 28 3.99 x 0.14 x
bc-1.06 13K 40 165 4 23 7 34 337 1.20 x 2.04 x
tar-1.13 20K 149 408 10 33 7 50 242 3.06 x 0.59 x
coan-4.2.2 22K 137 724 16 36 9 61 406 2.30 x 0.56 x
less-382 23K 280 479 45 133 24 201 718 1.43 x 1.50 x
make-3.76.1 27K 497 1299 30 106 10 146 496 3.49 x 0.38 x
cflow-1.3 34K 15 94 1 3 1 5 30 2.75 x 0.32 x
wget-1.9 35K 275 1041 24 51 8 83 458 3.43 x 0.44 x
screen-4.0.2 45K 1772 2899 184 389 28 600 1814 3.03 x 0.63 x
asn1c-0.9.21 50K 927 2185 76 320 96 493 2878 1.95 x 1.31 x
judy-1.0.5 87K 466 677 20 58 59 136 198 3.44 x 0.29 x
gsasl-1.6.1 91K 3493 754 828 342 82 1252 116 2.79 x 0.15 x
openssh-5.8p1 102K 4303 5485 1050 5060 650 6760 7308 0.66 x 1.33 x
lsh-2.0.4 111K 1714 2655 472 1972 461 2905 6768 0.62 x 2.55 x

drawing a dependence graph involves a lot of optimizations, so it is quite complicated. The fact
that about 40% of bugs are due to dependence graph indicates that complex implementations
are more likely to induce bugs, and thus finding these bugs are meaningful.

7 Discussion & Related Work

Translation Validation Our validator is regarded as a translation validation in that the
analyzer translates a source program into the abstract analysis result. Instead of checking
semantic equivalence of two programs, our validator checks that the analysis result is a prefixed
point of an abstract semantics.

Formal Verification of Static Analysis A verified validation approach has practical
merits in comparison with formal verification of static analysis [Bertot(2009), Leroy(2011),
Blazy et al.(2013)Blazy, Laporte, Maroneze, and Pichardie]. Because of the complicated na-
ture (deliberate unsoundness, highly-enginneered optimizations, and etc.) of a realistic static
analyzer, implementing a verified validator is pragmatic than verifying such a static analyzer.

Efforts for the Verification A project took 6 man-months, of which the most efforts (5
man-months) are done for proving the validator in Coq. The rest one man-month were used
to debug the target analyzer once the validations failed.

Specification of Unsoundness for Complex Analyzers As seen in Section 3, we invented
a simple model where some unsoundness is specified easily by syntactically changing the input
program. However, our simple model does not hold when the analyzer employs more precise
optimizations such as context-sensitivity. One problem can be simulated with following example
code.



November 24, 2014 ROSAEC-2014-03 15

10: int* p;

11: void f() {
12: // p → >
13: h();

14: }
15: void g() {
16: // p → null

17: h();

18: }
19: void h() {
20: *p = 1;

21: }

Suppose the analyzer now is 1-CFA context-sensitive, so it can determine the caller of a function
in which the analyzer now reaches. In the example, when the analyzer reaches the line 19, it
remembers what function called h, either f or g at the line 12 or 16, respectively. In other
words, there are two abstract memories at the line 19, one with the context f and the other
with g. When h is called from f, according to our simple model, we should comment out the
line 19, since p is approximated as the top value at the line 11. However, we should not do
this because p is not approximated as the top value when g calls h.

We have to develop more complex transformation when we meet a new optimization of the
analyzer. For the example above, we may solve this problem by reproducing the main body of
h, naming it h’, and letting g to call h’ instead of h. In this case, we can comment out *p =

1; in h since now h is called only from f, where p is approximated by the top value.

References

[Bertot(2009)] Y. Bertot. Structural abstract interpretation, a formal study in Coq. In A. Bove,
L. S. Barbosa, A. Pardo, and J. S. Pinto, editors, Language Engineering and Rigorous
Software Development, International LerNet ALFA Summer School 2008, revised tutorial
lectures, volume 5520 of Lecture Notes in Computer Science, pages 153–194. Springer,
2009. URL http://hal.inria.fr/inria-00329572/.

[Blazy et al.(2013)Blazy, Laporte, Maroneze, and Pichardie] S. Blazy, V. Laporte,
A. Maroneze, and D. Pichardie. Formal verification of a C value analysis based on
abstract interpretation. In Proc. of the 20th Static Analysis Symposium (SAS 2013),
Lecture Notes in Computer Science. Springer-Verlag, 2013. To appear.

[Chase et al.(1990)Chase, Wegman, and Zadeck] D. R. Chase, M. Wegman, and F. K. Zadeck.
Analysis of pointers and structures. In Proceedings of the ACM SIGPLAN conference on
Programming language design and implementation, pages 296–310, 1990.

[Choi et al.(1991)Choi, Cytron, and Ferrante] J.-D. Choi, R. Cytron, and J. Ferrante. Auto-
matic construction of sparse data flow evaluation graphs. In Proceedings of the ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pages 55–66,
1991.

[Cytron and Ferrante(1995)] R. K. Cytron and J. Ferrante. Efficiently computing φ-nodes
on-the-fly. ACM Trans on Programming Languages and Systems, 17:487–506, May 1995.

[Dhamdhere et al.(1992)Dhamdhere, Rosen, and Zadeck] D. M. Dhamdhere, B. K. Rosen, and
F. K. Zadeck. How to analyze large programs efficiently and informatively. In Proceedings
of the ACM SIGPLAN conference on Programming language design and implementation,
PLDI ’92, pages 212–223, New York, NY, USA, 1992. ACM.



November 24, 2014 ROSAEC-2014-03 16

[Hardekopf and Lin(2009)] B. Hardekopf and C. Lin. Semi-sparse flow-sensitive pointer anal-
ysis. In Proceedings of The ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 226–238, 2009.

[Hardekopf and Lin(2011)] B. Hardekopf and C. Lin. Flow-sensitive pointer analysis for mil-
lions of lines of code. In Proceedings of the 9th Annual IEEE/ACM International Sympo-
sium on Code Generation and Optimization, pages 289–298, 2011.

[Johnson and Pingali(1993)] R. Johnson and K. Pingali. Dependence-based program analysis.
In Proceedings of the ACM SIGPLAN conference on Programming language design and
implementation, pages 78–89, 1993.

[Leroy(2011)] X. Leroy. Proving a compiler: Mechanized verification of program transforma-
tions and static analyses. http://gallium.inria.fr/~xleroy/courses/Eugene-2010/,
June 2011. Oregon Programming Languages Summer School.

[Oh et al.(2011)Oh, Brutschy, and Yi] H. Oh, L. Brutschy, and K. Yi. Access analysis-based
tight localization of abstract memories. In VMCAI 2011: 12th International Conference on
Verification, Model Checking, and Abstract Interpretation, volume 6538 of Lecture Notes
in Computer Science, pages 356–370. Springer, 2011.

[Oh et al.(2012)Oh, Heo, Lee, Lee, and Yi] H. Oh, K. Heo, W. Lee, W. Lee, and K. Yi. Design
and implementation of sparse global analyses for C-like languages. In Proceedings of the
SIGPLAN Conference on Programming Language Design and Implementation, 2012.

[Oh et al.(2013)Oh, Heo, Park, Kang, and Yi] H. Oh, K. Heo, D. Park, J. Kang, and K. Yi.
Global sparse analysis framework. Technical Memorandum ROSAEC-2013-014, Research
On Software Analysis for Error-free Computing Center, Seoul National University, March
2013.

[Pnueli et al.(1998)Pnueli, Siegel, and Singerman] A. Pnueli, M. Siegel, and E. Singerman.
Translation validation. In Proceedings of the 4th International Conference on Tools and
Algorithms for Construction and Analysis of Systems, TACAS ’98, pages 151–166, Lon-
don, UK, UK, 1998. Springer-Verlag. ISBN 3-540-64356-7. URL http://dl.acm.org/

citation.cfm?id=646482.691453.

[Ramalingam(2002)] G. Ramalingam. On sparse evaluation representations. Theoretical Com-
puter Science, 277(1-2):119–147, 2002.

[Reif and Lewis(1977)] J. H. Reif and H. R. Lewis. Symbolic evaluation and the global value
graph. In Proceedings of the 4th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 104–118, 1977.

[Rice(1953)] H. G. Rice. Classes of recursively enumerable sets and their decision problems.
Trans. Amer. Math. Soc., 74:358–366, 1953.

[Tok et al.(2006)Tok, Guyer, and Lin] T. B. Tok, S. Z. Guyer, and C. Lin. Efficient flow-
sensitive interprocedural data-flow analysis in the presence of pointers. In Proceedings of
the International Conference on Compiler Construction, pages 17–31, 2006.

[Wegman and Zadeck(1991)] M. N. Wegman and F. K. Zadeck. Constant propagation with
conditional branches. ACM Trans on Programming Languages and Systems, 13:181–210,
April 1991.


