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Abstract

Achieving high-level safety guarantees for cyber-physical systems has always been

a key challenge, since many of those systems are safety-critical so that their failures

in the actual operation may bring catastrophic results. Many cyber-physical systems

have real-time and distributed features, which increase the complexity of the system

an order of magnitude higher.

In order to tame the complexity, a middleware called PALSware has been pro-

posed. It provides a logically synchronous environment to the application layer on

top of physically asynchronous underlying network and operating systems. The com-

plexity of a system can be significantly reduced in a synchronous environment.

However, a bug in PALSware may have destructive effects since it exposes every

application system to runtime failures. Moreover, finding bugs in PALSware can be

very challenging in some cases, for various reasons.

To solve this problem, we present VeriPALS, a formally verified C implementation

of PALSware together with a verification framework for application systems. Espe-

cially, the framework provides an executable model as an efficient random testing

tool. As case studies, we developed two application systems, and applied VeriPALS

to them in order to demonstrate effectiveness of the framework in both testing and

formal verification.

Keywords: formal verification, distributed systems, real-time systems, synchronous

systems, theorem proving

Student Number: 2013-23107
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Chapter 1

Introduction

Achieving high-level safety guarantees for cyber-physical systems has alway been a

key challenge of the field, since many of those systems are safety-critical, such as

autonomous vehicle systems, avionics systems, and nuclear systems[1, 2, 3]. For those

systems, a failure occurred during the actual operation may bring catastrophic results,

as in actual cases of a power plant and aerospace systems[4, 5, 6]. However, many

cyber-physical systems have both real-time and distributed features, which increase

the complexity of the system an order of magnitude higher. In the process of real-

time communication between distributed components of the system, the randomness

of program execution times, clock skews, transmission times, and many other factors

all together may lead to a combinatorial explosion of possible executions, and it is

difficult to correctly implement and verify the system with consideration of all the

possibilities.

In order to tame the complexity of real-time distributed systems, a middleware,

called PALSware, has been proposed[7]. PALSware provides a logically synchronous

environment to the application layer on top of physically asynchronous underlying
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networks (with real-time operating systems), by appropriately controlling the message

deliveries and the job execution timings.

To illustrate how the complexity of a system can be significantly reduced in a

synchronous environment, we use a simple example shown in Fig. 1.1. The system is

composed of three electronic control units (ECU) connected by network, where each

ECU runs its own tasks P , Q, R, and S on a real-time operating system, as shown

in Fig. 1.1(a). The flow of the execution is as follows. First, on ECU 1, P sends the

message a to ECU 2, and then sends the message b to ECU 3. Then, responding to

the messages, ECU 2 and ECU 3 launches Q and S respectively. Finally, S on ECU

3 sends the message c to ECU 2, that triggers the execution of R.

Figure 1.1 Comparison between asynchronous and synchronous systems

An asynchronous implementation of the example system may behave nondeter-

ministically, so that the two different executions depicted in Fig. 1.1(b) are made

possible. In the first execution, the massage a arrives at ECU 2 earlier than the mes-

sage c from S, that makes Q run before R. However, in the second execution, the

order of message arrivals to ECU 2 are reversed, and as a consequence, R runs before

Q.

On the other hand, a synchronous implementation may reduce the nondetermin-
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ism in the system, as shown in Figure 1(c). With synchronization, the three ECUs

run tasks simultaneously according to the designated period, and resulting messages

are delivered to the next round of execution, without any race condition on the arrival

times of messages. This deterministic property makes it easier to predict the behavior

of the system, which greatly helps to correctly implement and verify the system.

The active-standby system, used as a motivating example for PALSware in [9,

10, 7], clearly shows the complexity of asynchronous system designs. The system

consists of three tasks: two controller tasks that are replicated for fault-tolerance,

and one console task that receives input from the user. During execution, one of the

controllers is supposed to be in the active mode, and the other one in the standby

mode. The two controllers regularly send “heartbeat” messages that contains their

status to each other, so that the standby side can detect if the active side fails, and

if it happens, the stanby side switches its status to the active mode. Also, the user

can give input to the console to toggle the active side, and then the console sends the

“toggle” message to each controller.

Figure 1.2 Comparison between the asynchronous and synchronous active-standby

systems
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A defective asynchronous design of the active-standby system described in Fig.

1.2(a) and (b) shows the difficulty of constructing correct asynchronous systems.

In the design, the toggle functionality works as follows: when the console sends a

“Toggle” message, only the standby side responds to the message by switching the

status and sending a “Be standby” message to the active side. The active side just

ignores the Toggle message, to prevent toggling when the standby side has failed.

After receiving Be standby, the former active side switches its status to the standby

mode. A successful toggling execution is depicted in Fig. 1.2(a). However, an erroneous

case happens if the Toggle message arrives at the former active side after it already

switched its status as depicted in Fig. 1.2(b). Then, it initiates another toggle that

effectively cancels the first toggle. The situation gets more complicated if we introduce

heartbeat messages to handle node failures.

In contrast, a synchronous design of the active-standby system enables the system

to operate under a simpler logic, as shown in Fig. 1.2(c). Suppose that the console

sends a Toggle message in a period. Then, at the beginning of the next period, each

controller checks whether the Toggle message and the heartbeat message from the

other side have arrived, and if so, the controllers switch their status. Note that this

design doesn’t require another type of messages such as Be standby. Now that the

system becomes simpler, it is easier to reason about the correctness of the system. In

conclusion, implementing a real-time distributed system on PALSware may greatly

reduce the complexity of the system.

While PALSware alleviates the complexity problem of application systems, there

remains a question about the correctness of PALSware itself. An implementation or

design bug in PALSware may have destructive effects since it exposes every appli-

cation system built on top of the PALSware to danger of runtime failures. However,

finding all such bugs with testing may be hard for the following reasons. First, due to

various nondeterministic factors such as message communication and job execution
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timings, such a bug in PALSware may appear only in certain corner cases that are

hard to detect and reproduce. Second, since PALSware should work correctly for any

application systems, we should test it for all such applications, which is simply im-

possible. Therefore, PALSware is a good target for formal verification, which would

provably guarantee the absence of bugs.

In this paper, we present VeriPALS, a formally verified C implementation of

PALSware together with a verification framework for application systems building on

top of it. Our contributions are summarized as follows.

• We implemented a (slightly simplified) version of PALSware in C and formally

proved in Coq that it is correct with respect to (i.e., behaviorally refines) an

executable abstract synchronous model that provides a logically synchronous

environment to application systems. For this verification, we developed a proof

method that allows us to gradually prove refinement between a physical asyn-

chronous model and an abstract synchronous model via multiple intermediate

models. In particular, the models and proof method allow us to model and rea-

son about clock skew among distributed components and also properly model

assumptions about worst case execution time (WCET) of C code, which is a

part of our trust base (i.e., we suppose it will be separately verified by other

WCET analysis tools).

• The abstract model supports both efficient testing and formal verification of ap-

plication systems on top of it. Specifically, testing on the abstract model greatly

improves efficiency in time and resources over testing on the physical system

because the abstract system does not physically wait for the next period to

come, and does not use the physical network either. Also any formal verifica-

tion about an application system on top of the abstract model (e.g., proving

certain safety or liveness properties) is automatically transformed to that on
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top of the physical model by combining it with the correctness proof of the

PALSware implementation.

• As case studies, we developed two application systems built on PALSware, and

applied VeriPALS to the systems for testing and verification. The first system is

a more general and practical version of the above active-standby system, which

contains two replicated controllers that work together as a resource scheduling

task, and several devices that occasionally request a resource. Using VeriPALS,

we first performed random testing for the system on top of the abstract model,

and then formally verified in Coq the property that the system with two con-

trollers works equivalently as that with a single never-failing controller under

the assumption that both controllers do not fail at the same time. The second

system is a synchronous work assignment system, which contains a master task

which assigns works generated in real time to multiple worker tasks. For the

second case study, we only applied random testing for cost-effective verification.

In order to formally specify the behavior of the PALSware and PALSware ap-

plication code written in C, we use the Clight formal semantics from the CompCert

project[12]. The Clight semantics covers large subset of the C language, which also

serves as the language semantics for a number of prominent C-program verification

projects[13, 14, 15]. For the future work, we plan to combine the verification result

of the CompCert compiler with ours, to guarantee that the compiled assembly code

of the PALSware and application code still preserves the synchronous behavior.

The rest of the paper is structured as follows. In Chapter 2, we introduce back-

ground knowledge for reading. Specifically, it explains PALSware and interaction

trees. Chapter 3 gives a high-level overview of the framework. We give brief expla-

nation of the structure of framework, and list several key ideas. Next, in Chapter

4, we present the formalization of the framework. It contains formal system models

6



and the final theorem. Then, in Chapter 5, we describe the sketch of the refinement

proof for the final theorem. We explain the intermediate model and refinement proof

for each step of the whole proof. Chapter 6 and 7 presents our case studies. We de-

velop two application systems, and applied the framework to them, for testing and

formal verification. Chapter 8 contains the volume information of our development

and experimental results about testing. Chapter 9 introduces several related studies

and compares them with our work. The last chapter concludes and suggests future

research directions.

7



Chapter 2

Preliminaries

This chapter introduces background knowledge that is helpful for understanding the

content of this paper. First, we focus on how PALSware functions to establish a

synchronous environment for the upper application layer. Also, we introduce interac-

tion trees[16], which we use to express abstract, yet executable, specifications in the

framework.

2.1 PALSware

PALSware is a middleware that implements the physically-asynchronous logically-

synchronous (PALS) architectural pattern[9] in order to provide a virtual synchronous

environment to the application layer. We first give a high-level overview of the role

of PALSware in a distributed system, and then explain how PALSware correctly syn-

chronizes all distributed tasks under several assumptions on the underlying physical

environment. Finally, we give the structure of our implementation of PALSware, and

explain simplified aspects in our version.

8



Figure 2.1 A distributed system built on PALSware

2.1.1 PALSware in a Distributed System

The overall structure of a distributed system built on PALSware is depicted in the

example of Fig. 2.1. In the figure, there are three nodes, which are ECU 1, 2, and

3, connected to the communication channel that serves as the network. Each node

consists of three layers. On the ground layer, a real-time operating system manages

hardware devices and offers system call services to the upper layer. In the middle,

PALSware provides a synchronous environment to the top layer. In particular, PAL-

Sware uses the network socket and timer services of the operating system. On the

top layer, an app program runs on PALSware. We call the collection of apps in a

system an application system of PALSware. Also, we say an app implements a task of

the distributed system. In this perspective, P and S in the example are tasks, while

Q and R are regared as subroutines that comprise a task on ECU 2. Each task is

assigned a unique nonnegative number as its task ID.

At runtime, PALSware periodically executes its task for every synchronization

period of the system. Each instance of the periodic execution is called a job of the

task. Through PALSware, a task may send a message to either a single task or multiple

tasks using the multicast service of network routers. PALSware uses the UDP protocol

for message communication. Even though it lacks the reliability provided by TCP,

the reliable network assumption that we are going to explain in the following section

justifies the use of UDP.

9



Figure 2.2 An example of logically synchronous executions on PALSware

2.1.2 Correctness of Synchronization on Reliable Network

The synchronization process of PALSware relies on several assumptions on the under-

lying physical environment. First of all, it works on the reliable network assumption:

an end-to-end message delivery through the nework is guaranteed to be done within

a fixed maximum transmission time µ, without duplication or loss of the message.

Another assumption is that the real-time operating system guarantees that the lo-

cal clock skew is bounded by the maximum clock skew ε, which can be achieved by

using one of the known clock synchronization algorithms[17]. Also, it assumes that

the sleep functionality of the real-time operating system guarantees to wake up the

program within the maximum local-time delay δ from the appointed wake-up time.

The first two assumptions are given in the existing work, where the last assumption

is introduced by us, to reason about the concrete implementation of PALSware.

Under those assumptions, PALSware logically synchronizes the distributed tasks

with two main operations: (1) running the task at the beginning of each period, and

(2) keeping messages arrived from other tasks and then pass them to the task at the

right destination period.

Let’s see how PALSware works with the previous simple example, as illustrated

in Fig. 2.2. First, PALSware at ECU 1 runs the task P at the beginning of the first

period, where the actual time could be at most ε+ δ away from the exact time due to

10



the clock skew and the wake-up delay. During the execution of P , the two messages

a and b are sent to ECU 2 and ECU 3 respectively, attached with the sender’s task

ID and the destination time, which is the next period. After a certain amount of

transmission time less than µ, each message arrives at its destination. Since messages

are sent before completing the sender’s job execution, the arrival times of the messages

are earlier than α + µ after the sender begins the job. When the next period starts,

PALSware on ECU 2 runs Q with the message a, and PALSware on ECU 3 runs S

with the message b which sends the message c to ECU 2. Finally, at the third period,

PALSware at ECU 2 runs R with the message c.

The essential condition for the correct synchronization is that the length of the

period should be long enough so that all messages sent in one period are guaranteed

to arrive before the receiving tasks of the next period start. Considering the maximum

job execution time α, the period T should satisfy the condition below, as shown in

Fig. 2.2.

T ≥ α+ µ+ 2ε+ δ

2.1.3 Implementation of PALSware

As explained above, each task of the system is written as a PALSware app, instead

of a standalone application program on OS as in Fig. 1.1(a). Specifically, each app is

written as a C program module that are linkable with PALSware, which is also a C

module, to produce a complete application program on OS.

A simplified code of our PALSware implementation is given in Fig. 2.3 for a more

concrete understanding of its functionalities. As shown in the code, the PALSware

code has the main function that contains the main loop, while the app side is sup-

posed to provide the implemenation of the job function, which is declared in the

header app.h. Also, config.h declares common information of the system, such as

11



1 // palsware.c

2

3 #include "app.h"

4 #include "config.h"

5 ...

6

7 inbox_t *cur_inbox, *nxt_inbox;

8

9 void pals_send(char tid, char *msg) {

10 ...

11 }

12

13 int main() {

14 uint64_t sync_time = PALSware_initialize();

15

16 while(true) {

17 sleep_until(sync_time);

18 fetch_msgs(sync_time);

19 job(cur_inbox);

20 sync_time += PALS_PERIOD;

21 swap_inbox();

22 }

23 }

Figure 2.3 Structure of PALSware implementation

the synchronization period and IP addresses for the tasks and multicast groups.

The program starts with an initialization process. It initializes the internal state

of the program, as well as opening two network sockets, each for TX and RX. It

also sends join messages for multicast groups if necessary. At the end, it returns the

first synchronization time for the forthcoming main process. The value of the time

represents the number of nanoseconds elapsed after the Unix Epoch time, and every

synchronization time is divisible by the period length.

In the main loop, the program sleeps until the given synchronization time. When

the time comes, the program wakes up and runs the fetch msgs function, which

fetches incoming packets from the RX socket, parses each packet, and stores it in an

appropriate inbox. There are two inboxes in the memory at runtime: cur inbox and

12



nxt inbox for storing messages for the current period and the next period, respec-

tively. As a result, cur inbox contains all messages for the job of the current period,

and nxt inbox contains messages for the next period that arrived early.

Now, the job function from the app code starts to run with the messages of

cur inbox. The job function may send a message to other tasks by calling the

pals send function of the PALSware code, with a task ID (or a multicast group

ID) for the destination and a memory pointer to the message byte array. The desti-

nation ID is converted to the corresponding IP address by PALSware, according to

the configuration data.

After the execution of job is done, the next synchronization time is computed, by

adding the period length to the current synchronization time. Finally, the swap inbox

function swaps inboxes, so that nxt inbox becomes cur inbox, and then it empties

the new nxt inbox. Then the program repeats the main loop for the next period.

Simplifications In this work, we simplified several aspects of the original work

of PALSware[7] to ease the verification process. First, we restrict all tasks to have

a common synchronization period, while the multi-rate and multi-phase extensions

in the original work allows different periods for each task as well as division of a

period into several phases. Another restriction is that we allow the system to send

at most one message for each sender-receiver pair in a single period. This restriction

does not lose too much generality, because a general system can be simulated by a

restricted version of the system that defers all message transmissions until the end

of the job, and then pack them into big single messages for each destination, as long

as the message length bound permits. Nevertheless, we believe that removing those

restrictions is feasible for the future work.
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1 CoInductive itree (E: Type -> Type) (R: Type): Type :=

2 | Ret (r: R)

3 | Tau (t: itree E R)

4 | Vis (A: Type) (e: E A) (k: A -> itree E R).

Figure 2.4 Simplified definition of interaction tree in Coq

2.2 Interaction Trees

Interaction trees are a data structure that represents program behaviors that interact

with outer environment, in an abstract and executable way. Our framework uses this

form to express abstract specifications. The executable property enables testing of

these abstract specifications.

We introduce a simplified definition of the interaction tree data structure in Coq

as shown in Fig. 2.4. The data type itree has two index types E and R, where

E represents the type of events, indexed by the return type of each event, and R

represents the return type of the tree.

Interaction trees are constructed with the three constructors Ret, Tau, and Vis.

The first constructor Ret represents the base tree which returns r. The second one

Tau constructs a tree that takes a silent step to be the given tree t. This Tau case is

essential for representing recursive trees. Finally, Vis constructs a tree that produces a

visible event e that returns a value of the type A, and then proceeds to the continuation

k that depends on the return value.

One advantage of using interaction trees is that it supports convenient way of

combining multiple trees. For example, the interaction tree library provides bind

operator of the following type:

bind : forall (A B : Type), itree E A→ (A→ itree E B)→ itree E B

so that together with Ret we can write interaction trees in a monadic style. We use

14



1 Definition ctrl_spec (st: state)

2 : itree sendE state :=

3 let (st1, tid1) = update st in

4 Vis _ (SendEvent tid1 grant_msg)

5 (fun _: unit =>

6 send_hb st1 ;; Ret st1)

1 Definition ctrl_spec (st: state)

2 : itree sendE state :=

3 (st1, tid1) <- update st ;;

4 SendEvent tid1 grant_msg ;;

5 send_hb st1 ;;

6 Ret st1

Figure 2.5 An example interaction tree, the exact definition and a monatic-style rep-

resentation

the notation ( <- ;; ) for the bind operator. For example, we can write r <- t

;; k r for bind t k. Also, we may write t ;; k when the return value of t is not

used.

In the rest of paper, we express interaction trees in the monadic style, as shown in

Fig. 2.5. The example interaction tree is a simplified version of a part of the specifica-

tion from our first case study. The Coq code in the left side shows the definition of the

interaction tree in Coq. The tree is parametrized by the state st. It first updates the

state with a mathematical function update that returns the next state st1 and a task

ID tid1. Then, the tree produces an event of SendEvent of the type (sendE unit)

that returns the unit value, follwed by another interaction tree send hb. Finally, the

tree returns the new state st1. The right side of the figure shows the monadic-style

representation of the interaction tree. This is possible since both pure calculations

and event generations can be lifted to interaction trees. We will clarify the exact

definitions when a precise distinction between them is necessary.

Also, to hide complexities of dependent types, we fix the type of all events as

an (unindexed) type of name EvtCall, rather than indexed type such as E A above,

and use RetType : EvtCall → Type to get the return type of an event, for presen-

tation. For example, following this convention, SendEvent is of type EvtCall, and

RetType(SendEvent) = unit. Details will be presented in the formalization chapter.
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Chapter 3

Overview

In this chapter, we give a high-level overview of VeriPALS. We begin with the overall

structure of our verification framework, with a brief explanation for each component.

Then, we list our key ideas for handling real-time and distributed features in formal

modeling and verification.

3.1 Framework

The diagram in Fig. 3.1 shows the overall structure of the VeriPALS framework.

First, as shown in the upper-left box, the framework takes application-specific data

as parameters and assumptions from the user, which consists of C modules, abstract

specifications, and simulation proofs between them. In the figure, these user-given

objects are identified with dashed borders.

From this input, the framework constructs the real-world model shown on the

lower-left side of the figure. This is a mathematical model for the execution of the

real-world system, in which the network and the real-time operating system are con-

16



servatively modeled to include all possible behaviors of them in the real world. The

operating system model runs an application program written in C, which results from

linking PALSware with an app.

Above the real-world model is the executable abstract synchronous model, or the

abstract model for short, that generates the synchronous behaviors of the given ap-

plication system. The model is written as an interaction tree, so that it supports both

formal verification in Coq and testing of the system. Note that all objects highlighted

in gray in the figure are executable specifications written as interaction trees.

Finally, the behavioral refinement between the real-world model and the abstract

model are proved in multiple steps, vertically composing the refinement proofs (Ref.1

- Ref.5) involving the intermediate system models shown on the right side of the

figure.

In the following paragraphs, we will explain main components of the framework

with more details.

Parameters and Assumptions In the box of Parameters & Assumptions, the

white boxes denote the PALSware apps written in C, which must comply with the

interface of PALSware. The gray boxes denote the abstract specifications for each app.

The specifications are written in interaction trees. Finally, the vertical tilde symbols

between apps and specifications represent simulation proofs, which imply that every

execution of the given app can be simulated by the specification.

Note that manual writing of the specifications for the apps are not mandatory for

using the framework. For testing, we support direct linking of the C programs with

the generic part of abstract model through the OCaml foreign function interface with

C. Also, we provide a special compiler that generates an interaction tree specification

from any given app. We plan to make it automatically generate a simulation proof
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Figure 3.1 The overall structure of the verification framework

between them as well1.

Network Model The network model is a mathematical description of the behavior

of the network in the real-world physical environment. We assume a reliable network

with the maximum transmission time µ, and the model is designed to include all

possible behaviors under this assumption. A node on the network may send a mes-

sage packet that contains the sender’s IP address, the destination IP address, the

port number, and the actual byte-array payload. Then, the message arrives at the

destination node within µ.

In addition, the model supports multicasting, i.e., sending a single message to

multiple destinations, which is used by PALSware. A node may join to a multicast

group by sending a join packet to the associated group IP address. We also assume

1We expect this proof generation (i.e., verification of the compiler) to be done within a few weeks.
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that the join process is completed within the time µ. The IP addresses from 224.0.0.0

to 239.255.255.255 are dedicated to such multicast group IP addresses, according to

the IPv4 protocol.

Operating System Model The real-time operating system model contains several

functional modules that work between PALSware and the network. First, it provides

a local clock whose skew is bounded by the maximum clock skew ε. Also, the model

includes a network socket module for accessing the network. An application program

may open a socket and apply further socket operations such as send, receive, and

bind. In addition, the model offers a timer service module that provides the sleep

functionality, whose wake-up delay is bounded by a constant δ.

For precise modeling, the operating system model permits random failures at

any time, as the real-world system also encounters unpredictable failures. The model

follows the fail-stop assumption: in the case of failure, the operating system stops

running, and may recover nondeterministically in the future.

An application program on OS is modeled as an event-generating transition sys-

tem. In our case, we first use the Clight formal semantics to specify the behaviors of

an arbitrary C program as an application program, and then instantiate the program

with the linked program PALSware and one of the PALSware app.

Executable Abstract Synchronous Model The executable abstract synchronous

model is expressed as an interaction tree that generates the synchronous behaviors

of the application system by performing the following steps. The model consist of

a main interaction tree that controls the whole system, and multiple specifications

where each describes a distributed component of the application system. At the be-

ginning of each period, the model sequentially executes the tasks one by one with

their inbound messages. Note that the execution order does not affect the overall
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system behavior, because interactions between the tasks are done only in between

the periods. After all the jobs are done, the resulting output messages are gathered

and then distributed to their destinations. After that, the model moves to the next

period and repeats the aforementioned process.

For formal verification, proving a behavioral property on the synchronous model

greatly reduces the complexity over proving it directly on the real-world system model,

since components of the real-world model such as the operating system model are too

detailed to carry out proofs about a concrete system on it. The behavioral refinement

proof between the two models guarantees that a formally proven property on the

synchronous model also holds on the real-world system model.

For testing, the framework can generate an executable program of the abstract

model. If the specifications for each app is given from the user, then the specifications

and the generic abstract model can be linked in Coq and then extracted to OCaml.

Otherwise, we can apply one of the two aforementioned methods: using OCaml foreign

function interface with C, or using our compiler to interaction tree. The first method

runs faster, while the second one has a smaller gap between the formal development

and the executable program.

Refinement Proof using Intermediate Models Rather than proving the be-

havioral refinement between the real-world model and the abstract model at once,

we defined multiple intermediate models that gradually abstract the concrete details

of the real-world system model. The behavioral refinement proof for each step is de-

noted as one of the subset symbols named from Ref. 1 to Ref. 5 in Fig. 3.1, where

the end-to-end behavioral refinement is deduced by the transitivity of the refinement

relations.

The abstraction done in each step is as follows. In Ref. 1, the C program details

are abstracted away, such as the concrete C program syntax and memory states at
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runtime. In Ref. 2, the operating system model and the specification of PALSware are

merged into one entity that we call abstract PALSware, removing detailed operating

system functionalities including the local clock. Ref. 3 replaces the concrete network

model and the abstract PALSware with an abstract model, where job execution tim-

ings are still asynchronous. Then, in Ref. 4, we show that the abstract asynchronous

model can be simulated by a synchronous model where all jobs in a period are done

in a single step, at the exact time. Finally, by Ref. 5 we reach the top-level model,

which enables testing of the application system.

3.2 Key Ideas

In this chapter, we explain our key ideas in building the VeriPALS framework. The

main challenge of the work is about how to deal with real-time and distributed features

in formal modeling and verification. We summarized the challenge into several topics,

and for each topic we describe the problem and our solution.

3.2.1 Concurrent Executions of Nodes

Problem Our real-world model must express concurrent executions of each node

connected to the network, as the real-world system does. Especially, the model should

specify the exact time of each observable event, in order to reason about the correct-

ness of real-time systems. Interactions between nodes is done by exchanging messages.

Each node may send a message to the network in any time, then within some amount

of transmission time, the network delivers the message to its destination.

Solution In order to formally model this structure, we first assume an atomic time

unit, and the real-world model take a transition step for each tick of the time unit.

Specifically, each step is done in the following way. First, the network model chooses

message packets to distribute now. Then, each node takes a step, in which incoming
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message packets are processed and an observable event may occur, possibly releasing

a packet to the network. Finally, the network gathers all the released packets.

As the length of the time unit approaches to zero, the model becomes more precise

in expressing the behaviors in the real world. In addition, we assume that the length

exactly divides the length of one nanosecond, to ease the proof. In our development,

we axiomatized λ, which is the number of the time units in one nanosecond, since the

exact value is insignificant in the verification.

3.2.2 Global Clock vs. Local Clock

Problem Each node in the real-world model should maintain a local clock that

satisfies the following constraints: (1) the skew against a global clock must be bound

within the value ε, and (2) the clock must be monotone: when the value of the local

clock changes, it is always increasing. The unit of local clock is the nanosecond, and

we assume the value of ε is also given in nanoseconds. The global clock is given in

the atomic time unit in the model, as described above.

Solution Our local clock model in a node works in the following way. First, when the

operating system is done booting, the initial local clock value is nondeterministically

chosen within the clock skew ε from the current global clock. Here, we convert the

unit of the global clock from the atomic time unit to nanoseconds by rounding down.

Then, in next steps, we again nondeterministically choose the next local clock that

meets both of the constraints.

Once we have a valid local clock value that meets the constraints, there always

exists a valid value of the next local clock. The informal proof is as follows. If the next

global clock in nanoseconds is not increased, we can keep the local clock unchanged.

If the global clock in nanoseconds is increased by one, we can also increase the local

clock by one. In either way, the amount of skew is unchanged.
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3.2.3 Real-time Local Executions of Node Model

Problem The node model should express the real-time cooperative behavior of the

operating system and its application program. Specifically, when a program is running

on the operating system, it may either take an internal step or invoke an external

function call. If the external function is an API function for an OS system call, the

operating system takes over and process the request, such as sending a message to the

network. Otherwise, the external function call is considered as an observable event,

and we assume any well-typed return value can be given. In addition, we also want

to take care of node failures that may happen in any time.

Especially, for reasoning about time, state transitions of the node model should

involve latency. The time delay is nondeterministic due to various factors, such as

cache miss, page fault, context switch, and so on. Importantly, the delay in execution

of the application program is not necessarily related to the number of its internal steps.

It’s because, in addition to the nondeterministic factors listed above, our formal C

semantics is designed as an abstract machine that is not relevant to the actual physical

machine. For example, multiple steps of C program execution may correspond to

nop in the physical machine (e.g., in processing the ‘sequence’ case of the program

syntax), and a single step may correspond to a significant length of machine code

(e.g., in evaluating a complex expression).

Solution We model the transition steps of a node as follows. While the operating

system is turned on, the state of the node carries a natural number that we call latency

count, which indicates the number of latency steps left. In a transition step, the node

may fail nondeterministically. In that case, we assume the fail-stop behavior: the

node silently stops running and may recover randomly in the future. Otherwise, the

transition depends on the latency count. If the latency count is positive, the transition

step reduces the number, keeping the rest of the state unchanged. When the latency
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count reaches zero, the actual internal transition occurs and then the latency count

is reset to a random number. Modeling latency in this way reduces nondeterminism

in transition steps and also enforces the liveness of each node’s execution. Until the

latency count becomes zero, next several steps are deterministic unless it fails in the

middle of the steps. After the fixed number of count-reducing steps, the node performs

the next transition.

The internal transition of a node works as follows. First, if the operating system

has control, it continues the current system call procedure, following the rule of our

formal model of the operating system. Our operating system model provides the

network and timer services, for the details of which we refer the readers to our Coq

development[23]. Second, if the application program has control, it initially takes an

arbitrary number of (silent) program-internal steps. By doing this, we remove the

dependence between the time delay of latency and the number of program steps. And

then, the effective step of the program occurs as the following. If the current program

state is invoking an external function call, the node checks the external function. If it

is an API function for a system call, the node initiates the corresponding OS system

call procedure. Otherwise, the function call is regarded as an observable event, and

the node provides an arbitrary return value to the program. If the program state not

calling an external function, it takes one internal step unless the state is a final state.

3.2.4 Time Constraint on Network Transmission Times

Problem According to the assumptions on the network, the transmission time of

a message packet is bounded by the time length µ. In other words, when a message

packet is sent from a node, its delivery should be completed with the time µ. Also, in

order to cover every possible behavior, the network model should allow all possible

transmission times less than µ. We assume that µ is given in nanoseconds.
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Solution When a message packet is released from a node, the network model pairs

the packet with an arbitrary value less than λµ, which we call delivery count, and

stores the packet in the state of the network model. The delivery count works as the

latency count of the node model. The count is reduced by 1 for each transition step

of the system until it reaches zero, and then the network model delivers the packet

to the destination node.

3.2.5 Time Constraint on Program Executions

Problem For the correct synchronization of PALSware, we need to impose a time

constraint on every single iteration of the main loop. However, imposing a time con-

straint on a part of program code is nontrivial; at least, the solution for the trans-

mission time is not applicable here. Unlike the former problem, the execution is done

in multiple steps according to the semantics of the code, so we have to restrict the

sum of the delays from each step, not a delay of a single step. Moreover, in our case,

the code contains unknown part given from the user, so that the number of steps is

also unknown in verifying the generic system built on PALSware. In the worst case,

the user could (mistakenly) provide code that enters to an infinite loop and never

returns, in which case the code always fails to meet the constraint.

Therefore, we need to devise a new way to properly reflect the time constraint

of program execution in the real-world model, so that it effectively rules out invalid

programs that fails to meet the constraint, such as a program with an infinite loop.

Solution To resolve the problem, we adopt a virtual event indicating that a viola-

tion of an assumption occurs during execution. This idea is inspired by the work of

compiler verification[18] that uses a special oom event to indicate the out-of-memory

situation in the refinement proof.

In our work, we let the node model produce a Nobehavior event when a viola-
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tion of an assumption happens during execution, and then rule out all executions

that contain Nobehavior in the refinement proof. First, we separate each iteration

according to the sleep until function calls: an iteration starts when the previous

sleep until call returns, and the iteration ends when the program calls sleep until

again. Then, the model measure the length of time that each iteration takes, and then

produce Nobehavior when it exceeds the given constraint length αloc.

Specifically, we add a time limit value in the node model. When sleep until

returns at the time tcur, the model sets the time limit as tcur + αloc. After the time

limit is set, every step of the node model checks whether the local clock does not

exceed the time limit value. If the program calls sleep until before that, the time

limit value is reset to none. Otherwise, the node produces Nobehavior to indicate the

violation. As a result, all executions without Nobehavior are valid executions that

don’t include situations that violate the assumption.

3.2.6 Observable Behaviors of a Real-Time Distributed System

Problem For real-time distributed systems, observable behaviors must specify not

only the order of the observable events from an execution, but also the times and

locations of them. In our work, there is an issue in representing event occurrence

times. In the real-world model, every event produced from one node in an execution

has a different occurrence time, since a node step may produce at most one event at

a time. However, in the abstract model, all events in a period occur at once (with

order), at the synchronization time. For the refinement proof, we need to define the

observable behaviors of the real-world model and abstract model in a way that two

corresponding executions from the respective models can be identified.

Solution We define an observable behavior of a real-time distributed system as a

list of local behaviors, where each local behavior is a coinductive list whose elements
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are timestamped observable events produced from a single node.

We parametrized the node model with a timestamp generator, which is a function

that converts the local clock to the timestamp value. In our real-world model, we in-

stantiate the timestamp generator with a function that computes the synchronization

time that begins the period of the given local clock. In this way, an execution of the

real-world model generates the identical behavior with the corresponding execution

of the abstract model.

27



Chapter 4

Formalization

In this chapter, we present the formal structure of our framework. We start from

general definitions regarding distributed systems and their real-time behaviors. Then,

we present the formal form of application systems, which serves as the parameters and

assumptions of the framework, which are supposed to be given from the user. Then,

we present our two system models: the real-world model and the abstract model. The

former one is a state transition system that includes the network and operating system

model, and the latter one is an interaction tree that simulates the ideal synchronous

behaviors. Finally, we state the final theorem, which proves the refinement between

the two models under an arbitrary application system.

4.1 General Definitions

Events We start from the definitions of events used in the models. Let EvtCall

be the set of event calls. For example, it can be a concrete external call with a

function name and argument values, or an invocation of Nobehavior introduced in

Section 3.2.5. In the development, we use various types of such event calls, but in
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this presentation we unify them as EvtCall for simplicity. Also, let RetType be the

function that maps an abstract event call ec ∈ EvtCall to the type of its return

values. Then the event type Evt = {(ec, r) | ec ∈ EvtCall, r ∈ RetType(ec)} is the

set of pairs of an event call and its return value. Additionally, we define the set of

timestamped event as TEvt = N × Evt and the set of timestamped event lists as

TEvts =
−−→
TEvt. Like this, we mark list types or list objects with overline arrows.

Distributed Systems Here, we define several kinds of types for distributed system

behaviors. First, we define concrete behaviors ConcBeh =
−−−−−−−−−−−→
stream (TEvts) where each

infinite stream represents the local concrete behavior from each distributed task.

Each element of the stream represents the list of events occurred at each step. Then,

to relate the behaviors of two different systems, we use (abstract) behaviors Beh =
−−−−−−−−−−→
colist (TEvt) that abstracts the concrete step information, where we let colist (A)

be the set of coinductively defined lists of A, which permits infinite lists.

Now, we define a distributed system as a tuple sys = (S, | |, −→ , I) ∈ DSys where

S is the set of states, | | gives the number of nodes in the state, −→ ⊆ S×−−−→TEvts×S

is the transition steps, and I is the set of initial states. Additionally, we add a validity

condition to the transition steps: the length of event lists should be equal to the

number of nodes in the starting state, and the number of nodes should be preserved

in every step −→ .

From this, we define the concrete behaviors ConcBehState(s), and the behaviors

BehState(s) of a system state s as shown below, where the predicate isAllValid( )

assures that there is no Nobehavior events in it. Note that ConcBehState(s) is de-

fined coinductively as the greatest fixed point. Putting them together, we define the

behaviors of the system BehSys(sys). Note that we use the symbol ++ to represent

the append operations for list-like objects (e.g., list, stream, and colist), and ++each

for the element-wise append operations between two lists of list-like objects. Also, ≃
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denotes the trivial equivalence relation between a concrete behavior and an abstract

behavior.

cbeh ∈ ConcBehState(s) ⇐⇒

(1) s ∈ StuckState ∧ |cbeh| = |s| ∧ isAllValid(cbeh) ∨

(2) ∃e, s′, cbeh′.

s
e−→ s′ ∧ isAllValid(e)∧

cbeh′ ∈ ConcBehState(s′) ∧ e ++each cbeh′ = cbeh

beh ∈ BehState(s) ⇐⇒

∃cbeh. cbeh ∈ ConcBehState(s) ∧ cbeh ≃ beh

beh ∈ BehSys(sys) ⇐⇒

( ̸ ∃s. s ∈ I) ∨ (∃s. s ∈ I ∧ beh ∈ BehState(s))

Then the refinement between two distributed systems, namely an abstract system

sysa and a concrete system sysc, is defined as the subset relation of their behaviors:

BehSys(sysc) ⊆ BehSys(sysa)

Proof Technique In proving the refinement between two systems sysa, sysc ∈

DSys, we use the following coinductive multi-step simulation relation between the

states, with an ordinal-number stuttering index:
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sa ∼(o,eacc) sc ⇐⇒

(∃ec, s′c. sc
ec−→ s′c)∧

(∀ec, s′c, e′acc. sc
ec−→ s′c ∧ isAllValid(ec) ∧ e′acc ++each ec = eacc =⇒

∃o′.

(1) o′ < o ∧ sa ∼(o′,e′acc)
s′c ∨

(2) ∃ea, s′a. sa
ea−→+ s′a ∧ ea = ec ∧ s′a ∼(o′,repeat([],|s′c|)) s

′
c

where repeat(a, n) denotes a list produced by repeating a for n times. We use an

ordinal number for the stuttering index in order to cover the cases when the number

of stuttering steps is unknown upfront.

Intuitively, the simulation relation implies that, for any execution from sc, it even-

tually reaches to another state s′c, and the accumulated events eacc can be simulated

by a multiple step sa
eacc−−→+ s′a. The case of (1) accumulates the events, and the case

of (2) specifies the multiple step of sa.

We proved that the simulation relation implies the refinement of two states.

Lemma 4.1.1 (Adequacy of Simulation). For any two states sa ∈ Sa and sc ∈ Sc

and an ordinal number o, if the simulation holds with empty accumulated traces, i.
e., (sa ∼(o,repeat([],|sc|)) sc), then the refinement BehState(sc) ⊆ BehState(sa) holds.

4.2 Application System of the Framework

At first, we declare several sets regarding the Clight formal semantics: the set of C

programs CProg, the set of C functions CFunction, the set of memories Memory, and

the set of C program states CProgState at runtime. The formal definitions of them

are in the Coq development of CompCert.

Also, we denote the set of interaction trees as ITree(E,R) where E is the set of pos-

sible event calls from the trees and R is the set of return values. In this presentation,

we fix E = EvtCall so we omit it from now on, while R can be changed depending on
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the situation. Additionally, we define a set of message box MsgBox =
−−−−−−→
(Bytes)? that

contains a list of optional byte-list messages.

Now, we define the form of abstract specifications that appears in the parameters

of our framework. An abstract specification for each app is given as an element of the

following set:

specapp ∈ AppSpec = {(Sapp, itrjob, sapp init) | Sapp ∈ Type,

itrjob ∈ MsgBox→ Sapp → ITreeSapp , sapp init ∈ Sapp}

where Sapp is the type of abstract states of the given task, and itrjob is the in-

teraction tree of the task parametrized by the inbox and the abstract state at the

beginning of the job. When an interaction tree finishes the execution, it is in the form

of Ret(sapp) for a final state sapp ∈ Sapp. Finally, sapp init denotes the initial state.

Simulation Relation First, we define a standard form of simulation relation be-

tween an interaction tree itr ∈ ITreeunit and a C program state cst ∈ CProgState

with a natural-number stuttering index i: itr ∼ITr(i) cst (for the details of which, refer

to the Coq development). The simulation relation is easily lifted from CProgState to

CProg such as itr ∼ITr(i) cprog.

From this, we define a simulation relation between a PALSware app and its ab-

stract specification as below, which is the user’s proof obligation:
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specapp ∼app cprogapp =

∃fjob. (“job”, fjob) ∈ functions(cprogapp)∧

∀(kitr : Sapp → ITreeunit), (i : N), (kc : CCont),

(ptrinb : MemPtrVal), (m : Memory), (inb : MsgBox), (s : Sapp).

m ∈ MWRegionValid ∧ inb ∼inbox (m, ptrinb) ∧ s ∼app state m∧

(∀s′,m′.

(m,m′) ∈ MWRegionUnchanged ∧ s′ ∼app m′ =⇒

kitr(s
′) ∼ITr(i) ReturnState(Vundef, kc,m

′)) =⇒

∃(ijob : N),

(s′ ← itrjob(inb, s); ; kitr(s
′)) ∼ITr(i+ijob) CallState(fjob, [ptrinb], kc,m)

We explain the construction of the relation ∼app as follows. First, ∼app guarantees

that a C function of the name “job” and the body fjob exists in the C implementation

of app. Also, for any inbox inb and abstract state s, if the memory m stores (1) a

valid data for the middleware region to which only the PALSware code have access

(indicated by MWRegionValid), (2) matched data for inb in the region pointed by a

pointer ptrinb (indicated by inb ∼inbox (m, ptrinb)), and (3) matched data for s in

the app region (indicated by s ∼app state m), then the job interaction tree invoked

with inb and s are in the simulation relation ∼ITr(i+ijob) with the call state of C that

invokes fjob with m and ptrinb, under the assumption that matched continuation after

the job in both the interaction tree and C state are in the simulation relation. Here,

MWRegionUnchanged indicates that the middleware region is unchanged.

An application system of the framework is represented as a triple (prd,−→mc,
−−→
task) ∈

AppSys, where prd ∈ N is the synchronization period of the system, mc ∈ IP×
−→
N is

the multicast group information that consists of the multicast group IP address and

the members’ task IDs, and task of the type

Task = {(ip, specapp, cprogapp) | ip ∈ IP, specapp ∼app cprogapp}
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consists of its IP address, a specification and an implementation of the task, and the

simulation relation between them.

4.3 Real-World Model

From the given application system, the framework constructs the corresponding real-

world model. The model includes the network model and the operating system model

as its components. The model depends on the system parameters µ, ε, and δ that we

explained in the Section 2.1.2.

4.3.1 Network Model

We start from the formal definition of network packets. There are two kinds of packets:

message packets and multicast group join packets. The set of message packets are

defined as MsgPkt = IP×IP×Port×Bytes, which contains the sender IP, destination

IP, destination port, and the actual payload. On the other hand, a join packet is

modeled as a pair of a multicast IP of a group and a local IP address that wants to

join the group. As a result, the set of packets is defined as a disjoint union MsgPkt ⊎

JoinPkt.

In this model, a network state is a triple (G,M, J) where G ∈ −−−−−→IP× IP, M ∈
−−−−−−−−−−−−−→
(IP× MsgPkt)× N, and J ∈

−−−−−−−−−−→
(IP× IP)× N are as follows:

• G is the table of multicast member information, where each entry (ipmcast, ipmem)

is a pair of a multicast group IP and a member IP. Note that G can also be

seen as the list of join packets that have been processed by the network.

• M is the list of message packets in the network, where each entry ((ipa,m), d) ∈

M consists of the actual destination of message ipa, the message packet m, and

the remaining delivery count d. Here, the actual destination IP differs with the

original destination IP in m when the original destination is a multicast group
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IP, in which case the message packet is copied for each members of the group.

Finally, d is the number of remaining steps until the delivery is completed. When

the message packet is initially introduced to the network, the delivery count is

set to a random value less than λµ, and then each of the following steps reduces

the value by 1.

• J is the list of join packets in the network. Each entry ((ipmcast, ipmem), d) ∈ J

is also tagged with a delivery count d that works in the same way as M . When

the count becomes zero, the entry moves from J to G.

In Fig. 4.1, we present the formal rules for the network steps described in Sec-

tion 3.2.1. The first step that chooses packets to distribute is expressed as a com-

putable function to distrib, in which the delivery count is reduced by one and

packets with zero counts are processed immediately. The second step that gathers

output packets starts with classifying the packets into message packets and join pack-

ets. Each message packet is copied for each of the actual destination IP address, by

attach actual dest. Then, each packet is tagged with a random delivery count that

is valid according to µ. Finally the newly introduced message packets and join pack-

ets (tagged with actual destination addresses and delivery counts) is appended to the

network state.

4.3.2 Generic System Model on Network

Building on the network model, we construct a formal distributed system from a

list of generic nodes. A (generic) node is a tuple (ip, S, I, step) where ip ∈ IP is the

IP address, S is the set of node states, I ⊆ S is the set of initial node states, and

step ∈ N × S × −−−−→MsgPkt × (N × Evt)? × S × (Pkt)? is the transition steps. In later

descriptions, we also write (tglob, s, d, e, s
′, p) ∈ step as tglob ⊢ (s, d)

e−→ (s′, p) for

readability.
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to distrib(G,M, J) =
let (M ′, D) = reduce dcnt(M) in
let (J ′, G′) = reduce dcnt(J) in
((G ++ G′,M ′, J ′), D)

classify packets(P ) = (Pmsg, Pjoin)
attach actual dest(G,Pmsg) = P ′

msg

(P ′
msg,Mnew) ∈ ValidDCnts(µ)

(Pjoin, Jnew) ∈ ValidDCnts(µ)

(G,M, J) −→Gather(P ) (G,M ++ Mnew, J ++ Jnew)

Figure 4.1 Formal semantics of the network model

Then, for a given nodes −→n , we define a state of the generic model as a triple

(tglob, N,Σ) where tglob ∈ N is the current global clock time in the atomic time unit,

N is a network state, and Σ is the list of node states for each of −→n . The formal

transition step of the generic model is shown in Fig. 4.2, in which D|ip represents the

messages of D filtered by the destination IP ip.

to distrib(N) = (N1, D)

∀i < |Σ|. tglob ⊢ (Σ[i], D|ip(Σ[i]))
E[i]−−→ (Σ′[i], P [i])

N1 −→Gather(P ) N
′

(tglob, N,Σ)
E−→ (tglob + 1, N ′,Σ′)

Figure 4.2 Formal semantics of generic systems on network

From the definitions of states and steps above, we define a construction of the

formal distributed system SysOfNodes : N × −−→Node → DSys from an initial global

clock time and list of nodes to a distributed system. For the other components of

the distributed system that are unspecified here, we refer the reader to our Coq

development.
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4.3.3 Operating System Model

In the real-world model, we instantiate the nodes of the generic model with our

operating system model.

Application Program Model The operating system model is parametrized by the

application program, which is a transition system (S, I, F, −→ , ↑( ), ↓( )) ∈ Prog

where S is the set of program states, I, F ⊆ S are the initial and final program states

respectively, −→ ⊆ S×S is the internal steps of the program, ↑( )⊆ (S×EvtCall)

is the predicate for program states of event calls, and ↓( ) ⊆ (S × Evt× S) is the

program step after event calls. In order to instantiate the program with a C program,

we define a conversion ProgOfCProg ∈ CProg → Prog based on the Clight formal

semantics of CompCert, where we omit the details here.

Process Model From the program model above, we define the process model, which

represents the program’s runtime state with the state of associated OS resources.

Given a program, we define a normal process state as a pair (sos, sprog), where

sos is the associated OS state and sprog ∈ Sp is the current program state. sos is a

tuple (skts, tmr, tlim, sts) where skts ∈ −−−−→Socket is a list of sockets being used by the

program, tmr ∈ Timer is a timer state that the program manipulates, sts ∈ {Idle}⊎

{Processing(ec) | ec ∈ EvtCall} ⊎ {Return(e) | e ∈ Evt} ⊎ {Waiting(t) | t ∈ N}

is the current status of the operating system for the process. Then, we let a process

state is either a normal process state or ⊥, which represents erroneous cases (i.e., the

program state gets stuck).

The formal transition steps of process is depicted in Fig. 4.3. Under an environ-

ment that provides the local clock, the process step changes the process state, during

which an observable event and an output packet can be generated. Each step is effec-

tive so that it enforces progress of the state. In the step rules, we use a boolean-valued
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(ProgramStep)
OS idle(sos) = T
sprog −→+ s′prog

tloc ⊢ (sos, sprog)
·−→Proc ((sos, s

′
prog), ·)

(Event)
OS idle(sos) = T

sprog −→∗ s1prog
s1prog ↑ecsys s1prog ↓(ecsys,v) s′prog

tloc ⊢ (sos, sprog)
e−→Proc ((sos, s

′
prog), ·)

(Final)
OS idle(sos) = T
sprog −→∗ s′prog

s′prog ∈ ProgFinal

tloc ⊢ (sos, sprog)
·−→Proc ((sos, s

′
prog), ·)

(Stuck)
OS idle(sos) = T
sprog −→∗ s′prog

s′prog ∈ StuckState

tloc ⊢ (sos, sprog)
·−→Proc (⊥, ·)

(OSCall)
OS idle(sos) = T
sprog −→∗ s′prog

s′prog ↑ecos sos ↑ecos s′os
tloc ⊢ (sos, sprog)

·−→Proc ((s
′
os, s

′
prog), ·)

(OSStep)
sos −→os (s

′
os, p)

tloc ⊢ (sos, sprog)
·−→Proc ((s

′
os, sprog), p)

(OSReturn)
sos ↓(ecos,v) s′os sprog ↓(ecos,v) s′prog
tloc ⊢ (sos, sprog)

·−→Proc ((s
′
os, s

′
prog), ·)

(Error)

tloc ⊢ ⊥
e−→Proc (⊥, p)

Figure 4.3 Transition steps of process

function OS idle that checks whether the current OS status sts is Idle.

We first explain the upper four step rules, which are unrelated to the OS resources.

The first ProgramStep case describes the transition rule when the application pro-

gram has control and only program-internal steps are taken. The Event case is

applicable when the program calls an external function of the application system’s

observable event. Then, the model returns arbitrary value for the event call to the

program. The Final step is taken when the program state can silently reach to a

final state. The Stuck case can be taken when the program state reach to a stuck

state, in which case the process changes from a normal state to ⊥.
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The next three steps are about manipulating OS resources. The OSCall step

occurs when the program calls an external function that is an OS interface. Then,

the OS status sts changes from Idle to Processing(ecos) in s′os. The OSStep step is

taken when the current OS state can take its own step, which implies that the current

OS status is not Idle. The actual manipulation of the OS resources takes place in this

step, such as socket operations or setting the timer. Also, the time limit may be set

to a certain value when waking up from a sleep. Note that the OS step may produce

an output packet. For more details of OS steps, refer to our Coq development. The

OSReturn step is taken when the operating system has completed the work and is

ready to return the resulting value to the program. In that case, the OS status sts is

a form of Return(e), and after the return it changes to Idle.

Finally, in the Error case, the process may produce arbitrary output event and

packet.

Operating System Node Model Now we instantiate a generic node model with

our operating system model. We let an OS state be either live or turned off. A live

state of OS is a triple (tloc, lat, proc), where tloc ∈ N is the local clock time (in

nanoseconds), lat ∈ N is the remaining latency count for taking the next step, and

proc is the current process state that we explained above. When turned off, the OS

state is just the None (·) value.

The formal transition semantics as a node model is given in Fig. 4.4. In the Boot-

ing case, a new live OS state is produced with a valid local clock t′loc, an arbitrary

latency count l, and an initial process proc which contains an initial OS resource

state and an initial program state. The Latency occurs when the time limit is not

violated and the latency count is positive. In that case, the process accepts messages

distributed to this node, and advance the local clock under the constraint of maxi-

mum clock skew ε. Finally, the latency count is reduced by one. The NodeFailure

39



(Booting)
(tglob + 1, t′loc) ∈ ValidSkew(ε)

proc ∈ InitialProcess

tglob ⊢ (·, d) ·−→ ((t′loc, l, proc), ·)

(Latency)
is time limit over(tloc, proc) = F

accept msgs(proc, d) = proc1

(tloc, t
′
loc) ∈ AdvanceLocalClock(tglob, ε)

tglob ⊢ ((tloc, l + 1, proc), d)
·−→ ((t′loc, l, proc

′), ·)

(NodeFailure)

tglob ⊢ (σ, d)
·−→ (·, ·)

(TimeLimitOver)
is time limit over(tloc, proc) = T

τ = get timestamp(tloc)

tglob ⊢ ((tloc, l, proc), d)
(τ,NB)−−−−→ ((tloc, l, proc), ·)

(RunProcess)
is time limit over(tloc, proc) = F

accept msgs(proc, d) = proc1

tloc ⊢ (proc1)
e−→Proc (proc

′, p) τ = get timestamp(tloc)
(tloc, t

′
loc) ∈ AdvanceLocalClock(tglob, ε)

tglob ⊢ ((tloc, 0, proc), d)
(τ,e)−−−→ ((t′loc, l

′, proc′), p)

Figure 4.4 Formal semantics of the operating system model

case may happen at any time. Then, the OS is turned off, becoming the None (·)

state. The TimeLimitOver step can be taken when the local clock tloc exceeds the

time limit in the OS state. In this case, the node produces a Nobehavior event, ex-

pressed as NB in the rule. Finally, the RunProcess step is the case when the actual

process step is taken. For this step, the latency count must be zero and the time

limit is not over. The OS first accepts the arrived messages. Then, the process step is

taken, which possibly produces an observable event and an outgoing packet. For the

(optional) observable event, the corresponding timestamp value to the current local

clock is attached. Finally, the local clock is advanced to a valid value, and the next

latency count is randomly set.

From this transition step rules, we can easily construct a node model from a given
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IP address OSNodeOfProg : IP× Prog→ Node.

Putting them all together, we can define a function

RealWorldSystem(app sys : AppSys, tiglob : N) : DSys =

SysOfNodes(tiglob, map(OSNodeOfProg)(app sys.3))

that constructs the real-world model from the given application system and initial

global clock (represented in nanoseconds for simplicity). Here, we use the notation

( ).3 to indicate the third element of the given tuple, and an implicit coercion from

Task to IP× Prog that uses ProgOfCProg.

4.4 Executable Abstract Synchrous Model

The top-level system model of the framework is the executable abstract synchronous

model, expressed as an interaction tree. This tree is to be linked with an application

system. Then, the RunAppEvent event call triggers execution of the apps.

1 Fixpoint run_each (task_id: nat) (inbs: list MsgBox)

2 : itree EvtCall (list MsgBox) :=

3 match inbs with

4 | inb :: inbs' =>

5 outb <- RunAppEvent task_id inb ;;

6 outbs <- run_each (task_id + 1) inbs' ;;

7 Ret (outb :: outbs)

8 | [] => Ret []

9

10 CoFixpoint synch_itree_loop (time: nat) (inbs: list MsgBox)

11 : itree EvtCall unit :=

12 set_time time ;;

13 outbs <- run_each 0 inbs ;;

14 inbs' <- distrib_msgs outbs ;;

15 synch_itree_loop (time + T) inbs'

16

17 Definition synch_itree (time: nat)

18 : itree EvtCall unit :=

19 synch_itree_loop time (initial_msgboxes)

Figure 4.5 Executable abstract synchronous model
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The procedure of run each is in charge of executing each job in the current task.

It takes the current task ID to execute, and the list of inboxes for each task as

parameters. First, it checks whether the inboxes are nonempty. If it is, then the head

element is the inbox for the current task to execute. Then, it generates RunAppEvent,

which executes the job of task id with the inbox inb and returns an outbox outb.

Then, it recursively runs run each for the remaining tasks until all the inboxes are

processed, and finally returns the whole list of outboxes outb :: outbs.

From the definition above, we define synch itree loop as a (coinductively) re-

cursive procedure that corresponds to the periodic repetition of the whole system. It

first sets the current time as the given time, which sets the timestamps of observable

events to be produced in this period. Then, it runs run each with the given inboxes,

from the task ID 0. After that, it rearrange the messages in resulting outboxes outbs

to compute the inboxes for the next period inbs’, by the function distrib msgs.

Finally, the procedure is repeated, with the increased time by the synchronization

period T and the new inboxes inbs’.

The top-level interaction tree procedure synch itree just runs synch itree loop

with the initial time and the initial (empty) inboxes. Using this interaction tree, we

can define a function

SynchSystem : AppSys× N→ DSys

that constructs the abstract model from the given application system and initial

global clock.

4.5 Result

Finally, we state the final theorem of the framework that proves the refinement be-

tween the real-world model and abstract model of the given application system as

below, where details of the proof will be discussed in the next chapter.
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Theorem 4.5.1 (End-To-End Refinement). For any application system app sys ∈
AppSys and a global clock tiglob ∈ N, the refinement between the following two systems
holds:

BehSys(RealWorldSystem(app sys, tiglob)) ⊆ BehSys(SynchSystem(app sys, tiglob))

.
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Chapter 5

Refinement Proof using Intermediate
Models

In this chapter, we present a sketch of the refinement proof from the real-world

model to the abstract model. The proof is constructed by vertically composing five

refinement subproofs, involving four intermediate models. We devote each section

of this chapter to each subproof. In each section, when we refer to the two involved

system models, we call each the concrete system and the abstract system, respectively.

5.1 Refinement 1: Abstraction of C programs

For the first step, we abstract the real-world model by replacing the C programs of

the system with their interaction-tree specifications, on the identical network and

operating system model. As a result, complicated details of formal C semantics is

removed, such as the concrete C syntax or memory model.

Specifically, the refinement proof in this stage is again constructed by vertically

composing multiple refinement subproofs, in each of which a single node is replaced

from a C-program node to an interaction-tree node. In order to do that, we first define
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a simulation relation between two nodes ∼Node that satisfies the following adequacy

lemma:

Lemma 5.1.1 (Adequacy of Node Simulation). For any two list of context nodes
ns1 and ns2 and two nodes in the simulation relation na ∼Node nc, the refinement
between the following two system holds for any initial global clock tiglob:

BehSys(tiglob, SysOfNodes(ns1 ++ [nc] ++ ns2)) ⊆
BehSys(tiglob, SysOfNodes(ns1 ++ [na] ++ ns2))

.

Then, we define a conversion function from an interaction tree to an OS application

program ProgOfITree ∈ ITreeunit → Prog whose detail can be found in the Coq

development. The function satisfies the following property:

Lemma 5.1.2 (Program Simulation to Node Simulation). For any C program cprog
and an interaction tree itr, if there exists a natural-number index i such that itr ∼ITr(i)

cprog holds, then the nodes constructed from each of them with an IP address ip ∈ IP

satisfy the simulation relation:

OSNodeOfProg(ip, ProgOfITree(itr)) ∼Node OSNodeOfProg(ip, ProgOfCProg(cprog))

.

For the last step, we actually prove that the C program and the interaction tree

are in the simulation relation. Let cprogPALS be the PALSware implementation in

C and itrPALS : AppSpec → ITreeunit be the interaction tree specification that we

wrote for the implementation. Then the following lemma completes the refinement

proof, from the application system given from the user. In the lemma, the ⊕ symbol

is a syntactic linking operator for C programs defined in the CompCert.

Lemma 5.1.3 (App Simulation to Program Simulation). For any specapp ∼app

cprogapp, there exists i such that itrPALS(specapp) ∼ITr(i) cprogPALS⊕ cprogapp holds,
given that the linkings succeed.

We give the idea of the simulation proof in Fig. 5.1. In advance of the simulation

proof, we define four match relations, denoted as the initial, loop, job begin, job end
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relations in the figure, between an interaction tree and a C program state. The proof

starts from the initial match, and we proceed by checking the simulation until the

states are in the loop match case, which indicates that the both states are at the

beginning of the main loop. Then, we proceed until the states are in the job begin

match case, where they call the job of the task. Now, the user’s obligation specapp ∼app

cprogapp guarantees that the simulation holds until the job is completed, and when

the job is completed, the states are in the job end match case. The objects marked

with dashed line in Fig. 5.1 indicate this part. It also implies that, if the job is never

completed (e.g., infinite loop), the simulation holds forever. After returning from the

job, we keep proceeding the simulation proof until the states go back to the loop

match case. Then, by coinductively we obtain the proof that the simulation relation

holds in the entire execution. For more technical details for coinductive simulation

proofs, refer to the Paco library[19].

Figure 5.1 Program simulation proof in Ref. 1
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5.2 Refinement 2: Abstract PALSware

In this stage, we merge the operating system model and the abstract specification of

PALSware itrPALS into a single object called an abstract PALSware node. By doing

this, each node is specialized in the behavior of PALSware, removing general-purpose

concrete features of the operating system model.

The formal definition is as follows. Under the given application specification

specapp = (Sapp, itrjob, sapp init), we define the set of node states as {·} ⊎ Prep ⊎ On,

where · represents the case when the node is off, Prep represents the preparation

stage of PALSware before going into the periodic executions, and On states actually

performs the periodic exeuctions of the task.

Specifically, a Prep state is a pair (mids, ps) where mids ∈
−→
N is the multicast

IDs to send join packets, and ps is the message packets being accumulated since the

node is turned on.

Also, an On state is a tuple (tsynch, ps, inb, sh, itr) where tsynch ∈ N is the current

synchronization time, ps ∈ −−−−→MsgPkt is the accumulated message packets, inb ∈ MsgBox

is the inbox that stores messages that arrives early (due to the clock skew), sh ∈
−→
B

is the send history of the current period, and itr ∈ ITreeSapp is the current state of

the interaction tree. Here, the send history sh is required for limiting the number of

messages sent to each task, as stated in the limitation of our current work.

Figure 5.2 AbsPALS
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Fig. 5.2 shows how an abstract PALSware node works. Initially the node is turned

off. At a random moment, the node is turned on within the range of time (t0− ε, t1−

ε− µ) where t0 and t1 are two consecutive synchronization times. In the preparation

stage, the node sends multicast join packets until t1−ε−µ, and also receives message

packets sent to this node. After sending all the join packets, the node changes to

the On state and undergoes the warm-up stage: it waits until the time t2 = t1 + T

to receive all the messages sent to the job at t2. In this stage, the interaction tree

itr in the state is in the form of Ret(sapp init). After that, within the time range

(t2 − ε, t3 − ε− µ) the node executes the job itrjob of the period. The job may start

at most ε earlier than t2, which makes it possible to simulate the execution of the

OS node that involves the clock skew. Also, even though the job is completed before

t3 − ε− µ, it is enough to simulate the OS node since any execution of the OS node

that does not complete the job before this time will generate a NoBehavior event. In

the whole process, the node may randomly fail, in order to simulate random failures

of the operating system node.

In the refinement proof, we reused the Theorem 5.1.1 again and showed that the

node simulation between a OSNode node and the corresponding abstract PALSware

node holds.

5.3 Refinement 3: Abstraction of Network

In this stage, we simplify the message communication via network to the direct com-

munication. The concrete system of this stage consists of abstract PALSware nodes

and the network model, while the abstract system, the abstract asynchronous model,

consists of only abstract asynchronous nodes because now transmitted messages are

instantly delivered and stored in the destination nodes.

The system state is (tglob,Σ) where tglob ∈ N is the global clock and Σ ∈ −−−−−−−−−→AANodeState

is the list of node states of this system. Under an application specification specapp =
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(Sapp, itrjob, init), a node state is defined as a pair (inbnxt, s) ∈ AANodeState where

inbnxt ∈ MsgBox stores the message for the next period, and s ∈ {·} ⊎ Ready ⊎

Running ⊎ Done represents the current internal state.

The kinds of internal states is as follows. · represents the case that the node is

turned off. A Ready state is a pair (inbcur, s) of the current inbox inbcur and the

initial app state s ∈ Sapp for the job of the comming period. A Running state is a

pair (sh, itr) of the send history and the running interaction tree itr ∈ ITreeSapp . A

Done state contains the app state s ∈ Sapp after running the job.

The global step of the abstract asynchronous system is formally described in Fig.

5.3. In a step, each node of the system emits events E[i] and output messages P [i],

and then the messages are instantly distributed to their destinations by accept msgs.

The formal definition of the node step ⊢ −→AANode ( , ) can be found in the Coq

development.

∀i < |Σ|. tglob ⊢ Σ[i]
E[i]−−→AANode (Σ

1[i], P [i])∧
accept msgs(tglob, P,Σ

1[i]) = Σ′[i]

(tglob,Σ)
E−→ (tglob + 1,Σ′)

Figure 5.3 Semantics of abstract asynchronous model

The sketch of the refinement proof is depicted in Fig. 5.4, focusing on the match

relation of the incoming messages. We start from a pair of running local states, with

the identical send history sh0 and interaction tree itr0. In the abstract side, the node

accumulates the incoming messages for the next period in inb0AA. In constrast, in the

concrete side, the corresponding messages are partitioned into three locations: (1) the

global network state N0, (2) the inbox inb0AP that stores messages arrived before the

beginning of this period so that the parsing is already done, and (3) the (unparsed)

message packets ps0 accumulated after the beginning of this period. For this, we define

a relation inbAA ∼ inbAP, ps which implies that messages in inbAA is partitioned into
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Figure 5.4 Ref 3. Abstract asynchronous model

a message box inbAP and a list of message packets ps. For example, in the first match,

the following relation inb0AA ∼ inb0AP, (ps
0 ++ N0|ip) holds, where N0|ip represents

message packets in the network N0 whose actual destination IP address is equal to the

IP address of this node ip. In the figure, the curved line with the index m1 indicates

that this relation holds between the two states.

According to the semantics we defined, the job is completed before the time t−ε−µ

in both of the concrete and abstract system. Then, at the time t− ε−µ, the abstract

side is in the Done state, where the match relation m1 still holds. Since every node in

the concrete system has finished its job at this time, no messages are sent until the

time t− ε, only after which the next job may begin.

From this, we can deduce that N2, the network state at t − ε, is empty so that
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the messages of inb1AA are only partitioned into inb0AP and ps2. At this time, the

abstract-side node changes its state to Ready, copying the inbox inb1AA. This Ready

state means that, the node may initiate the job of the new period any time, with

the inbox inb1AA and the app state s1. The new inbox inb2AA stores messages that are

arrived right before this step. At the same time, the concrete-side node just keeps

accumulating packets.

Now, the two node states are in a new match relation m2, which matches each of

the two inboxes in the abstract side with the messages of the concrete side. In this

case, the accumulated packets in the concrete side can be divided into ps2 ++ ps3,

where ps3 is newly arrived in this step. While the match relation m1 at the beginning

of the step guarantees inb1AA ∼ (inb0AP, ps
2), the newly arrived messages satisfy the

relation inb2AA ∼ (·, ps3 ++ N3|ip).

Finally, when the job of the new period starts, the concrete-side node parses all

the accumulated packets ps2 ++ ps4. During the process, the messages of ps2 are

merged with inb0AP to generate the same inbox inb1AA of the abstract side, guaranteed

by the match relation m2. Now, the resulting inbox is used to produce the initial

interaction tree itr2 = itrjob(inb
1
AA, s

1) for the new job in the both of the concrete

and abstract nodes. Also, the packets ps4 are parsed to generate a new inbox inb1AP.

Message packets arrived later than this time are accumulated in ps5. Now the two

nodes are in the same situation as the initial match, the simulation will be continued

in the rest of the execution.

5.4 Refinement 4: Synchronous Execution

In this stage, we define the abstract synchronous model, in which all job executions

and message deliveries are done at the exact synchronization time in a single step.

The model takes a step for each nanosecond, since the synchronized behavior removes

the need of the atomic time units.
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A state of the synchronous model is a pair (t,Σ), where t ∈ N is the global clock

time in nanosecond units, and Σ is the list of the synchronous node states. Each node

state is a pair (inb, s) defined under an application specification (Sapp, itrjob, init) ∈

AppSpec, where inb ∈ MsgBox is the inbox that stores the messages sent to this node,

and s ∈ (Sapp)? is the application’s state where the None value (·) represents the case

that the node is turned off.

The formal transition semantics of the synchronous model is shown in Fig. 5.5. In

theWaitSynchTime case, the period T does not exactly divide the current time t, so

it generates empty events and goes to the next state by incrementing the time, without

changing node states. On the other hand, the Synchronize step can be taken if the

period divides the current time. In this case, each node takes a local step, and the

output messages are instantly distributed to their destinations by accept msgs. Also,

the function AttachTimestamp attaches the timestamp t to each event in E0. The

node steps are formally described in Fig. 5.6, where the actual synchronous execution

happens in the Run case. In this case, starting from the initial state sapp and the

inbox inb, the job takes finite steps until it randomly fails or safely terminates.

(WaitSynchTime)
¬(T |t) E = repeat(·, |Σ|)

(t,Σ)
E−→ (t+ 1,Σ)

(Synchronize)

∀i < |Σ|. t ⊢ Σ[i]
E0[i]−−−→SNode (Σ

1[i], P [i])∧
accept msgs(P,Σ1[i]) = Σ′[i]

(T |t) E = AttachTimestamp(t, E0)

(t,Σ)
E−→ (t+ 1,Σ′)

Figure 5.5 Semantics of synchronous model

We explain the structure of the refinement proof of this stage using Fig. 5.7, where

the concrete system is the abstract asynchronous model, and the abstract system is

the synchronous model. For the period of t0, the asynchronous model performs the

actual job execution within the time range (t0 − ε, t1 − ε − µ). On the contrary, the

synchronous model performs the execution in one step at the exact time t0.
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(Inactivated)

t ⊢ (inb, ·) ·−→SNode ((init inbox, ·), ·)

(Activate)

t ⊢ (inb, ·) ·−→SNode ((init inbox, init), ·)

(Run)

t, inb ⊢ sapp
e−→Period (st, outb)

t ⊢ (inb, sapp)
e−→SNode ((init inbox, st), outb)

Figure 5.6 Semantics of synchronous nodes

Figure 5.7 Ref 4. Multi-step simulation between asynchronous model and synchronous
model

To prove the refinement in this stage, we first define a match relation that matches

two equivalent states at the beginning of each period, in order to apply the multi-

step simulation technique described in Section 4.1. Specifically, our match relation

matches two cases: when the two nodes are turned on and have the same inbox and

app state (e.g., as shown in Fig. 5.7), and when the two nodes are both turned off.

Now, we need to show that the concrete node eventually reaches to a state where

the accumulated events are simulated by the abstract node and the two nodes are

again in the match relation. For this, we advance the concrete system until the time

t1 − ε. Then, the accumulated events can be simulated in the one-step execution of
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the abstract system, since the job executions in both node basically does the same

job: executing itrjob(inb0, s0) step by step, with random failures. Then, the abstract

system takes silent steps until it reaches to the time t1. Since all local tasks in the

abstract system do the same thing as the concrete system, the inbox for the next

state inb1 is identical for each node. As a result, the two system states are again in

the match relation.

5.5 Refinement 5: Making It Executable

The top-level system model of the framework is the executable abstract synchronous

model presented in Section 4.4. This executable model basically works in an anal-

ogous way with the (non-executable) synchronous model, except it is written as an

interaction tree.

Therefore, the main challenge of this stage only comes from a technical problem

about applying the multi-step simulation in a proper way. In particular, the concrete

system takes exactly T steps, the length of the synchronization period, for one period.

In contrast, the abstract system’s number of steps in one period varies depending on

each job’s interaction tree and app state, since one step is taken for each elimination

step of interaction tree, and the job of each task is processed sequentially in the order

of task IDs, as shown in the definition of run each in Section 4.4.

We proved the simulation in this way. First, we match the states at the beginning

of synchronization, and we let the concrete system take T steps. Then, we need to show

that the abstract system can take multiple steps that produces the identical events

with the accumulates events from the concrete system’s steps, and the states of the

two systems are matched again. Since we already has the full history of the concrete

system in this period, we can reconstruct the equivalent steps in the abstract system.

Obviously, we can easily show that the reconstructed steps produce the identical

events, and the resulting states are matched.
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Chapter 6

Case Study 1: Active-Standby
Resource Scheduling System

Our first case study is a resource scheduling system that is extended from the sim-

ple active-standby system. The application system consists of a console task, two

controller tasks, and three device tasks. The system assumes that there is a single re-

source, and only one of the device tasks are allowed to use the resource after acquiring

the exclusive ownership.

The controller tasks take the role of scheduler that determines the owner of the

resource. Especially, the console and two controllers work in the active-standby mode

for reliability; the scheduler service keeps working unless both of the two controllers

are not working at an instant.

Although we fix the number of devices as three, the system implementation and

the formal verification do not highly depend on the number. The number of devices

should be changed without much effort to modify the development.

We believe that this kind of system designs may appear in real embedded systems

including shared resources, such as in the case of sharing a single communication
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channel to outer enviroments, or competing for limited electric power.

6.1 High-Level Description

Console A console task is basically the same as the original active-standby system;

it takes input from the user and then sends a message to controllers that triggers

mode switching between them.

We assume that there is a hardware interface that receives user input in the local

environment of this task. For example, it could be a button that the user presses

when she wants to switch the active side. When the environment recognizes an input,

it stores the signal until the console task calls the get user input function. If there

is a signal, the return value is a nonzero value, namely 1, and otherwise, the return

value is zero.

If the task gets a nonzero return value, it sends a toggle message to both of the

controllers through multicast. The two controller tasks are in a multicast group, so

that a message sent to its group IP address arrives at both of them.

Controllers A controller task maintains a queue of device IDs, whose members are

waiting for owning the resource, as well as the mode for the active-standby process.

When the job begins for a period, the task first updates its active-standby mode,

as shown in Fig. 1.2. If a heartbeat message from the other side of controllers is

not arrived, this task always becomes the active mode. Otherwise, it maintains the

current mode unless a toggle message is arrived from the console task.

After setting the mode, the task updates the queue according to the messages

sent from the devices. Through the messages, a device may request, or release the

resource. If the resource is available after the update, the task selects the next owner

of the resource. Moreover, the task sends a grant message to the new owner, if the

task is in the active mode.
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When a new owner is selected, the controller sets a timeout value of the ownership,

to prevent the system from a stall. If a device node suddenly fails after acquiring

the ownership and never recovers, the controller could wait for the release message

forever. To prevent this situation, we set a timeout for the ownership with a predefined

maximum value. After the maximum number of periods elapses, the controller regards

the owner as a failed task and the resource as available.

Finally, the task sends a heartbeat message to the other side of controllers. The

message contains the whole information of the current state of this task, so that the

other side may copy the state if necessary.

Devices A device task checks whether there is a demand for the resource, from the

local environment. If there is a demand, then the task is responsible for getting the

resource ownership from the controllers. At the beginning of the job, the task is in

one of the three states: idle, waiting, or owning. We are going to explain behaviors of

the task for each state.

In the idle state, the tasks checks a demand from outer environment, via an

external function of the name check demand that returns an integer value. If it returns

a positive integer, it means that the environment requires the resource for that number

of periods. Then, the task stores the demand value, and sends an acquire message to

the controllers. After that, it goes to the waiting state until a grant message arrives.

If the return value is zero, it indicates that the environment does not require the

resource for now. In this case, the task stays on the idle state.

In the waiting state, the tasks checks its inbox for a grant message. If it does not

exist, the state keeps waiting. If there is one, then it immediately goes to the owning

state and proceed the job. Note that the task will wait forever unless the controllers

send a grant message to this task. For the liveness property, we need to guarantee

that a waiting device task will eventually get a grant message.
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Figure 6.1 An execution of the active-standby system

In the owning state, the task lets the environment use the resource, by calling the

use resource external function. After that, it reduces the stored demand value by

one. If the value reaches to zero, the task release the resource, by sending a release

message to the controllers. Finally, it goes to the idle state and completes the job.

Example We explain how the system works by the example of Fig. 6.1, with an

emphasis on the resource scheduling. We omit all the device tasks except one, for

presentation purpose. In the first period, the device task, say Dev 1, generates an

observable event (demand, 1), which means that the external call of check demand

returns the integer 1. Now that the device requires the resource, it sends an acquire

message to the controllers to ask for the ownership. Then, the controllers receive

the message in the next period, and the active side of the controllers sends a grant

message to Dev 1 after checking that the resource is available. Finally, in the third

period, Dev 1 uses the resource by calling use resource, which is represented as (use,

0) in the figure. Since the demand value was one and the task used the resource for

one period, it returns the ownership by sending a release message to the controllers.

Note that the active-standby process keeps working simultaneously with the re-

source scheduling. In each period, the two controllers exchange heartbeat messages
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to check each other’s state. In the second period, the user requests toggling, which

is represented as (input, 1) in the figure. Consequently, the controllers switch their

status in the third period.

6.2 Implementation

Now, we explain the concrete C implementation of each kind of tasks, which is slightly

simplified and abbreviated for presentation purpose. Refer to the PALSware code in

Fig. 2.3 to check the caller of the job functions.

1 #include "app.h" // declarations

2 #include "main.h" // pals_send

3 ...

4

5 #define MSG_SIZE 8

6 #define ID_MCAST 6

7 ...

8

9 char TASK_ID = 0;

10 char toggle_msg[MSG_SIZE] = {1};

11

12 void job(inbox_t *inb) {

13 int r = get_user_input();

14 if (r != 0)

15 pals_send(ID_MCAST, toggle_msg);

16 }

Figure 6.2 C implementation of the console task

Console The piece of C code in Fig. 6.2 shows the implementation of the console

task. The C macro definition of MSG SIZE indicates that the whole application system

uses 8-byte messages. Note that this macro is defined for convenience, and PALSware

obtains this information from the configuration data declared in config.h. Below

that, the code sets its task ID as zero, and defines toggle msg as a byte array of the

value 10000000. The actual data in the message is insignificant in the system, since
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1 #include "app.h" // declarations

2 #include "main.h" // pals_send

3 ...

4

5 char TASK_ID = 1; // or 2

6 char grant_msg[MSG_SIZE] = {1};

7

8 char state[MSG_SIZE];

9 ...

10

11 void job(inbox_t *inb) {

12 int tid_owner;

13

14 sync_istate(inb);

15 update_queue(inb);

16 tid_owner = update_owner();

17 if (0 <= tid_owner)

18 pals_send(tid_owner, grant_msg);

19

20 send_hb();

21 }

Figure 6.3 C implementation of the controller tasks

the controller only checks the existence of message from the console. The job function

is the function that PALSware calls for every period.

The job function works in the same way as the console in the original active-

standby system does. First, it checks whether there has been a user input, by calling

get user input. If the return value is nonzero, then the task sends the toggle message

to the multicast group of controllers.

Controllers Next, Fig. 6.3 shows the C code for the controller tasks. The task IDs

of the two tasks are set to 1 and 2 in our implementation. Also, the code defines

the grant message as 10000000, where the content is again unimportant because

the device tasks only checks the existence of message from the controllers. In our

implementation, we defined the state as a byte array of size MSG SIZE, in which the
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mode, timeout, and a device queue information are encoded. This way makes the

construction of heartbeat message trivial.

The job function works as follows. The sync istate determines its mode of the

active-standby system. From the inbox inb, it checks the heartbeat message and

the toggle message from the other controller and the console. Then, update queue

updates the device queue according to the messages from the devices. After that,

update owner checks the availability of the resource, and if it is, it selects the next

owner. Note that the selection is only done if the task is in the active mode. If the

next owner is selected, the task sends the grant message to the new owner. Finally,

it sends its heartbeat message to the other side of controllers, where the message

contains its state state.

Devices Finally, we explain the code of the device tasks shown in Fig. 6.4. We define

the task ID as 3, 4, or 5 for each device task. Also, we define the acquire message

acq msg and the release message rel msg as 10000000 and 20000000, respectively so

that the controller may distinguish the messages by only checking the first byte. The

state of a device task consists of two byte data: is owner and demand, where the

former data indicates whether it has the resource ownership, and the latter specifies

the demand value obtained from the environment. is owner may be one of UNINIT,

OWNER, or NOT OWNER, where the first UNINIT value represents a special case that the

device is in the first period after turned on. The idle state in the high-level description

corresponds to the case in which both is owner and demand is zero. The waiting state

is when is owner is zero but demand is nonzero. Finally, the owning case means that

is owner is set as one.

The first part of job shows the initialization process of the device task. If the

device is just turned on, it initializes the state and send rel msg to the controllers,

in order to cancel any previous requests (if exists) from this task, for efficiency. For
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example, if the task failed having the ownership before and recovered immediately,

the controllers don’t have to wait for the maximum timeout until recognizing the

failure.

Otherwise, the device first checks whether a grant message arrives, in sync dev state.

In this process, is owner may be changed from NOT OWNER to OWNER. After that, it

renews the demand from the environment by update demand if there isn’t any de-

mand checked before. At last, if the task is the owner, then it lets the environment

use the resource by calling run device. After that, if the demand becomes zero, it

releases the resource, by sending rel msg to the controllers. If the task is not the

owner, it checks the value of d, which indicates the new demand value obtained from

the environment. If the value is positive, it sends acq msg to the controllers.

6.3 Formally Verified Properties

Our formal verification on the active-standby resource scheduling system is done in

two stages. The first one is to prove the correctness of implementation: to write

down abstract specifications for each app manually, and prove the simulation rela-

tion, to construct a complete application system that provides the parameters and

assumptions to the framework. The second one is to prove a desired property of the

specification: to show that the abstract model constructed with the abstract speci-

fication we wrote can be abstracted further, to a system with a singe never-failing

controller.

6.3.1 Correctness of Implementation

In this section, we give the (simplified) abstract specifications for the console, con-

troller, and device tasks written as interaction trees. For the simulation proof, the

implementation C modules are converted to coq files using the clightgen tool, which

is included in CompCert. Then, the simulation proof between the specification and
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the C implementation is done with the utility lemmas and tactics provided by the

VeriPALS framework for this purpose.

The interaction trees in Fig. 6.5, Fig. 6.6, and Fig. 6.7 show the abstract specifica-

tion for each of the tasks. Comparing this with the implementation shown in Fig. 6.2,

Fig. 6.3, and Fig. 6.4, we can see that the specifications’ structures are analogous with

the implementation, while many concrete details of the C semantics are removed.

In the specification of the console task, GetUserInput corresponds to calling the

external function get user input() in C. Also, SendEvent ID MCAST toggle msg

corresponds with calling pals send(6, ptr) where 6 is the actual value of ID MCAST

and ptr points to a byte array of content 10000000. Note that calling get user input

generates an observable event, where the pals send function is implemented in the

PALSware code, which eventually passes the message content to the operating system.

The specification of the controller tasks takes its task ID and the current state

as arguments. It needs its own task ID for active-standby operations. When the task

is first turned on and no heartbeat messages are received from the other side, the

behavior depends on the ID for tie-breaking: one of the tasks becomes immediately

active, and other side becomes standby. Also, it uses the task ID to determine the

destination of its heartbeat. We delegate the definitions of controller states and the

subprocedures sync istate, update queue, and send hb to the Coq development.

The specification of the device tasks is presented in Fig. 6.7. The state dev state

has two natural-number fields: is owner and demand. Again, the further details are

given in the Coq development.

6.3.2 Abstraction to Single-Controller System

For the next step, we proved that the abstract model generated from our hand-

written application specifications can be further abstracted to a system with single

never-failing controller, under the assumption that the two controllers are never in
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the failed states simultaneously.

We interpret this verification as showing two desired properties of the system.

The first one is the consistency property that assures that, throughout the whole

execution, the cooperation of the two controllers effectively does the scheduling job

as if there is a single controller, so that the internal affairs among the console and the

controllers are unrecognizable to the clients of the service, which is the device tasks

in this case. The second one is the reliability property that the resource scheduling

system keeps operating unless the two controllers are simultaneously in the failed

states.

For this proof, we define an abstract specifictaion for the single-controller task.

Here, we cannot use the specification we defined before, because we should consider

a one-period delay that occurs when the active side fails right before sending a grant

message. In that case, the standby side recognizes the failure in the next period,

and then sends the grant message. To simulate this delay, the new single-controller

specification has to take zero or one stuttering period before sending a grant message.

Then, we define a new system with the single-controller specification. This system

consists of the single-controller specification, two (silent) dummy tasks that take the

slots of the console and one side of the controllers, and the three device tasks. In addi-

tion, we encode the assumptions about failures with Nobehavior events. Specifically,

to rule out the case that two controllers are all in the failed states, we let the system

generate Nobehavior in such situations.

Finally, we prove the refinement between the previous abstract model and the new

model with the single controller. To ease of proof, we first prove the equivalence of the

executable abstract synchronous model and the (unexecutable) abstract synchronous

model, and then prove the refinement between the systems with the unexecutable

model, since the unexecutable is more abstract and support better local reasoning of

nodes.

64



1 #include "app.h" // declarations

2 #include "main.h" // pals_send

3 ...

4 #define UNINIT 0

5 #define OWNER 1

6 #define NOT_OWNER 2

7

8 char TASK_ID = 3; // or 4, 5

9 char acq_msg[MSG_SIZE] = {1};

10 char rel_msg[MSG_SIZE] = {2};

11

12 char is_owner;

13 char demand;

14 ...

15

16 void job(inbox_t *inb) {

17 int d = 0;

18

19 if (is_owner == UNINIT) {

20 is_owner = NOT_OWNER;

21 pals_send(ID_MCAST, rel_msg);

22 return;

23 }

24

25 sync_dev_state(inb);

26

27 if (demand == 0)

28 d = update_demand();

29

30 if (is_owner == OWNER) {

31 run_device();

32

33 if (demand == 0) {

34 is_owner = NOT_OWNER;

35 pals_send(ID_MCAST, rel_msg);

36 }

37 } else if (0 < d) {

38 pals_send(ID_MCAST, acq_msg);

39 }

40 }

Figure 6.4 C implementation of the device tasks
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1 Definition ID_MCAST: nat := 6.

2 Definition toggle_msg : list bytes := ([1;0;0;0;0;0;0;0])%bytes.

3 ...

4

5 Definition console_spec (inb: list bytes?): itree EvtCall unit :=

6 inp <- GetUserInput ;;

7 (if not (inp == 0) then

8 SendEvent ID_MCAST toggle_msg

9 else Ret ())

Figure 6.5 The abstract specification for the console task

1 Definition grant_msg : list bytes := ([1;0;0;0;0;0;0;0])%bytes.

2 ...

3

4 Definition controller_spec (tid: nat) (st: ctrl_state) (inb: list bytes?)

5 : itree EvtCall ctrl_state :=

6 st1 <- sync_istate tid st inb ;;

7 st2 <- update_queue st1 inb ;;

8 (st3, tid_owner) <- update_owner st2 ;;

9 (if 0 <= tid_owner then

10 SendEvent tid_owner grant_msg)

11 else Ret ()) ;;

12 send_hb st3 tid ;;

13 Ret st3

Figure 6.6 The abstract specification for the controller tasks
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1 Definition acq_msg : list bytes := ([1;0;0;0;0;0;0;0])%bytes.

2 Definition rel_msg : list bytes := ([2;0;0;0;0;0;0;0])%bytes.

3 ...

4

5 Definition device_spec (st: dev_state) (inb: list bytes?)

6 : itree EvtCall dev_state :=

7 if st.(is_owner) == UNINIT then

8 SendEvent ID_MCAST rel_msg;;

9 Ret (set_owner_status NOT_OWNER st)

10 else

11 st1 <- sync_dev_state inb st ;;

12 (st2, d) <- update_demand st1 ;;

13 (if st2.(is_owner) == OWNER then

14 st3 <- run_device st2 ;;

15 (if st3.(demand) == 0 then

16 st3 <- SendEvent ID_MCAST rel_msg ;;

17 Ret (set_owner_status NOT_OWNER st3)

18 else

19 Ret st3)

20 else

21 (if (0 < d) then

22 SendEvent ID_MCAST acq_msg

23 else Ret ()) ;;

24 Ret st2)

Figure 6.7 The abstract specification for the device tasks
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Chapter 7

Case Study 2: Synchronous Work
Assignment System

Our second case study is a synchronous work assignment system that consists of a

single master task who provides works and multiple worker tasks who actually process

the works. The master task gets new works to process from its local environment. If

there is a new one, the task broadcasts the work to the whole system. Then, every idle

worker task who receives the message bids for the work in the next period. Finally,

at the beginning of the third period, every one knows who bids for the work, and a

predefined selection algorithm known by all tasks picks a worker. The selected worker

immediately starts working on it.

This system has an advantage over an asynchronous system in bounding the la-

tency of the assignment to a constant time unless there is no available workers. One

could develop an asynchronous version of this system that maintains the list of all

workers who is not working, and sends messages to everyone in the list when there

is a new work. However, in this case, there is a complication in selecting the worker.

If there is no precedence among the workers, the master may assign the work to the
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worker whose message arrived first. Otherwise, the master may need a complex algo-

rithm, e.g., waiting for the messages from the workers for a certain length of time,

and then choosing a best worker among the workers who sent the message. Also, after

choosing the worker, the master may have to announce the result to all the workers

participated. On the contrary, our synchronous design has a simple logic in selecting

the worker, and also it minimizes the latency of the assignment process.

We think that this kind of systems is realistic in many cases, such as assigning

computation tasks to many computing devices, or assigning works to multiple robot

agents in the physical world.

7.1 High-Level Description

Master The master task obtains works to process by polling its local environment,

via the byte-valued external function get new work. If the returned byte is nonzero,

it means that a new work to process is given, where the byte is its initial data. In that

case, the task first generates a fresh work ID, and send to all tasks a request message

containing the ID and the initial data, through multicast.

In the next period, the master task waits for a period, expecting the worker tasks

process the request message.

Then, in the third period, the master task checks bidding messages from the

workers. If there is at least one such message, it means that there is a worker who is

going to process the work. In this case, the master task goes back to the first stage and

start polling for a new work. If there is no bidding messages, it means that currently

there is no worker task available for the work. Then, the master sends the request

message again, until a worker task becomes available.

Workers When a worker task has no work to process, it remains idle until a request

message is arrived from the master. If there is one, the idle task sends a bidding
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message to all tasks through multicast. Then, in the next period, every tasks knows

who is bidding for the work. We assume that the selection algorithm is known to all

the worker tasks. For example, our implementation adopts the rule that a task with a

greater task ID gets a higher priority. Therefore, among the bidders, the one with the

highest priority immediately starts processing the data, while other workers remain

idle.

Once a worker task is assigned a work, it processes the work over several periods.

Calling the external function do work(i, d) with the work ID i and the current

work data d lets the environment process the work. After processing, the function

returns the next data. If the data is zero, it means the work is done. Otherwise, the

task stores the data and keep processing it in the next period.

Example A concrete example of Fig. 7.1 describes how the system works. The

system in the figure has three worker tasks, where Worker 3 has the highest priority

and Worker 1 has the lowest. In the first period, Worker 2 already has a work of

(ID=id1, state=y0). So, Worker 2 continues to work on the work by calling the “work”

external function that returns the next work state y1. At the same period, Master

gets a new work of an initial data x0, then it generates a new id id1 and broadcasts

a request message (ID=id1, state=x0). Then, in the second period, each of the two

idle workers, Worker 1 and Worker 3, bids for the new work by broadcasting a bid

message. Meanwhile, the master task waits until the next period for the bidding

result. Finally, everyone agrees that Worker 3 has the highest priority among the

participants, so Worker 3 immediately starts working, while Worker 1 goes back to

the idle state and Master starts polling for a new work again. If there were no bidders,

Master would repeat sending the request message until the assignment is done.

7.2 Implementation
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Figure 7.1 An execution of the work assignment system

Master The main part of C implementation of the master task is shown in Fig. 7.2.

The job is composed of three stages: update status, poll env, and send request.

We are going to explain the code in the following paragraphs.

The first update status stage changes its status. If the current status is NEW WORK,

it implies that the master task sent request messages in the previous period, so it

enters to the PENDING status. If the current status is PENDING, the task searches the

inbox for a bidding message. If it succeds to find one, the status is changed into IDLE,

since the work assignment process is completed. Otherwise, the status goes back to

NEW WORK, in order to send the request messages again.

Next, poll env runs only when the task is idle. It polls the environment by calling

get new work. If it returns a nonzero data, the master task prepares for sending

request messages for the new work. Specifically, it changes the status into NEW WORK,

assigns a new work ID, and stores the data.

Finally, send request actually sends request messages for the new work, if it ex-

ists. It writes the ID of the new work and the data in the message, and call pals send

to send the message to all tasks.
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Workers The C code for the worker tasks is shown in Fig. 7.3. This code is com-

posed of three main procedures shown in the code, check bidding, check new work,

and continue work.

First, if the status is BIDDING, it checks whether it succeeds to get the work, where

is bidding succ does the job. In our implementation, it checks whether its task ID

is the greatest among workers who sent bidding messages.

After that, if the status is IDLE, the task checks the inbox to see whether there is

a new work requested by the master. The function find request searches the inbox,

and if there is a new request, it stores the message to r and returns a nonzero value.

Then, the worker participates in bidding. It changes its status into BIDDING, stores

the request information, and sends the bidding message bid msg to all tasks.

The final branch is taken if the status is WORKING. In this case, the worker lets its

local environment process the current work by calling the do work external function.

If the returned data is zero, it means the process is done, so the status is changed to

IDLE.
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1 #include "app.h" // declarations

2 #include "main.h" // pals_send

3

4 #define MSG_SIZE 2

5 #define IDLE 0

6 #define NEW_WORK 1

7 #define PENDING 2

8 ...

9

10 char TASK_ID = 0;

11 char req_msg[MSG_SIZE] = {0, 0};

12

13 char status;

14 char next_work_id;

15 char data;

16 ...

17

18 void update_status(inbox_t *inb) {

19 if (status == NEW_WORK) {

20 status = PENDING;

21 } else if (status == PENDING) {

22 if (find_bidding(inb))

23 status = IDLE;

24 else

25 status = NEW_WORK;

26 }

27 }

28

29 void poll_env() {

30 char d = get_new_work();

31 if (0 < d) {

32 status = NEW_WORK;

33 ++ next_work_id;

34 data = d;

35 }

36 }

37

38 void send_request() {

39 req_msg[0] = next_work_id;

40 req_msg[1] = data;

41 pals_send(ID_MCAST, req_msg);

42 }

43

44 void job(inbox_t *inb) {

45 update_status(inb);

46 if (status == IDLE) poll_env();

47 if (status == NEW_WORK) send_request();

48 }

Figure 7.2 C implementation of the master task
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1 #include "app.h" // declarations

2 #include "main.h" // pals_send

3

4 #define IDLE 0

5 #define BIDDING 1

6 #define WORKING 2

7 ...

8

9 char TASK_ID = 1; // or 2, 3, .., 8

10 char bid_msg[MSG_SIZE] = {1, 0};

11

12 char status;

13 char work_id;

14 char data;

15 ...

16

17 void check_bidding(inbox_t *inb) {

18 if (is_bidding_succ(inb))

19 status = WORKING;

20 else

21 status = IDLE;

22 }

23

24 void check_new_work(inbox_t *inb) {

25 char r[2];

26 if (find_request(inb, r)) {

27 status = BIDDING;

28 work_id = r[0];

29 data = r[1];

30 pals_send(ID_MCAST, bid_msg);

31 }

32 }

33

34 void continue_work() {

35 data = do_work(work_id, data);

36

37 if (data == 0)

38 status = IDLE;

39 }

40

41 void job(inbox_t *inb) {

42 if (status == BIDDING)

43 check_bidding(inb);

44

45 if (status == IDLE)

46 check_new_work(inb);

47 else

48 continue_work();

49 }

Figure 7.3 C implementation of the worker tasks
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Chapter 8

Results

This chapter summarizes the result of this work, with experimental results for the

testing performance. First, we present how the development is structured in terms of

the lines of code in each part. Then, we present our experimental results, to compare

the performance of the three testing procedures that we support. We conducted the

experiments on our two case-study application systems.

8.1 Development

Our development is a mixture of C implementation and Coq formal definitions and

proofs. In the C development, we developed our version of PALSware and the two

application system implementations for case studies. In the Coq development, we

defined the formal models, as well as the formal refinement proofs between the mod-

els. Moreover, it contains the formal verification result for the resource-scheduling

application system.

Table 8.1 shows the lines of code information for each part of the C development.

The total number of lines of code in the C development is 1608 lines, which are

75



Framework ResSched WorkAssn

Infra Impl Test Sum Impl Test Sum Impl Test Sum Total

LoC 135 306 373 814 390 98 488 225 81 306 1608

Table 8.1 Lines of code in the C development

partitioned into three parts: the framework part and the two application systems.

The framework development is written in 814 lines total. Among them, the Infra

column represents the code piece that implements the API of our operating system

model, from the libraries provided by the Linux system (e.g., timerfd API for im-

plementing timer services). This part is the trusted computing base of our work; we

trust that the Linux libraries and this Infra code is properly modeled in our operating

system model. Next, the Impl column represents the implementation of PALSware.

This part is the verification target of our Coq proof. Then, the Test column repre-

sents the infrastructure for testing. Specifically, it implements the interface function

for the direct linking with OCaml. The code length is relatively long, since the code

is responsible for correct conversions between C data structures and OCaml data

structures back and forth, and sometimes it requires complex programming patterns.

The ResSched columns correspond to C development of the resource scheduling

active-standby system, which is written in 488 lines of code. Among them, 390 lines

account for the implementation of the tasks in the system. The rest 98 lines are for

linking with OCaml, where most of the code is boilerplate.

The WorkAssn columns correspond to C development of the synchronous work

assignment system, which is written in 306 lines of code. Among them, 225 lines

account for the implementation of the tasks, and the rest 81 lines are boilerplate code

for linking with OCaml.

The lines of code information for the Coq development is shown in Table 8.2,

whose total length is 62131 lines. The code is divided into two parts: the framework

and the application system verification of the resource scheduling system.
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Framework ResSched

Lib Mdl Thr ImplV RefPf Sum ImplV AbsV Sum Total

LoC 5397 9695 5326 12712 15636 48716 9986 3379 13365 62131

Table 8.2 Lines of code in the Coq development

The total 48716 lines of Coq development for the framework is partitioned into

six categories. First, the Lib column represents the Coq utility library that we wrote

or imported from other open-source projects. For example, it contains useful defi-

nitions for list structures, and proofs about their properties. Next, the Mdl column

corresponds to the formal definitions for system models, and brief proofs about their

properties. The Thr column reprents our general theory about simulation and re-

finement, e.g., the multi-step simulation and its adequacy proof. The ImplV column

represents the actual verification of the concrete C implementation of PALSware. The

code length is quite long since it deals with the complex C formal semantics. At last,

the RefPf column shows the number of lines for the refinement proofs between system

models.

The ResSched columns accounts for our verification result of the resource schedul-

ing application system. Of the total 13365 lines, 9986 lines are devoted to the verifica-

tion of the implementation, i.e., each simulation proof between a task implementation

and its specification. The rest 3379 lines corresponds to the further abstraction proof,

which shows that the system can be abstracted to a never-failing single-controller

system.

8.2 Experimental Results

We conducted experiments to compare the testing performance of our three testing

methods. To recall, we are going to briefly describe the three methods. The first

method is to link the C code of the application system directly to the generic abstract

model, using the OCaml foreign function interface functionality. The second method
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is to use our C-to-ITree conversion function to automatically generate the interaction

trees from the application system implementation. The above two method is available

even if the hand-written specifications for the tasks are absent. The last one is to build

the abstract model with the manually written specifications for the system’s tasks in

Coq, and extract it to an OCaml program. This method is only applicable when the

specifications are provided by the user.

The experiments are done on an Intel I7-7500U CPU (2.70GHz, 2 cores) machine

with 16GB RAM that runs Ubuntu 18.04 LTS via the Windows Subsystem for Linux

on Windows 10. The Coq version is 8.13.2 and the OCaml compiler version is 4.12.0.

Also, all the time data in the experiment is the ‘real’ time measured by the time

command of the Z shell.
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Figure 8.1 Experimental results comparing performance of the three testing methods

The graphs in Fig. 8.1 shows the correlation between the testing time and the

number of periods in a single test run, for the two application systems. In the graphs,

the labels LinkC, C2ITree, and ManSpec represent data from the first method that

links C with OCaml, from the second method that uses the C-to-ITree conversion,

and from the third method that uses manually written specifications, respectively.

Each data point is obtained by computing the average of 10 runs.

The left graph shows the results for the resource scheduling system. We can see
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that the C2ITree method is much slower than the other two methods, which shows

very similar performance with each other. Fitting a line y = ax to the data plots,

C2ITree fits to a = 1.515, which implies that the testing speed is equivalent with

running the actual system with the synchronization period length of 1.5 milliseconds.

On the other hand, the other two method fits to the linear curve of slope a = 0.079,

which matches to the actual system with the period length of 79 microseconds. In

summary, the C2ITree method is about 20 times slower than the other two methods

in this system.

Besides, the right graph shows the results for the work assignment system. In this

graph, the slope of C2ITree is 1.590 and that of LinkC is 0.397. In this system, the

C2ITree method is about 4 times slower than the LinkC method. Note that the graph

does not have ManSpec data, since we do not provide manual specifications for this

system.

As a cause of the slow performance of the C2ITree method, we suggest its interpreter-

like execution process. The conversion function from C to interaction tree constructs

an interaction tree that simulates the execution proces of C programs that conforms

to the Clight formal semantics. The converted interaction tree carries a Clight state

which contains a memory model state, where the memory model is extracted in OCaml

as a tree data structure of byte lists. Also, evaluating expressions is done following the

procedure formally defined in Clight, instead of using the native evaluation process.
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Chapter 9

Related Work

There have been several approaches related to our research goal, which is to achieve

high-level safety guarantee of cyber-physical systems. We categorize them into three

groups for each topic. In the first topic, we review the former studies about the PALS

pattern itself and the PALSware implementation and verification efforts. Second, we

compare ours with existing distributed system verification frameworks that supports

developing user application systems. Finally, we discuss studies about verifing C pro-

grams.

9.1 PALS Pattern and PALSware Verification

PALS Architectural Pattern The physically-asynchronous logically-synchronous

(PALS) architectural pattern is originally designed in UIUC[9, 10] to correctly im-

plement synchronous distributed systems on asynchronous environments, taking non-

deterministic factors into account. PALS is designed as a replacement of globally-

asynchronous logically-synchronous (GALS) architecture in avionics systems, with

the advantage of lower complexity that comes with globally synchronous system de-
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signs. In the original design of PALS, the sender task is responsible for sending a

message not too early; it assumes that the sender never transmits messages within a

certain time after the period begins.

There is an approach to applying formal verification to PALS systems[11]. In

this work, the authors define a formal PALS model as a transformation from a syn-

chronous system model, in the Real-Time Maude tool, and verified the correctness

of the transformation by showing the bisimulation between the original synchronous

model However, their achievement differs from ours, in the aspect that our work

verifies the implementation of PALSware and application system, where this work

verifies simplified and abstract models of systems.

PALSware This PALS pattern is implemented as middleware for real-time dis-

tributed systems, called PALSware[7]. This separation of concerns helps system de-

velopers by allowing them to assume a synchronous environment in desining real-time

distributed systems. The PALSware design includes several practically useful func-

tionalities that our work didn’t include, such as fault managers, end markers for

atomicity, and multi-phase and multi-rate system extensions. A model checking ap-

proach has been applied[8] to the PALSware implementation. This work uses the

CBMC tool to prove three properties of the message service of PALSware, and then

combines this result with additional model checking on application systems. Compar-

ing to this work, our verification result guarantees the full functional correctness

against the system’s synchronous behaviors. Also, the model checking approach often

fails to give results when it encounters state explosions.

9.2 Verification Frameworks for Distributed Systems

There have been several research projects that aim to build a general formal verifica-

tion framework for distributed systems. This section introduces such projects one by
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one, and compares them with our work.

Verdi Verdi[20] is a framework for implementing and verifying distributed systems

in Coq. To use this framework for buildint a distributed system, the system devel-

oper first implements each distributed task of the system in Coq. Then, the Coq’s

extraction mechanism generates executable OCaml programs for each task, which

can be deployed as an actual system with the runtime library provided by Verdi. For

verification, Verdi supports various kinds of network models to specify the system’s

behaviors, from the reliable semantics which only permits reordering of packets to a

network semantics which permits packet loss and duplication. On one of the network

models, the user can verify formal properties of the system’s behaviors. As a case

study, they verified the Raft consensus algorithm to demonstrate effectiveness of the

framework.

Notably, Verdi provides a verified system transformer that converts a system built

on one network model to a new system on another network model, by augmenting the

input system with proper handlers that detect and resolve a certain kind of faults. In

contrast, our network model only supports the reliable network behaviors, since the

correctness of PALSware depends on it.

On the other hand, our network model properly supports real-time reasoning,

which is crucial for verifying PALSware. Also, compared with this work, we designed a

detailed model for a real-time operating system to reduce the conceptual gap between

the real world and our mathematical reasoning.

Another difference is that our system supports C programs, which is, from our per-

spective, more realistic in implemenenting real-time embedded distributed systems.

Using C programs for application systems definitely makes the formal verification

difficult, so verification experts are needed in verifying application systems. Never-

theless, our framework helps the verification by supporting modular reasoning for
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each distributed task. Moreover, our framework also serves as an efficient verified

testing tool. For the cases that conducting the formal verification seems hard, thor-

ough testing on the application system is possible on our framework, instead of formal

proofs.

IronFleet IronFleet[21] is another verification framework for distributed system,

based on the Dafny language. An advantage of this framework is that it utilizes an

SMT solver in the verification process, which greatly helps in automating proofs.

Their network model is not restricted to the reliable network assumption.

As Verdi does, this framework lacks support for real-time verification, and it re-

quires the developer write programs in their own language. Also, while their reduction

technique greatly ease the proof effort, its correctness is not integrated in the mech-

anized code base.

To sum up, existing verification frameworks for distributed systems are good at

dealing with various network assumptions or reducing proof efforts, while our network

model enabels real-time reasoning which makes the verification of PALSware possi-

ble. Moreover, on our framework, the system developer can rely on the synchronous

environment assumption and implement their system in the C language.

9.3 Verifying C Programs

Formally verifying C programs is one of the major branches of formal system verifica-

tion. The CompCert project[12], a realistic C compiler fully verified in Coq, designed

formal C semantics that conforms to the C standard, and also formal translations

from C to assembly. Then, it is followed by many formal verification projects that

are based on the CompCert’s results. CertiKOS[13] is a concurrent operating system

kernel whose functional correctness on the Clight formal semantics is verified in Coq

with their certified abstract layer approach. Verifiable C of VST[14] is a C program

83



verification tool. It can be seen as a separation logic prover for C programs, also

based on the Clight semantics. CompCertM[15] is an extension of CompCert that

fully supports separate compilation. In their work, the authors showed that their

proof technique called RUSC is applicable to verifying programs.

Among the verification efforts, a study on verifying a web server[22] is comparable

to our work. In this work, the authors implemented a simple ‘swap’ web server, and

wrote its abstract specification as an interaction tree, like we did in our work.

However, this work differs from our work in proving the relation between the

implementation and specification. This work uses the VST tool to prove a hoare

triple that indirectly implies the refinement between the implementation and spec-

ification, but it doesn’t give a further soundness proof of it. As a result, the final

theorem is partitioned into two unintegrated parts: one proving the hoare-triple re-

lation, and the other proving that the specification shows a desired property. On

the other hand, we directly defined execution models for both of the C implementa-

tion and the interaction-tree specification, and proved the refinement between them.

Therfore, our subproofs are well-composable with each other to prove the final refine-

ment theorem. Additionally, while this work verifies a single server’s behaviors with

multiple client models, our work verifies the whole-system implementation.
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Chapter 10

Conclusion and Future Work

In this work, we developed the VeriPALS framework for implementing and verifying

distributed systems with synchronous designs written in C. The framework includes an

implementation of PALSware, which provides a virtually synchronous environment to

the upper application layer, on a physically asynchronous environment of network and

real-time operating systems. Since developing systems in synchronous designs greately

reduces the system complexity, PALSware is well suited for developing safety-critical

systems. The PALSware is formally proven in Coq that an arbitrary application

system built on it refines the system’s ideal synchronous behaviors, as long as the

execution times of each job are bounded by a certain time limit.

For system verification, our framework combines the user-given local simulation

proofs between each app implementation and its specification to prove the global

refinement between the real-world model and the ideal abstract synchronous model.

The user may conduct further formal verifications for proving that a desired property

holds for the abstract model’s behaviors. This way is much simpler than proving

that a property holds for the real-world model’s behavior, since the real-world model
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contains concrete and detailed components in it, such as formal C semantics and

operating system services.

Moreover, the framework serves as an efficient testing tool for application systems.

For testing, our abstract synchronous model can be extracted to a single executable

OCaml program that simulates the actual distributed system. In terms of resource and

time, using this tool is more efficient than deploying the actual distributed system

for testing. We provide three testing methods, in which only one method requires

manually written specifications from the user.

To demonstrate the effectiveness of the VeriPALS framework, we conducted two

case studies of application systems. The first system is a resource scheduling system

with two controllers that operate as an active-standby system for reliability. For this

system, we applied formal verification to prove the correctness of implementation

against manually written specifications. Additionally, we proved that the system can

be abstracted further, to a system with a single, more reliable controller. The second

system is a synchronous work assignment system that consists of a single master task

and multiple worker task. For the two systems, we applied the three testing methods

and compared their performances.

Future Work In the real-world model of the framework, the operating system

model runs a C program for its application program. We believe that our work can be

easily integrated with the CompCert’s verification results, to replace the application

program from C to assembly. This work would reduce the gap between our model

and the actual system, since the physical hardware runs according to the compiled

assembly program. Also, we could prove that compiling our system using CompCert

preserves the system’s behavior, which gives a higher safety guarantee.

Another future direction is to extend our PALSware implementation. As we clar-

ified, the current version is a simplified version that does not support transmitting
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multiple messages to a single task in one period. Also it does not support multi-phase

and multi-rate extensions introduced in the original work of PALSware. We believe

we can generalize the current implementation to remove those restrictions.

Finally, we plan to apply the framework to develop realistic cyber-physical sys-

tems, such as autonomous driving systems or underwater vehicles. From this, we hope

to contribute to achieving high-level safety assuarance for safety-critical computer

systems in the real world.
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초록

사이버물리시스템의안전성을높이는일은항상중요한연구주제가되어왔다.그이유

는 많은 사이버 물리 시스템이 안전 우선 시스템이기 때문인데, 이는 실제 시스템 구동

중에 오류가 발생할 경우 큰 사고로 직결될 수 있음을 의미한다. 더욱이, 사이버 물리

시스템이 가지는 실시간성, 분산성이 시스템의 복잡도를 높여 위험성을 증가시키므로

안전성을 높이는 일은 매우 중요하다.

시스템의 복잡도 문제를 해결하기 위해, PALSware라는 미들웨어가 고안되었다. 이

미들웨어는 비동기식으로 동작하는 네트워크와 운영체제 환경 위에서 가상의 동기식 환

경을 애플리케이션 층에 제공하는 역할을 한다. PALSware를 사용하면 시스템을 동기식

환경에서 디자인할 수 있게 되어, 시스템의 복잡도를 크게 낮추는 것이 가능해진다.

하지만, PALSware에 버그가 있을 경우 그 악영향이 매우 크게 나타날 수 있다. 우선

이 미들웨어를 사용하는 모든 애플리케이션 시스템에 버그가 존재하게 된다. 또한, 미들

웨어의 버그를 찾는 일은 일반 프로그램의 버그를 찾는 것보다 매우 어려운 문제가 될

수 있다.

이 문제를 해결하기 위해, 우리는 VeriPALS라는 프레임워크를 개발하였다. 이 프레

임워크는 수학적으로 엄밀하게 검증한 PALSware의 C 구현체를 포함하고 있어 안전한

시스템 구현을 돕는다. 또한, 애플리케이션 시스템을 Coq 위에서 수학적으로 엄밀히

검증할 수 있는 기능을 지원한다. 더 나아가서, 이 프레임워크는 실행 가능한 모델을

효율적인 랜덤 테스팅 툴로서 제공한다. 우리는 이 프레임워크 위에서 두 종류의 애플리

케이션 시스템을 개발하고 테스팅 및 엄밀 검증하여 이 프레임워크의 유용성을 보였다.

주요어: 정형 검증, 분산 시스템, 실시간 시스템, 동기식 시스템, 정리 증명

학번: 2013-23107
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