
Homework 4

SNU 4190.210 Fall 2012

Chung-Kil Hur

due: 10/26(Sun) 24:00

Exercise 1 “Huffman Code”

Let’s try to devise a way to encode sentences, where a sentence is a finite

sequence of words. For example, suppose we have four words: “I”, “me”, “you

and “know”. One can make many sentences using these words, such as “I know

you” and “you know I know you know me”.

We will represent such sentences using 0 and 1. First, we assign to each

word binary code consisting of 0 and 1. Then, a sentence is simply encoded as

the sequential composition of the code for each word in the sentence. There are

two ways to do this.

1. Fixed-length encoding: Since there are four words, each word can be en-

coded using two bits: 00 for “I”, 01 for “me”, 10 for “you” and 11 for

“know”. Then, “you know I know you know me” is encoded as 10110011101101,

which is 16 bit long. Decoding such code is easy: just decode each two

bits one by one.

2. Variable-length encoding: If we know the frequency of each word, we

can encode a sentence more efficiently by assigning short code for more

frequent words.

Suppose that “know” is the most frequent and “you” is the second. Then

we can encode “know” as 0, “you” as 10, “I” as 110 and “me” as 111. This

way, we can encode “you know I know you know me” as 1001100100111,

which is 13 bit long.

Decoding such code is also easy: just decode from left to right. For ex-

ample, in 1001100100111, the only first possible code is 10, which is for

1

“you”, and the ony second possible code is 0, which is for “know”, and so

on. We can easily see that 1001100100111 is uniquely decoded into “you

know I know you know me”.

Why is the decoding easy? The reason is because there is no word code that is

a prefix of another word code. The word codes 0, 10, 1110 and 111 satisfy this

property, which is called prefix-free. Such a variable-length encoding is used in

data compression software such as JPEG, MPEG and ZIP.

This assignment is to write a function vlencode that finds the optimal

prefix-free variable-length code. Given a list of pairs of a word and its frequency,

vlencode should return a list of pairs of a word and its code. A word is a string,

a frequency is an integer and code is a list of 0 and 1.

In 1951, David Huffman, as a graduate student at MIT, found an opti-

mal solution for the variable-length encoding problem as a term project in the

course “Information Theory”. With this result, he outperformed Prof. Robert

Fano, who taught the course and had worked on the same probelm with Claude

Shannon, the inventor of information theory.

You can also do it as Huffman did. The following hints might be enough.

Try to solve it by yourself before googling the solution.

• Use a binary tree to generate prefix-free code. Words are assigned to

leaves of a binary tree, and each branch in the tree determines 0 or 1.

Define and use the following functions to implement binary trees.

leaf : int × string → tree

node : int × tree × tree → tree

isleaf? : tree → bool

leafval : tree → int

leafstr : tree → string

nodeval : tree → int

leftsub : tree → tree

rightsub : tree → tree

• Build a binary tree, taking into account the frequency of each word. For

this, store the total frequency of words in a sub-tree in the root of the

sub-tree.

2

2

Exercise 2 “SKI combinator calculus“

SKI expressions E are inductively defined as follows:

E → S | K | I

| x variables

| (E E)

Examples are

K, (I x), (S ((K x) y)), (((S K) K) x).

The evaluation rules of SKI calculus is as follows.

(I E) → E

((K E) E′) → E

(((S E) E′) E′′) → ((E E′′) (E′ E′′))

For example, (((S K) I) x) evaluates as follows:

(((S K) I) x)→ ((K x) (I x))→ x

Define a function execute that takes an SKI expression and prints out a se-

quence of SKI expressions that occur during the evaluation.

execute : E→ void

Note that there are several possible evaluations of the same expression. For

example, ((K x) (I y)) can evaluate as follows:

((K x) (I x))→ x

Or,

((K x) (I x))→ ((K x) x)→ x.

In such a case, react is allowed to follow just one of the possible executions.

Implement functions with the following interface as a library for SKI cal-

3

culus, and use the library to define react.

S : E

K : E

I : E

v : string → E (* construct an SKI expression consisting of a variable *)

a : E× E→ E (* construct an SKI expression of the form (E1 E2) *)

isS? : E→ bool

isK? : E→ bool

isI? : E→ bool

isv? : E→ bool

isa? : E→ bool

var : E→ string (* When the argument is a variable, return its name *)

al : E→ E (* When the argument is (E1 E2), return E1 *)

ar : E→ E (* When the argument is (E1 E2), return E2 *)

pprint : E→ void (* pretty-print the given SKI expression *)

where pprint should print SKI expressions in the way that TA will tell you. 2

4

