
Homework 5

SNU 4910.210 Fall 2014

Chung-Kil Hur

due: 11/09 (Sun) 24:00

Exercise 1 “Tile Design”

We have the following interface for designing tiles. Implement each func-

tion.
black : tile

white : tile

glue : tile ∗ tile ∗ tile ∗ tile → tile

rotate : tile → tile

neighbor : location ∗ tile → int

pprint : tile → void

The informal specifications of the functions are as follows.

• black: a black basic tile of size 1× 1.

• white: a white basic tile of size 1× 1.

• glue: takes four tiles t1, t2, t3, t4 of size n × n and makes a tile of size

2n×2n containing t1, t2, t3, t4 in the NW, NE, SE, SW corner, respectively.

• rotate: takes a tile and rotate it 90 degrees clockwise.

• neighbor: takes a location l and a (possibly composite) tile t and returns

the number of black basic tiles around the basic tile located at l inside

the tile t. The location of a basic tile inside a composite tile is recursively

identified by a list of numbers in {0, 1, 2, 3}, where 0, 1, 2, 3 represent the

NW, NE, SE, SW corner, respectively. For example, the location ‘(3 3)

points to the basic block located at the far south west corner of a composite

1



block of size 4× 4. That is, a location inside a tile of size 2i × 2i always

has length i.

• pprint: pretty-prints the given tile on the screen.

For example, we can make a tile and print it on the screen as follows.

(define B black)

(define W white)

(define Basic (glue B B B W))

(define (turn pattern i)

(if (<= i 0) pattern else (turn (rotate pattern) (- i 1))))

(define Compound (glue Basic (turn Basic 1) (turn Basic 2) (turn Basic 3)))

There are several ways to implement the interface for tile design.

• You can represent a tile as a list of rows, which are in turn lists of basic

blocks. For example, the tile Basic above is represented as ((B B) (W

B)) and Compound as ((B B W B) (W B B B) (B B B W) (B W B B)).

• You can represent a tile as a tree where each internal node has four

branches and each leaf has a basic tile.

• etc.

Implement the interface for tile design using both representations.

For the list representation, write the following functions:

glue-array-from-tree : tile ∗ tile ∗ tile ∗ tile → tile

glue-array-from-array : tile ∗ tile ∗ tile ∗ tile → tile

rotate-array : tile → tile

neighbor-array : location ∗ tile → int

pprint-array : tile → void

is-array? : tile → bool

For the tree representation, write the following functions:

glue-tree-from-tree : tile ∗ tile ∗ tile ∗ tile → tile

glue-tree-from-array : tile ∗ tile ∗ tile ∗ tile → tile

rotate-tree : tile → tile

neighbor-tree : location ∗ tile → int

pprint-tree : tile → void

is-tree? : tile → bool

2



Write the conversion functions between the two representations:

array-to-tree : tile → tile

tree-to-array : tile → tile

When you implement the original external interface (two constants and four

functions), properly use the above internal functions for the two representations.

2

Exercise 2 “Beautiful Tiles”

Add the following two functions to the interface for tile design and imple-

ment them.
equal : tile ∗ tile → bool

size : tile → int

equal check whether two tiles are the same. size returns i, given a tile of size

2i × 2i. Note that equal may take two tiles with different representations.

Only using the extended interface for tile design, write the function beautiful

that checks whether a given tile is beautiful or not.

beautiful : tile → bool

A tile is beautiful if it is symmetric with respect to its center, or every basic tile

has at least two and at most five black neighbors. 2

Exercise 3 “Turing machine”

We implement the Turing machine. See the following wiki page for the

definition of Turing machine.

http://en.wikipedia.org/wiki/Turing machine

For this, implement and use the following interfaces.

• The interface for making and using tapes:

init-tape : symbol list → tape

read-tape : tape → symbol

write-tape : tape ∗ symbol → tape

move-tape-left : tape → tape

move-tape-right : tape → tape

print-tape : tape → void

3



symbol is the set of strings and “-”is considered as the blank symbol. In

order to move the head left or right, you should move the tape in the other

direction. print-tape prints the current symbol under the head.

• The interface for making and using execution rules:

empty-ruletable : ruletable

add-rule : rule ∗ ruletable → ruletable

make-rule : state ∗ symbol ∗ symbol ∗move ∗ state → rule

match-rule : state ∗ symbol ∗ ruletable → symbol ×move × state

state is the set of strings and move is ’left, ’right, or ’stay. make-rule

makes a rule consisting of the current state, the symbol under the head, the

symbol to write, the direction to move and the next state. match-rule

maps the current state and the symbol under the head, by looking up the

rule table, to the symbol to write, the direction to move and the next

state.

• The interface for making and using Turing machines:

make-tm : symbol list ∗ state ∗ ruletable → tm

step-tm : tm → tm

run-tm : tm → tm

print-tm : tm ∗ int → void

make-tm initialize the tape with the given list of symbols, locate the head

to point to the first symbol, set the current state to be the given state, and

equip the Turing machine with the given ruletable. step-tm executes the

given Turing machine one step and returns the resulting Turing machine.

run-tm executes the given Turing machine until it terminates and returns

the resulting Turing machine. Note that run-tm runs forever if the given

Turing machine does not terminate. print-tm takes a Turing machine M

and an integer n and prints out the 2n + 1 symbols around the current

head (i.e., the n symbols before the head, the symbol under the head, and

the n symbols after the head). When printing, use “.” as the delimiter

between tape symbols. 2

Challenge 1 “Where is she?”

When she goes to the department store, she turns off her mobile phone.

So, in order to find her easily, we are going to write a program that calculates

4



the probability for her location. The inputs are (i) a graph that models her

transitions between the shops and (ii) an integer for the time taken after she

went to the department store.

The nodes in a graph represent the shops and its edges show the probability

of her transitions between shops in every 10 minutes. Note that for each shop,

the summation of the probabilities of its out-going edges must be 1. We assume

that she randomly chooses the first shop to go (i.e., the probability of each shop

to be her first shop is the same).

For example, suppose the following graph models her transitions.

Then, the probabilities of her being in the shops A, B, C, and D after 10 minutes

are 15%, 25%, 7.5% and 52.5%, respectively. After 20 minutes, 4.5%, 15%,

7.5% and 73%, respectively.

Define the function catchYou that calculates such probabilities.

catchYou : graph ∗ int → (store × real)list

We assume that there are exactly five shops (A, B, C, D, E) in the department

store. The inputs are a graph for her transitions and an integer for how many

10 minutes she spent.

For example, the above graph is represented as follows:

(define model ’((A B 1.0) (B C 0.3) (B D 0.7) (C A 0.6) (C D 0.4) (D

D 1.0)))

The output is a list of pairs of a shop name and the probability of her being in

the shop. For instance,

(catchYou model 2)

outputs the following list:

((A . 4.5) (B . 15) (C . 7.5) (D . 73))

2

5


