
Homework 6

SNU 4910.210 Fall 2014

Chung-Kil Hur

due: 11/23(Sun) 24:00

Exercise 1 “The Number of Ways”
On the chessboard of size N ×N , a function ways that counts the number of

minimum-length ways from (0, 0) to (n,m) can be recursively defined as follows:

(define (ways n m)

(cond ((= n 0) 1)

((= m 0) 1)

(else (+ (ways (- n 1) m)

(ways n (- m 1))))))

However, this recursive function is very inefficient so that it cannot calculate
(ways 50 50) immediately. Consult with the Section 3.3.3 and Exercise 3.27 of
the textbook(SICP) in order to define memo-ways, which memorizes the results
and then uses it in later executions.

memo-ways : nat × nat → nat

2

Exercise 2 “Tournament Strings”
Usually, matches of a tournament is a complete binary tree. We defined the

teams of 2013 Woorld Cup and the tournament matches like this:

type team = Korea | France | Usa | Brazil | Japan | Nigeria | Cameroon

| Poland | Portugal | Italy | Germany | Norway | Sweden | England

| Argentina

type tourna = LEAF of team

| NODE of tourna * tourna

Write a function parenize that takes an input of tourna and then transform
it into a string:

parenize: tourna -> string

1

For example,

parenize(NODE(NODE(LEAF Korea, LEAF Portugal), LEAF Brazil))

= "((Korea Portugal) Brazil)"

2

Exercise 3 “Drop”
Now, write a function drop:

drop: tourna * team -> string

drop(t, Brazil) prints a new tournament matches after the Brazil team is
eliminated (lost) from the tournament. Use parenize in Exercise 2. 2

Exercise 4 “True or False”
We defined the formulas of Propositional logic as follows:

type formula = TRUE

| FALSE

| NOT of formula

| ANDALSO of formula * formula

| ORELSE of formula * formula

| IMPLY of formula * formula

| LESS of expr * expr

and expr = NUM of int

| PLUS of expr * expr

| MINUS of expr * expr

Define a function eval

eval: formula -> bool

which calculates the boolean result of the given input formula. 2

Exercise 5 (10pts) “Mathemadiga”
Let’s make a automatic-differentiation tool, like Maple or Mathematica.

diff: ae * string -> ae

diff takes an algebraic expression and a variable, and it returns the differenti-
ated expression with respect to the variable.

For example, the differentiation of ax2 + bx+ c with respect to x is 2ax+ b.
You have freedom to apply further operations such as simplifying the result.

The expression is given with a type ae:

type ae = CONST of int

| VAR of string

| POWER of string * int

| TIMES of ae list

| SUM of ae list

2

2

Exercise 6 “Crazy-k”
Numbers in base-k (k > 1) are usually represented as follows:

d0 · · · dn

where
∀di ∈ {0, · · · , k − 1}.

and “d0 · · · dn” denotes the integer

d0 × k0 + · · ·+ dn × kn .

Let us define “crazy-k” as follows by slightly extending “base-k”. Numbers
in crazy-k (k > 1) are represented as follows:

d0 · · · dn

where
∀di ∈ {1− k, · · · , 0, · · · , k − 1}.

and “d0 · · · dn” denotes the integer

d0 × k0 + · · ·+ dn × kn .

For example, consider crazy-2 with {−1, 0, 1} as digits. Suppose that 0, +
and - represent 0, 1 and −1 respectively. Then, +, +0+, +- and +-0- denote 1,
5, −1 and −9 respectively.

We defined a type crazy2 in OCaml as follows:

type crazy2 = NIL | ZERO of crazy2 | ONE of crazy2 | MONE of crazy2

For example, 0+-is represented as:

ZERO(ONE(MONE NIL))

Define a function crazy2val that takes a crazy2 value and then calculates
the corresponding integer value.

crazy2val: crazy2 -> int.

2

Exercise 7 “Addition in Crazy-2”
Define a function crazy2add that takes two numbers in crazy-2 and evaluates

to their sum in crazy-2.

crazy2add : Crazy-2 ∗ Crazy-2→ Crazy-2.

crazy2add should satisfy the following properties:

• For any z and z′ in crazy-2,

(crazy2val (crazy2add z z′)) = (crazy2val z) + (crazy2val z′).

3

• crazy2add should be defined recursively. Note that it is not allowed to
convert numbers in crazy-2 into integers, add them as integers, and revert
the sum back into crazy-2.

2

Challenge 2 “Pleasant Worry”
Younghee’s worry is to buy gifts for her nephews with the least cost while

satisfying all of them. Her nephews are so jealous. Every year, she gives a gift
to each of them, but they always compare the gifts with each other and then
become jealous, fighting, crying...

This year, Younghee decided to solve this problem like this way. Before
shopping, she gives the whole list of goods to the nephews, and let them tell the
condition in which they are satisfied.

The nephews’ conditions are like this: “I must have a fountain pen and, at
least all things that C receives” “I must have things that both A and B receive
in common, and all things that C receives without a CD.” and so on. These
are some examples of presents that the nephews will receive, according to their
conditions:

• Jealous nephews get nothing. A: “At least all things B gets ”, B: “At least
all things A gets ”, C: “At least all things B gets ”

• Picky nephews get nothing. A: “At least all things B gets, without foun-
tain pen”, B: “At least all things A gets, without CD ”, C: “At least all
things B gets, without USB memory stick”

• Greedy nephews get nothing. A: “At least all things B and C get”, B: “At
least all things A and C get ”, C: “At least all things A and B get ”

• Unselfish nephews get only things they want. A: “At least a fountain
pen”, B: “At least CD”, C: “At least USB memory stick.”

The conditions of nephews are expressed like this:

“I must have at least (cond1 and · · · and condk).”

Now write a function shoppingList that takes conditions of nephews as an
input, and then makes a list of gifts to buy.

shoppingList : (id × cond) list → (id × gift list) list

The result is a list of gifts for each nephew. For example, if the conditions are
like this,

A : at least ({1, 2} and common(B, C))

B : at least common(C, {2, 3})
C : at least ({1} and (A except {3}))

4

Since the minimal gifts are {1, 2} for A, {2} for B, and {1, 2} for C, the
result of shoppingList is:

((A . (1 2)) (B . (2)) (C . (1 2)))

There are no two identical gifts for one nephew.
For implementation, the functions that build/use the conditions are given

as follows.

• For building:

mustItems : giftlist → cond must have those gifts
mustBeTheSame : id → cond must have gifts that someone has
mustHaveExceptFor : cond ∗ giftlist → cond must satisfy condition without some gifts
mustHaveCommon : cond ∗ cond → cond must have common gifts in two conditions
mustAnd : cond ∗ cond → cond must satisfy both conditions

• For using:

isItems : cond → bool isSame : cond → bool
isExcept : cond → bool isCommon : cond → bool
isAnd : cond → bool whichItems : cond → giftlist
whoTheSame : cond → id condExcept : cond → cond
itemsExcept : cond → giftlist condCommon : cond → cond × cond
condAnd : cond → cond × cond

In the above, gift is implemented as integers, and a nephew’s name id as symbols
in Racket. For example, the condition of the nephew A in the above is like this:
(mustAnd (mustItems ’(1 2)) (mustHaveCommon (mustBeTheSame ’B) (mustBeTheSame

’C))) 2

5

