
Homework 8

SNU 4190.210 Fall 2014

Chung-Kil Hur

due: 12/10 (Wed) 24:00

Exercise 1 “Queue Module”

A queue is a list-like data structure where the first element added to the

queue will be the first one to be removed (first-in-first-out). A queue does not

need to be implemented using a single list. Using two lists, one can implement

a queue more efficiently as follows.

Suppose the queue Q contains [a1, · · · , am, b1, · · · , bn], where a1 is the tail

and bn is the head. This queue can be represented using two lists L and R:

L = [a1, · · · , am], R = [bn, · · · , b1].

Here, if one adds a new element x to the queue Q, then you get the following:

[x, a1, · · · , am], [bn, · · · , b1].

Instead, if one removes an element from the queue Q, then you get the following:

[a1, · · · , am], [bn−1, · · · , b1].

When an element is removed, you may need to reverse L and switch it with R.

The empty queue is represented as ([], []).

Consider the signature (or interface) Queue.

module type Queue =

sig

type element

type queue

exception EMPTY Q

1

val emptyq: queue

val enq: queue * element -> queue

val deq: queue -> element * queue

end

Using the idea given above, implement the following two queues:

• Module StringQ: Elements of the queue are strings.

• Module StringQQ: Elements of the queue are StringQ.queue.

Note that the queues can contain duplicated elements.

Give the signature Queue to the modules as follows:

module StringQ: Queue = struct ... end

module StringQQ: Queue = struct ... end

Since the signature Queue does not expose the definition of element, the

following code does not type check.

let csQ = StringQ.enq

(StringQ.enq

(StringQ.emptyq, "Bob"),

"Alice")

We can solve the problem by defining the module StringQ as follows:

module StringQ: Queue with type element = string

= struct ... end

module StringQQ: Queue with type element = StringQ.queue

= struct ... end

2

Exercise 2 “Set Queue”

Define modules StringSetQ and StringSetQQ by modifying the two mod-

ules StringQ and StringQQ in such a way that they do not allow duplicated

elements. More precisely, when an element is added to the queue, first check

whether the element is already contained in the queue and if so, do not add it.

module StringSetQ: Queue with type element = string

= struct ... end

module StringSetQQ: Queue with type element = StringSetQ.queue

= struct ... end

2

2

Exercise 3 “Queue Functor”

Define a functor QueueMake that takes a type for elements and generates a

queue module with elements of the given type (and with duplication of elements

allowed).

First, define an appropriate signature ArgTy for taking a type for elements

and define QueueMake as follows:

module QueueMake (Arg: ArgTy): Queue with type element = ...

= struct ... end

Then, make the two modules:

module StringQ = QueueMake(...)

module StringQQ = QueueMake(...)

The following code should work for StringQ:

let csQ = StringQ.enq

(StringQ.enq

(StringQ.emptyq, "Bob"),

"Alice")

2

Exercise 4 “Tile Design”

Remember the tile design module you wrote in Scheme for Exercise 1 of

Homework 5. Re-implement it in OCaml using OCaml’s module system as fol-

lows. More specifically, fill “...” with appropriate code in the following mod-

ule definitions.

type design = TURTLE | WAVE | DRAGON (* three design patterns *)

type orientation = NW | NE | SE | SW

type box = BOX of orientation * design | GLUED of box * box * box * box

module type FRAME =

sig

val box: box

val rotate: box -> box (* rotate box M to 3 to W to E *)

val pp: box -> int * int -> unit (* pretty printer *)

val size: int

end

module BasicFrame (Design: sig val design: design end): FRAME =

struct

3

exception NON BASIC BOX

let box = BOX (NW, Design.design) (* a box is defined *)

let rotate = ...

let pp b center = match b with

BOX(NW,x) -> () (* dummy, fill it if you want *)

| BOX(NE,x) -> () (* dummy, fill it if you want *)

| BOX(SE,x) -> () (* dummy, fill it if you want *)

| BOX(SW,x) -> () (* dummy, fill it if you want *)

| -> raise NON BASIC BOX

let size = 1

end

module Rotate (Box: FRAME): FRAME =

struct

...

end

module Glue (Nw: FRAME) (Ne: FRAME) (Se: FRAME) (Sw: FRAME): FRAME =

struct

exception DIFFERENT SIZED BOXES

...

end

Now test the following code using the above modules:

module A = BasicFrame(struct let design = TURTLE end)

module B = BasicFrame(struct let design = WAVE end)

module A’ = Rotate(A)

module A’’ = Rotate(A’)

module B’ = Rotate(B)

module B’’ = Rotate(B’)

module A4 = Glue (A) (B) (A’) (B’)

module B4 = Glue (A) (A’) (B) (B’)

module A4’ = Rotate(A4)

module B4’ = Rotate(B4)

module C = Glue (A4) (B4) (A4’) (B4’)

let bluePrint = C.pp C.box

2

4

