
Project Problems

SNU 4910.210, Fall 2014

Chung-Kil Hur

due: 12/21(Sun), 24:00

Problem 1 (10%) “Dust Storm”
The number of Mars exploration robots are more than one hundred now in

A.D. 2032, and the number is still growing fast in order to gather rare metals
found at the planet.

A satellite is revolving around Mars so that it exchanges signals with the
robots which are carrying out their missions on the surface of Mars.

One of the tasks of this satellite is that, when a dust storm at the surface
of Mars is expected, it should evacuate all robots to the shelters. The satellite
should assign one particular shelter to each robot by transmitting signals to the
robot.

One shelter can accommodate only one robot at a time. After a robot re-
ceives the signal, it immediately moves to the assigned shelter along the shortest
(linear) path with its maximum speed.

A problem is, there is a risk of collisions between robots during the evac-
uation process. The satellite should assign the shelters to the robots without

1



that risk. Write a program shelterAssign which does this job, according to
the module type below.

module type DUSTSTORM =

sig

type robot = string (* robot’s name *)

type shelter = int (* shelta’s id number *)

type location = int * int (* coordinate *)

type robot_locs = (robot * location) list

type shelter_locs = (shelter * location) list

val shelterAssigcommentatedn: robot_locs -> shelter_locs -> (robot * shelter) list

end

Assume the surface of Mars is a 2-dimensional plane (no donut-shaped or
spheral.) The top-left corner is (0,0) and the bottom-right is (100,100) in the
coordinate.

Also, write a comment in the program that explains why this program always
calculates a right answer within finite time.

• “Right answer”: There should be no possibility that any robots collide
with others during evacuation.

• “Within finite time”: The program always halts with an answer.

• A hint: First, make pairs of robots and shelters in random, and repeat
the following: find pairs which are possible to collide and then do · · · .

2

2



Problem 2 (10%) “Conjecture of Ranking”
Google’s PageRank technology speculates the rank of “importance” of all

web pages in the world. The Google search engine first picks web pages con-
taining the phrase that user entered, and then uses this PageRank in order to
show the pages to user in the order of the “importance” ranking, hoping that
the ranking matches well with the user’s want.

So, how can we calculate this “importance”? The idea of the founders of
Google, Page and Brin, is like this:

• Assumption: Pages that people visit frequently are “important” pages.

• Then, how can we find out the frequencies of visits?

• Idea: Let’s simulate people’s behavior while surfing the Internet. People
start from one certain page and then move along the links on the page to
visit another page. Often they type a URL directly in order to move to
a new page, and then start surfing again. If we simulate this behavior to
calculate the relative ratio of visits among the web pages, then maybe the
ratio represents the “importance” of each page.

• If we assume that, how can we simulate the behavior?

• Answer: We can simulate it by constructing a Markov chain model.

Example 1 One example of Markov chain modelling
Every year, the movement of populations between Seoul and Sejong follows

this: 5% of Seoul’s people move to Sejong, and 15% of Sejong’s people move to
Seoul. The population of Seoul Sn and that of Sejong Jn satisfy the following
relation.

Sn = 0.95× Sn−1 + 0.15× Jn−1
Jn = 0.05× Sn−1 + 0.85× Jn−1

3



in other words, (
Sn

Jn

)
=

(
0.95 0.15
0.05 0.85

)(
Sn−1
Jn−1

)
Let S0 and J0 be the populations of the two cities at the beginning. Then

we can obtain the final populations of them by calculating the equations above
– or the ‘recurrence formulas’ – over and over.

Like the matrix above, we call a matrix a ‘Markov matrix’ if the sum of
elements in each column is exactly 1. We call the sequence of values (such as
(Sn, Jn) for all n) produced by the recurrence formulas of it a Markov chain.

2

Back to the PageRank problem, we can model the ratio of visits for each
page like this Markov chain:

• Suppose that there are only 3 web pages A, B, and C. Each page has
some links that point to other pages. Assume that the ratio that A is
visited is proportional to the number of links from A, B, and C to A. For
example, if B has 3 links and one of them points to A, then a person who
is currently in B will visit A at the next time with the probability of 1/3.
For example: (there are 2 links in A, 3 links in B, and 1 link in A.)

An = 1
2 ×An−1 + 1

3 ×Bn−1 + 0
1 × Cn−1

Bn = 1
2 ×An−1 + 1

3 ×Bn−1 + 1
1 × Cn−1

Cn = 0
2 ×An−1 + 1

3 ×Bn−1 + 0
1 × Cn−1

In other words, An

Bn

Cn

 =

1/2 1/3 0
1/2 1/3 1
0 1/3 0

An−1
Bn−1
Cn−1


• Generally, for N pages the N ×N Markov matrix M is like this.

– xij ∈ M: If page i has a link to page j then 1/ri (ri = the number
of links in page i) otherwise 0.

– Then, the change of ratio of pages along the time is expressed with
this recurrence formulas:

Sn =MSn−1

– Goal: We want to calculate the eventual ratio, in other words, we
want to calculate the limit of S.

S = lim
i→∞

Si

We can let the first vector S0 have 1/N for each element. (i.e. We
suppose that the probability of each page to be the start page is
uniform.)

4



– Problem: does the limit of the Markov chain exist uniquely? And
does the program that calculates the limit by repeatedly solving the
recurrence formulas always halt within finite time?

– hint: Perron-Frobenius Theorem

Find the answer for the questions above, and write a function markov_limit

that converts the input matrix into a Markov matrix with the unique limit. It
should satisfy the module type below. (The functions row, column, add_row,
add_column, size, ij are the functions for constructing/using matrices.)

module type MARKOV =

sig

type matrix

val row: float list -> matrix

val column: float list -> matrix

val add_row: float list -> matrix -> matrix

val add_column: float list -> matrix -> matrix

val size: matrix -> int * int (* numbers of columns and rows *)

val ij: matrix -> int -> int -> float

(*

Given a Markov matrix and an initial column,

markov_limit returns the limit of the Markov chain.

*)

val markov_limit: matrix -> matrix -> matrix

end

2

5



Problem 3 (10%) “Transformers”
Let’s create a “Transformer” that transforms objects in one world into ob-

jects in another world. The objects in our transformation are programs which
handle integers.

• The objects that we are going to transform are integer expressions which
are constructed according to these rules:

E → n integer
| E+E addition expression
| -E sign-change expression
| read input to be read from outside
| if E E E conditional expression
| repeat E E repeated expression

The input expression read is an integer which is entered from outside.
The range of input is from -100 to 100. The result of the conditional
expression

if E1 E2 E3

is determined according to the value of E1: if E1’s value is not 0 then
the result becomes the value of E2, and otherwise, the result becomes the
value of E3. The value of the repeated expression

repeat E1 E2

is defined only when the value of E1 is non-negative, and then the result
value is by adding the value of E2 in E1 times. In other words, it is
(E1’s value) × (E2’s value). Therefore, when the value of E1 is 0, the
result is 0.

6



• The resulting objects from the transformation are imperative programs
constructed by these rules:

C → x has n variable x has integer n
| x has x variable has value of another variable
| x has x+x variable has the result of addition of two variables
| x has x-x has result of subtraction of two variables
| x has read has integer from input
| say x print value of variable
| goto ` on x jump according to value of variable
| `: C tagged command
| C ; C commands executed sequencially

As you see, variables play a crucial role in these programs. All values are
always stored in variables, and all calculations are executed with variables.
Before using variables, they should contain values.

The command
x has read

gets the input from outside and store it at x. As we saw earlier, the value
of the input is between -100 and 100. The command

goto ` on x

terminates without any operation when the value of x is 0, and otherwise
it jumps to the command to which the tag ` is attached.

For example, the following program prints 1:

x has 1 ;

y has 2 ;

x has x+y ;

goto L on x ;

x has 0 ;

L: z has x-y ;

say z

The following program cannot be executed because the variable z is used
while it has no value.

x has 1 ;

y has x+x ;

z has y+z ;

say z

• The transformer outputs an imperative program that does the same thing
with the input integer expression. The output program should print the
same value with the value that the input expression is evaluated to.

7



• Check before transformation: there exist some “meaningless” expressions
that the transformer should reject before transformation. There is only
one case for the “meaningless” programs, which happens when the re-
peated expression

repeat E1 E2

has a negative value of E1. In this case the calculation is not defined.

The transformer should check whether the input expression contains this
meaningless repeated expression. Before transformation, it should predict
the value of E1 in order to check whether it is negative.

• Check after transformation: you should check whether the resulting pro-
gram C works correctly.

In fact, you should check whether the input and output programs do the
same thing, but here we are going to check these two conditions:

– All values should contain values before use.

– The jump statements should have well-defined target commands,
which means, for each jump statement there should be only one com-
mand which has the corresponding tag.

The transformer transform and the checkers, check_exp and check_cmd, should
satisfy the following module type:

module type TRANS =

sig

type exp = Num of int

| Add of exp * exp

| Minus of exp

| Read

| If of exp * exp * exp

| Repeat of exp * exp

type var = string

type tag = string

type cmd = HasNum of var * int

| HasVar of var * var

| HasSum of var * var * var

| HasSub of var * var * var

| HasRead of var

| Say of var

| Goto of tag * var

| Tag of tag * cmd

| Seq of cmd * cmd

val transform: exp -> cmd

val check_exp: exp -> bool

val check_cmd: cmd -> bool

end

2

8


