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Abstract

Global sparse analysis framework aims to design precise, sound, yet scalable static
analyzers systematically. The framework breaks the tradeoff between general-purpose but
coarse-grained sparse analyses and fine-grained but limited-purpose sparse analyses by
providing a general-purpose fine-grained sparse analysis framework. However, the formal
aspect of the framework has not been presented rigorously. In this paper, we rigorously
prove the framework correct and formally present a fixpoint computation strategy for
realistic sparse analyzers.

1 Introduction

Global sparse analysis framework, introduced by Oh et al. [14], aims to design “precise, sound,
yet scalable” static analyzers systematically. The framework achieves this goal by optimizing
abstract interpretation-based static analyzer [6, 3]. The essence of the optimization is qualifying
abstract locations whose abstract values should be calculated for each iteration of the worklist
algorithm in the course of the fixpoint computation.

Previous sparse analysis techniques [15, 19, 8, 2, 17, 7, 11, 9, 10] achieved the same goal, but
in a limited manner. Their techniques are tightly coupled with particular analyses and cannot
be applied to abstract interpretation-based static analyzers in general. Global sparse analysis
framework addresses this by requiring only small amounts of prerequisites for baseline analyzers
to satisfy.

Oh et al. [14] presented the global sparse analysis framework for C-like languages, but the
proof was omitted. In the preparation of the journal version, they generalized their framework
so that it is not only for C-like languages but also for functional or object-oriented languages,
and handles arbitrary trace partitioning.

This paper focuses on the formal aspect of global sparse analysis framework. We rigorously
prove the framework correct and formally present a fixpoint computation strategy for realistic
sparse analyzers.

This paper is organized as follows. Section 2 presents the baseline analysis based on the
abstract interpretation framework and the prerequisites for it. Section 3 formally presents the
sparse version of the baseline analysis. Section 4 proves it correct. Section 5 formally presents
a fixpoint computation strategy for realistic sparse analyzers. Section 6 concludes.

1.1 Notations

By ℘(A) is meant the powerset of a set A. By A+ is meant the set of all finite sequences in
A; A∗, the set of all (possibly infinite) sequences in A. For a ∈ A, we abuse a to mean a as an
element and at the same time, the one-element sequence whose the only element is a. For a
finite sequence s and a sequences s′ in A, by s ⋅ s′ is meant the juxtaposition of s and s′. By
A→ B is meant the set of functions from A to B.
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2 Baseline Analysis

In this section, we formally present the baseline analysis based on the abstract interpretation
framework. In the course of the presentation, we formally provide the prerequisites for the
baseline analysis for transforming it into its sparse version.

Collecting Semantics To remain as general as possible, we do not specify the target lan-
guage and its semantics. Instead, a program is specified by a transition system (S,→, ι). By S
is meant the set of all program states; → ⊆ S × S, the transition relation; ι ∈ S, the initial state.
A sequence σ ∈ S∗ of states is a trace if the first element is the initial state and all adjacent
elements are related as follows:

σ0 = ι and [σi → σi+1 for all i].

We abuse σ → σ′ to mean there exists s ∈ S such that σ′ = σ ⋅ s. The collecting semantics
JP K ∈ ℘(S+) of a program P is defined by the set of traces, i.e.

JP K = {σ ∈ S+ ∣ σ is a trace}.

We define the semantic function F ∶ ℘(S+) → ℘(S+) by

F (φ) = {ι} ∪ {σ′ ∈ S+ ∣ there exists σ ∈ φ such that σ → σ′}.

Then we have
JP K = lfp F.

Trace Partitioning By trace partitioning [12, 16] is meant the set ∆ of partitioning indices
and the partition p ∶ ∆→ ℘(S+) such that

1. participants are mutually disjoint, i.e. p(i) ∩ p(j) = ∅ for all i ≠ j and

2. the union of the participants is the set of all program states, i.e. ⋃i∈∆ p(i) = ℘(S+).

A trace partitioning induces a Galois connection

℘(S) −−−−−→←−−−−−
αp

γp
∆→ ℘(S)

defined by
αp ∶ S ↦ [i↦ S ∩ p(i)]

and
γp ∶ f ↦ ⋃

i∈∆
f(i).

In fact, it is a Galois insertion and does not lose information. To see this, we define the semantic
function Fp ∶ (∆→ ℘(S+)) → (∆→ ℘(S+)) by

Fp(φ)(i) = αp({ι})(i) ∪ fi( ⋃
i⇒φi′

φ(i′)),

where (⇒φ) ∈ ∆ ×∆ is the partitioning transition relation defined by

(⇒φ) = {(i, i′) ∈ ∆ ×∆ ∣ there exists σ,σ′ such that σ ∈ φ(i), σ → σ′, and σ′ ∈ p(i′)},

and fi ∶ ℘(S+) → ℘(S+) is the semantic function defined by

fi(Σ) = {σ′ ∈ p(i) ∣ there exists σ ∈ Σ such that σ → σ′}.

Then we have
lfp F = γp(lfp Fp).
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State Abstraction Suppose a Galois connection for program states is provided as follows:

℘(S) −−−−→←−−−−
αS

γS
Ŝ.

Then we have a Galois connection

∆→ ℘(S) −−−−−→←−−−−−
αS

γS
∆→ Ŝ

by the component-wise construction.
Suppose there exists an abstract transfer function f̂i ∶ Ŝ → Ŝ which soundly abstracts the

transfer function fi as follows:
αS ○ fi ⊑ f̂i ○ αS

and an abstract transition relation (↪φ̂) ∈ ∆×∆ which soundly abstracts the transition relation

(⇒) as follows:
(↪φ̂) ⊇ (⇒γS(φ̂)).

Then we have
lfp Fp ⊑ γS(lfp F̂ )

if we define the abstract semantic function F̂ ∶ (∆→ Ŝ) → (∆→ Ŝ) by

F̂ (φ̂)(i′) = (αS ○ αp)({ι})(i) ⊔ f̂i′( ⊔
i↪φ̂i′

φ̂(i)).

Let α = αS ○ αp and γ = γp ○ γS . Then

℘(S+) −−−−→←−−−−α
γ

∆→ Ŝ

is a Galois connection and
lfp F ⊑ γ(lfp F̂ ).

Prerequisite 1. We additionally qualify the baseline analysis to make a sparse version of it
as follows:

1. Ŝ = L̂ → V̂ for a finite set L̂ of abstract locations and (possibly infinite) set V̂ of abstract
values,

2. the abstract transfer function is monotone, i.e. for all ŝ, ŝ′ ∈ Ŝ, if ŝ ⊑ ŝ′ then f̂i(ŝ) ⊑ f̂i(ŝ′),

3. the abstract transition relation is monotone, i.e. for all φ̂, φ̂′ ∈ ∆ → Ŝ, if φ̂ ⊑ φ̂′ then
(↪φ̂) ⊆ (↪φ̂′), and

4. the abstract transition relation is component-wisely independent, i.e. for all φ̂, φ̂′ ∈ ∆→ Ŝ,
i, i′ ∈ ∆, if φ̂(i) = φ̂′(i) then [i↪φ̂ i

′⇔ i↪φ̂′ i
′].

All non-relational abstract domains [6] and packed relational abstract domains [4, 13, 18, 1]
such as octagon domains [13] and polyhedral domains [5] satisfy Prerequisite 1. In this respect,
the global sparse analysis framework is sufficiently general.

The biggest difference from C-like languages to functional languages or object-oriented lan-
guages being the mutual dependency between data and control, the global sparse analysis
framework can be applied not only to C-like languages but also to a broader class of languages.
The dependency of control to data is addressed by the abstract transition relation (↪φ̂). It

depends on the data φ̂.
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3 Global Sparse Analysis

We present a globally sparse version of a baseline analysis as presented by Oh et al. [14].
By “sparse” is meant qualifying updates of abstract values at abstract locations for each

iteration of the worklist algorithm in the course of the fixpoint computation, while preserving
the analysis result. As an example of the qualification, consider the program

10○x ∶= 1; 11○y ∶= 2; 12○z ∶= x;

Consider the entry for the variable x at 11○, say ( 11○, x), in the fixpoint table. Semantically, if
no control flows into 11○ elsewhere, ( 11○, x) always equals to ( 10○, x) in the analysis result. Thus
we may remove ( 11○, x) from the table and recover it from ( 10○, x). However, if this is the case,
we have to redirect the dependency to ( 10○, x) because ( 12○, z) depended on the removed entry
( 11○, x).

More complex situations than simple assignments, such as pointer dereferences, pointer
assignment, or non-linear control flow, make it difficult to correctly qualify updates of abstract
values at abstract locations. In this respect, the technique presented by Oh et al. [14] covered
a broader range of language constructs than previous ones [15, 19, 8, 2, 17, 7, 11, 9, 10].

Their technique is advantageous because it relies not on syntactic properties but on semantic
properties.

Design 2. We design a sparse analysis as follows:

1. Let S = lfp F̂ .

2. Fix the definition locations D̂ ∶ ∆→ L̂ which includes all the abstract locations which can
be actually defined in the course of the fixpoint computation, i.e. for all i′ ∈ ∆,

D̂(i′) ⊇D(i′)

where

D(i′) ≜ {l̂ ∈ L̂ ∣ there exists ŝ ⊑ ⊔
i↪Si′

S(i) such that α({ι})(l̂) ⊔ ŝ(l̂) ≠ ŝ(l̂)}.

3. Fix the use locations Û ∶ ∆ → L̂ which includes all the abstract locations which is actu-
ally used to generate the abstract values at definition locations (data) and the abstract
transition relation (control), i.e. for all i′ ∈ ∆,

Û(i′) ⊇ Ud(i′) ∪Uc(i′)

where

Ud(i′) ≜ {l̂ ∈ L̂ ∣ there exists ŝ ⊑ ⊔
i↪Si′

S(i) such that f̂i′(ŝ)∣D̂(i′) ≠ f̂i′(ŝ ∖ l̂)∣D̂(i′)}

and
Uc(i′) ≜ {l̂ ∈ L̂ ∣ there exists ŝ ⊑ ⊔

i↪Si′
S(i) such that (↪ŝ) ≠ (↪ŝ∖l̂)}.

4. Define the data dependency i
l̂↝φ̂ i

′ based on definition locations and use locations. In-

tuitively, it means the abstract value at the abstract location l̂ flows from i to i′ on the
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abstract transition relation of φ̂. By “flows” is meant l̂ may be defined at i, and must not
be defined until the control reaches to i′ for use, i.e. the data dependency is defined by

i
l̂∼S i′′

△⇔ there exists i0,⋯, in ∈ ∆ such that i = i0, i′′ = in, i0 ↪S i1 ↪S ⋯ ↪S in,

l̂ ∈ D̂(i0), and for all k ∈ (0, n), l̂ ∉ D̂(ik) and

i
l̂↝S i′′

△⇔ i
l̂∼S i′′ and l̂ ∈ Û(in).

5. Define the sparse abstract semantic function F̂s ∶ (∆ → Ŝ) → (∆ → Ŝ) so as to consider
the data dependency rather than the abstract transition relation, i.e.

F̂s(φ̂)(i′) = α({ι})(i) ⊔ f̂i′( ⊔
i
l̂↝φ̂i′

φ̂(i)∣l̂).

Prerequisite 3. These are required for the use locations to be valid.

1. The abstract transfer function should depend only on the use locations, i.e. for all i ∈ ∆
and ŝ ∈ Ŝ,

α({ι})(i) ⊔ f̂i(ŝ)∣D̂(i) = α({ι})(i) ⊔ f̂(ŝ∣Ud(i))∣D̂(i).

2. The abstract transition relation should depend only on the use locations, i.e. for all i ∈ ∆
and ŝ ∈ Ŝ,

(↪S) = (↪S[i↦S(i)∣Uc(i)]).

The correctness theorem means the original analysis result lfp F̂ can be recovered easily
from the sparse analysis result lfp F̂s.

Theorem 4 (Correctness). Let i ∈ ∆ and l̂ ∈ L̂. If l̂ ∈ D̂(i) then

(lfp F̂ )(i)(l̂) = (lfp F̂s)(i)(l̂).

Otherwise,
(lfp F̂ )(i)(l̂) = ⊔

i′ l̂∼Si

S(i′)(l̂)

where
S = lfp F̂s.

4 Correctness Proof

The correctness theorem essentially relates lfp F̂ and lfp F̂s. There are two main differences
between F̂ and F̂s. First, F̂s updates not through the abstract transition relation but through
the data dependency. Second, F̂s updates abstract values only for qualified abstract locations.
To prove the correctness, we introduce the helper abstract semantic function F̂h as an interme-
diate step which updates through the data dependency but does not qualify abstract locations.
Formally, we define F̂h ∶ (∆→ Ŝ) → (∆→ Ŝ) by

F̂h(φ̂)(i′) = α({ι})(i) ⊔ f̂i′( ⊔
i
l̂∼φ̂i′

φ̂(i)∣l̂).

Since helper abstract semantic function F̂s qualifies abstract locations, lfp F̂s does not equal
to lfp F̂ in general. To address their relevance, we define the equivalence of tables based on the
equality of qualified abstract locations.
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Definition 5. Let S,S ′ ∶ ∆→ Ŝ. We define the equivalence S ≡ S ′ by

• for all l̂ ∈ D̂(i), S(i)(l̂) = S ′(i)(l̂) and

• (↪S) = (↪S′).

We present the overview of the correctness proof before the details.

Proof of Theorem 4. We have

lfp F̂ = lfp F̂h (by Lemma 6 and 7)
= F̂h(lfp F̂s). (by Lemma 11)

We prove by a case analysis on l̂ ∈ D̂(i).

• Suppose l̂ ∈ D̂(i). By Definition 5, it is sufficient to prove that

F̂h(lfp F̂s) ≡ F̂s(lfp F̂s) (by Lemma 8, 10, and 6)
= lfp F̂s.

• Suppose l̂ ∉ D̂(i). We have

(F̂h(lfp F̂s))(i)(l̂) = α({ι})(i)(l̂) ⊔ f̂i( ⊔
i′ l̂
′
∼Si

S(i′)∣l̂′)(l̂) (by definition)

= ( ⊔
i′ l̂
′
∼Si

S(i′)∣l̂′)(l̂) (since l̂ ∉ D̂(i))

= ⊔
i′ l̂∼Si

S(i′)(l̂)

where
S = lfp F̂s.

Now details. The following lemmas collectively prove lfp F̂ = lfp F̂h.

Lemma 6. lfp F̂h ⊑ lfp F̂ .

Proof. Let S = lfp F̂ . Sufficient to prove F̂h(S) ⊑ S.

F̂h(S)(i) = α({ι})(i) ⊔ f̂i( ⊔
i′ l̂∼Si

S(i′)∣l̂) (by definition)

⊑ α({ι})(i) ⊔ f̂i( ⊔
i′↪Si

S(i′)) (since f̂i is monotone and ⊔
i′ l̂∼Si

S(i′)∣l̂ ⊑ ⊔
i′↪Si

S(i′))

= F̂ (S)(i) (by definition)
= S(i). (since S = lfp F̂ )

To see

⊔
i′ l̂∼Si

S(i′)∣l̂ ⊑ ⊔
i′↪Si

S(i′),
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it is sufficient to prove that for all i′′
l̂∼S i,

S(i′′)∣l̂ ⊑ ⊔
i′↪Si

S(i′).

Suppose i′′
l̂∼S i. By definition, there exists i0,⋯, in ∈ ∆ such that i′′ = i0, i = in, i0 ↪S i1 ↪S

⋯ ↪S in, l̂ ∈ D̂(i0), and for all k ∈ (0, n), l̂ ∉ D̂(ik). For all k ∈ (0, n),

S(ik)(l̂) = α({ι}) ∪ f̂ik( ⊔
i′↪Sik

S(i′))(l̂) (by definition)

= ( ⊔
i′↪Sik

S(i′))(l̂) (since l̂ ∉ D̂(ik))

⊒ S(ik−1)(l̂).

Hence

S(i′′)∣l̂ = S(i0)∣l̂
⊑ S(i1)∣l̂
⊑ ⋯
⊑ S(in−1)∣l̂
⊑ ⊔
i′↪Si

S(i′).

Lemma 7. lfp F̂ ⊑ lfp F̂h.

Proof. Let S = lfp F̂h. Sufficient to prove F̂ (S) ⊑ S.

F̂ (S)(i) = α({ι})(i) ⊔ f̂i( ⊔
i′↪Si

S(i′)) (by definition)

⊑ α({ι})(i) ⊔ f̂i( ⊔
i′ l̂∼Si

S(i′)∣l̂) (f̂i is monotone and ⊔
i′↪Si

S(i′) ⊑ ⊔
i′ l̂∼Si

S(i′)∣l̂)

= F̂h(S)(i) (by definition)
= S(i). (since S = lfp F̂h)

To see

⊔
i′↪Si

S(i′) ⊑ ⊔
i′ l̂∼Si

S(i′)∣l̂,

it is sufficient to prove that for all i′ ↪S i,

S(i′) ⊑ ⊔
i′′ l̂∼Si

S(i′′)∣l̂.

We prove by a case analysis on l̂ ∈ D̂(i′).

• Suppose l̂ ∈ D̂(i′). We have i′
l̂∼S i. Hence

S(i′)(l̂) ⊑ ⊔
i′′ l̂∼Si

S(i′′)(l̂).
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• Suppose l̂ ∉ D̂(i′).

S(i′)(l̂) = F̂h(S)(i′)(l̂) (since S = lfp F̂h)

= α({ι})(i′) ⊔ f̂i′( ⊔
i′′ l̂∼Si′

S(i′′)∣l̂))(l̂) (by definition)

= ( ⊔
i′′ l̂∼Si′

S(i′′)∣l̂)(l̂) (l̂ ∉D(i′) and Lemma 6)

= ( ⊔
i′′ l̂∼Si′

S(i′′)(l̂))

⊑ ( ⊔
i′′ l̂∼Si

S(i′′)(l̂)). (i′′ l̂∼S i′, i′ ↪S i, and l̂ ∉D(i′) implies i′′
l̂∼S i)

Abstract semantic functions are related as follows:

Lemma 8. If φ̂ ≡ φ̂′ and φ̂, φ̂′ ⊑ lfp F̂ then F̂h(φ̂) ≡ F̂s(φ̂′).

Proof. We prove the two conditions of Definition 5.

1. for all l̂ ∈ D̂(i), F̂h(φ̂)(i)(l̂) = F̂s(φ̂′)(i)(l̂):

F̂h(φ̂)(i)(l̂) = α({ι})(i)(l̂) ⊔ f̂i( ⊔
i′ l̂
′
∼φ̂i

φ̂(i′)∣l̂′)(l̂) (by definition)

= α({ι})(i)(l̂) ⊔ f̂i( ⊔
i′ l̂
′
∼φ̂′ i

φ̂′(i′)∣l̂′)(l̂) (since φ̂ ≡ φ̂′)

= α({ι})(i)(l̂) ⊔ f̂i( ⊔
i′ l̂
′
∼φ̂′ i

φ̂′(i′)∣l̂′∩Û(i))(l̂) (since l̂ ∈ D̂(i) and φ̂′ ⊑ lfp F̂ )

= α({ι})(i)(l̂) ⊔ f̂i( ⊔
i′
l̂′↝φ̂′ i

φ̂′(i′)∣l̂′)(l̂) (by definitions of ∼ and ↝)

= F̂s(φ̂′)(i)(l̂). (by definition)

Here we deduce

α({ι})(i)(l̂) ⊔ f̂i( ⊔
i′ l̂
′
∼φ̂′ i

φ̂′(i′)∣l̂′)(l̂)

= α({ι})(i)(l̂) ⊔ f̂i(( ⊔
i′ l̂
′
∼φ̂′ i

φ̂′(i′)∣{l̂′})∣Û(i))(l̂) (by Prerequisite 3 (1))

= α({ι})(i)(l̂) ⊔ f̂i( ⊔
i′ l̂
′
∼φ̂′ i

φ̂′(i′)∣{l̂′}∩U(i))(l̂).

2. (↪F̂h(φ̂)) = (↪F̂s(φ̂′)): by Prerequisite 1 (4) and 3 (2), it is sufficient to prove for all i ∈ ∆,

F̂h(φ̂)(i)∣Uc(i) = F̂s(φ̂
′)(i)∣Uc(i).

Let l̂ ∈ Uc(i). We prove by a case analysis on l̂ ∈ D̂(i).
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• Suppose l̂ ∈ D̂(i). By (1), F̂h(φ̂)(i)(l̂) = F̂s(φ̂′)(i)(l̂).

• Suppose l̂ ∉ D̂(i). We have

F̂ (φ̂)(i)(l̂) = α({ι}) ⊔ f̂i( ⊔
i′ l̂
′
∼φ̂i

φ̂(i′)∣l̂′)(l̂) (by definition)

= ( ⊔
i′ l̂
′
∼φ̂i

φ̂(i′)∣l̂′)(l̂) (since l̂ ∉ D̂(i) and φ̂ ⊑ lfp F̂ )

= ⊔
i′ l̂∼φ̂i

φ̂(i′)(l̂)

= ⊔
i′ l̂∼φ̂′ i

φ̂′(i′)(l̂) (since l̂ ∈ D̂(i′) and φ̂ ≡ φ̂′)

= ⊔
i′
l̂↝φ̂i

φ̂′(i′)(l̂) (since l̂ ∈ Uc(i) ⊆ Û(i))

= α({ι}) ⊔ f̂i( ⊔
i′
l̂′↝φ̂′ i

φ̂′(i′)∣l̂′)(l̂) (since l̂ ∉ D̂(i) and φ̂′ ⊑ lfp F̂ )

= F̂s(φ̂′)(i)(l̂). (by definition)

Lemma 9. If φ̂ ≡ φ̂′ then F̂h(φ̂) = F̂h(φ̂′).

Proof. For all ı ∈ ∆ and l̂ ∈ L̂,

F̂h(φ̂)(i) = α({ι}) ⊔ f̂i( ⊔
i′ l̂∼φ̂i

φ̂(i′)∣l̂) (by definition)

= α({ι}) ⊔ f̂i( ⊔
i′ l̂∼φ̂′ i

φ̂′(i′)∣l̂) (since φ̂ ≡ φ̂′)

= F̂h(φ̂′)(i). (by definition)

Helper abstract semantic function F̂h is greater than or equal to sparse abstract semantic
function F̂s.

Lemma 10. lfp F̂s ⊑ lfp F̂h.

Proof. Immediate from (↝φ̂) ⊆ (∼φ̂).

Lemma 11. F̂h(lfp F̂s) = lfp F̂s.

Proof. We prove F̂h(lfp F̂s) ⊑ lfp F̂s and lfp F̂s ⊑ F̂h(lfp F̂s).

• F̂h(lfp F̂s) ⊑ lfp F̂s: by Lemma 10, lfp F̂s ⊑ lfp F̂h. By applying a monotone function F̂h,
we are done.
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• lfp F̂s ⊑ F̂h(lfp F̂s): it is sufficient to prove that

F̂ 2
h(lfp F̂s) ⊑ F̂h(lfp F̂s).

lfp F̂s = lfp F̂s

⇒ F̂h(lfp F̂s) ≡ F̂s(lfp F̂s) (by Lemma 8, 10, and 6)
⇒ F̂h(lfp F̂s) ≡ lfp F̂s

⇒ F̂ 2
h(lfp F̂s) = F̂h(lfp F̂s). (by Lemma 9)

All required lemmas are proved.

5 Fixpoint Computation Strategy

Sparse abstract semantic function F̂s computes the abstract transition relation (↪φ̂) (and
l̂↝φ̂ as

well) based on its argument φ̂. However, drawing the abstract transition relation is expensive for
functional or object-oriented languages. Thus it is wise to avoid drawing the transition relation
every time. For this, we repeat the following procedures until we reach an actual fixpoint:

1. Compute the fixpoint as if the abstract transition relation is fixed.

2. Draw the abstract transition relation based on the computed fixpoint.

Formally, we define F̂m ∶ (∆→ Ŝ) → (∆→ Ŝ) by

F̂m(X̂) ≜ lfp λŶ .F̂l(X̂, X̂ ⊔ Ŷ )

where we define F̂l ∶ (∆→ Ŝ) × (∆→ Ŝ) → (∆→ Ŝ) by

F̂l(X̂, Ŷ )(i) ≜ α({ι})(i) ⊔ f̂i( ⊔
i′
l̂↝X̂ i

Ŷ (i′)∣l̂).

Note that the first argument of F̂l is for the abstract transition relation (control) and the second
is for abstract values (data). Function F̂m fixes the first argument (as if the abstract transition
relation is fixed) and computes the fixpoint.

The fixpoint computation strategy F̂m is correct with respect to F̂s as follows:

Theorem 12 (Correctness of Strategy). lfp F̂m = lfp F̂s.

Proof. We prove lfp F̂m ⊑ lfp F̂s and lfp F̂s ⊑ lfp F̂m. Note that F̂m and F̂s are monotone in
their arguments and F̂s(X̂) = F̂l(X̂, X̂) for all X̂.

• lfp F̂m ⊑ lfp F̂s:

Sufficient to prove F̂m(lfp F̂s) ⊑ lfp F̂s.

F̂m(lfp F̂s) = lfp λŶ .F̂l(lfp F̂s, lfp F̂s ⊔ Ŷ )
⊑ lfp F̂s. (since F̂l(lfp F̂s, lfp F̂s ⊔ lfp F̂s) = lfp F̂s)
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• lfp F̂s ⊑ lfp F̂m:

Sufficient to prove F̂s(lfp F̂m) ⊑ lfp F̂m.

lfp F̂m = F̂m(lfp F̂m)
= lfp λŶ .F̂l(lfp F̂m, lfp F̂m ⊔ Ŷ ).

Hence

lfp F̂m = F̂l(lfp F̂m, lfp F̂m ⊔ lfp F̂m)
= F̂s(lfp F̂m).

6 Conclusion

The global sparse analysis framework, presented by Oh et al. [14], aims to design “precise, sound,
yet scalable” abstract interpretation-based static analyzers systematically. It requires only small
amounts of prerequisites (Prerequisites 1 and 3) for the baseline analysis. It provides a well-
defined design procedure (Design 2) to make a sparse version. It broke the tradeoff between
general-purpose but coarse-grained sparse analyses and fine-grained but limited-purpose sparse
analyses by providing a general-purpose fine-grained sparse analysis framework. However, its
correctness has not been proved rigorously.

This paper focuses on the formal aspect of global sparse analysis framework. We rigorously
prove the framework correct and formally present a fixpoint computation strategy for realistic
sparse analyzers.
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