Implications of Yoneda Lemma to Category Theory

Jeehoon Kang
under the supervision of Seok-Jin Kang
Seoul National University

Abstract

This is a survey paper on the implication of Yoneda lemma, named after Japanese mathematician Nobuo Yoneda, to category theory. We prove Yoneda lemma. We use Yoneda lemma to prove that each of the notions universal morphism, universal element, and representable functor subsumes the other two. We prove that a category is anti-equivalent to the category of its representable functors as a corollary of Yoneda lemma. We also prove the Yoneda embedding, i.e. representable functors are isomorphic if and only if their representers are isomorphic.

1 Introduction

This is a survey paper on the implication of Yoneda lemma to category theory. We prove Yoneda lemma. Yoneda lemma is a pure abstract non-sense based solely on categorical arguments. However, it has very non-trivial implication to category theory, and in turn, whole mathematics.

Universals and universal properties are one of the most useful tools in homological algebra. For example, free algebraic structures, products and coproducts, direct and inverse limits, tensor products, (categorical) kernels, images, monomorphisms, and epimorphisms are defined by their universal properties. Universal elements and universal morphisms are typical constructions of universals.

Representable functors are those functors isomorphic to a morphism functor. Since morphism functors arises naturally in many situations, representable functors enjoy nice properties. We use Yoneda lemma to prove that each of the notions universal morphism, universal element, and representable functor subsumes the other two.

As an another corollary of Yoneda lemma, we prove that a category is anti-equivalent to the category of its representable functors. We also prove that representable functors are isomorphic if and only if their representers are isomorphic. Thus this embedding of an object into its representation is called the Yoneda embedding.

The material is largely based on [1].

2 Categories, Functors, and Natural Transformations

Definition 1 (Category). A category C consists of a set A of objects, set $\operatorname{Mor}_{C}(a, b)$ of morphisms from a to b for each $a, b \in A$, and composition $\circ: \operatorname{Mor}_{C}(b, c) \times \operatorname{Mor}_{C}(a, b) \rightarrow \operatorname{Mor}_{C}(a, c)$ for each $a, b, c \in A$ such that

1. (associativity) for all $f \in \operatorname{Mor}_{C}(a, b), g \in \operatorname{Mor}_{C}(b, c)$, and $h \in \operatorname{Mor}_{C}(c, d)$, we have $(h \circ g) \circ f=h \circ(g \circ f)$ and
2. (identity) for all object $a \in A$, there exists a morphism $1_{a} \in \operatorname{Mor}_{C}(a, a)$ such that for all $f \in \operatorname{Mor}_{C}(b, c), 1_{c} \circ f=f$ and $f \circ 1_{b}=f$.

Example 2 (One-Object Category). Let $*$ be the one-object category consisting of

1. set $\{*\}$ of objects and
2. set $\operatorname{Mor}_{*}(*, *)=\left\{1_{*}\right\}$ of morphisms.

It is trivially a category. We abuse $*$ to denote the one-element set, the one-object category, and its only object. It is clear from the context to distinguish.

Notation 3. Note that we abuse \circ to denote all compositions. By $f: a \rightarrow b$ is meant $f \in$ $\operatorname{Mor}_{C}(a, b)$ for each $a, b \in A$, if C is unambiguous from the context. For a category C, we abuse $c \in C$ to denote c is an object of C.

Lemma 4. Identity is unique for each object.
Proof. Let C be a category. For all $a \in C$, let $1_{a}, 1_{a}^{\prime}$ be two identities. We have

$$
1_{a}=1_{a} \circ 1_{a}^{\prime}=1_{a}^{\prime} .
$$

Definition 5 (Isomorphism). Let C be a category and c, c^{\prime} be objects. Objects c and c^{\prime} are isomorphic if there exists $f: c \rightarrow c^{\prime}$ and $g: c^{\prime} \rightarrow c$ such that $g \circ f=1_{c}$ and $f \circ g=1_{c^{\prime}}$. In such a case, f and g are called isomorphism.

Definition 6 (Initial Object). For a category C, an object $c \in C$ is initial if for all $c^{\prime} \in C$, there exists a unique morphism $f: c \rightarrow c^{\prime}$.

Lemma 7 (Unique Initial Object). For a category C, initial objects are unique up to isomorphism.

Proof. Let $c, c^{\prime} \in C$ be initial objects. By Definition 6, there exists unique $f: c \rightarrow c^{\prime}$ and $g: c^{\prime} \rightarrow c$. By the uniqueness of morphisms, $g \circ f: c \rightarrow c$ should be 1_{c} and $f \circ g=1_{c^{\prime}}$. Thus c and c^{\prime} are isomorphic.

Definition 8 (Opposite Category). For a category C, let $C^{\text {op }}$ be the opposite category of C consisting of

1. set of objects in the category C as the set of objects and
2. $\operatorname{Mor}_{C o \mathrm{p}}(a, b)=\operatorname{Mor}_{C}(b, a)$
with composition $g \circ^{\circ}{ }^{\circ \mathrm{p}} f=f \circ_{C} g$. It is trivially a category.
Definition 9 (Functor). For categories C and B, a functor $T: C \rightarrow B$ consists of
3. the object function T which assigns to each object $c \in C$ an object $T c \in D$ and
4. the morphism function T which assigns to each morphism $f: a \rightarrow b$ a morphism $T f:$ $T a \rightarrow T b$
such that

$$
T\left(1_{c}\right)=1_{T c} \text { and } T(g \circ f)=T g \circ T f
$$

Example 10 (Functor from One-Object Category). A functor from the one-object category $*$ to C is effectively an element in C. To see this, correspond a functor $T: * \rightarrow C$ to an element $T * \in C$.

Definition 11 (Full Functor, Faithful Functor). Let C, B be categories and $T: C \rightarrow B$ be a functor. Functor T is full if $T: \operatorname{Mor}_{C}(a, b) \rightarrow \operatorname{Mor}_{B}(T a, T b)$ is surjective for all $a, b \in C$. Functor T is faithful if $T: \operatorname{Mor}_{C}(a, b) \rightarrow \operatorname{Mor}_{B}(T a, T b)$ is injective for all $a, b \in C$.

Definition 12 (Natural Transformation). For categories C and B and functors $S, T: C \rightarrow B$, natural transformation $\tau: S \rightarrow T$ consists of $\tau_{c}: S c \rightarrow T c$ for each c such that the following diagram commutes:

Definition 13 (Natural Isomorphism). For categories C and B and functors $S, T: C \rightarrow B$, natural isomorphism $\tau: S \rightarrow T$ is a natural transformation consisting of $\tau_{c}: S c \rightarrow T c$ for each c such that τ_{c} is an isomorphism for each c.

Definition 14 (Equivalent Category). Categories C, B are equivalent if there exists functors $T: C \rightarrow B$ and $S: B \rightarrow C$ such that $S \circ T$ is naturally isomorphic to 1_{C} and $T \circ S$ is naturally isomorphic to 1_{B}.

Definition 15 (Anti-Equivalent Category). Categories C, B are anti-equivalent if C and $B^{\text {op }}$ are equivalent.

Eilenberg-Mac Lane observed that "category has been defined to be able to define functor and fuctor has been defined in order to be able to define natural transformation" [1].

3 Foundations

To define the categories of sets, categories, and functors, we have to address set-theoretical constructions and mathematical foundations. The famous Russell paradox implies that we have to confine the comprehension principle: forming the set $\{x \mid \phi(x)\}$ from a given property $\phi(x)$. The category of categories meets the same problem: how to define it from the axiomatic property of categories?

We avoid this problem by introducing the universe U. By considering only sets in the universe and confining the comprehension principle to the universe, we detour the Russell paradox.

Axiom 16 (Set Theory). We assume the following set-theoretical axioms:

1. For sets u and v, the unordered pair $\{u, v\}$ is also a set.
2. There exists the infinite set $\omega=\{0,1,2, \ldots\}$ of all finite ordinals.
3. For a set u and v, the Cartesian product $u \times v=\{(x, y) \mid x \in u, y \in v\}$ is also a set. Note that the ordered pair $(x, y)=\{x,\{x, y\}\}$.
4. For a set u, the power set $\wp u=\{v \mid v \subseteq u\}$ is also a set.
5. For a set u, the union $\cup u=\{y \mid y \in x$ for some $x \in u\}$ is also a set.
6. For a set u and a property $\phi(x)$, the comprehension $\{x \mid x \in u, \phi(x)\}$ is also a set.
7. There exists the universe U such that
a) the universe U is closed under the construction of the unordered pair, the infinite set of all finite ordinals, the Cartesian product, the power set, and the union,
b) if $x \in u \in U$ then $x \in U$, and
c) if $f: a \rightarrow b$ is surjective, $a \in U$, and $b \subseteq U$ then $b \in U$.

By a small set is meant an element of the universe U.

4 Categories of (Small) Sets, Categories, and Functors

Thanks to appropriate mathematical foundations, we are able to define categories of (small) sets, (small) categories, and (small) functors.

Lemma 17. Small sets form the category Set with functions as morphisms.
Proof. Let a and b be small sets and $f: a \rightarrow b$ be a function. Note that the set-theoretical representation of f is small thanks to the axioms on the universe U, hence the name 'category of small sets' is legitimate. Ordinary function composition serves as the legitimate composition for set morphisms. Hence Set is indeed a category.

Definition 18 (Small Category). A small category is a category C with small set A of objects and small set $\operatorname{Mor}_{C}(a, b)$ of morphisms for each $a, b \in A$.

Lemma 19. Small categories form the category Cat with functors as morphisms.
Proof. Let C and B be small categories and $T: C \rightarrow B$ be a functor. Note that the settheoretical representation of T is small thanks to the axioms on the universe U, hence the name 'category of small categories' is legitimate.

Let D, C, and B be small categories and let $T: D \rightarrow C$ and $S: C \rightarrow B$ be functors. The composition $S \circ T: D \rightarrow B$ with

1. object function $S \circ T: d \mapsto S(T d)$ and
2. morphism function $S \circ T: f \mapsto S(T f)$
is a functor as follows:
3. $(S T)\left(1_{d}\right)=S\left(T\left(1_{d}\right)\right)=S\left(1_{T d}\right)=1_{S(T d)}=1_{(S T)(d)}$ and
4. $(S T)(g \circ f)=S(T(g \circ f))=S(T g \circ T f)=S(T g) \circ S(T f)=(S T)(g) \circ(S T)(f)$.

For each small category C, let 1_{C} be the identity functor with

1. object function $1_{C}: c \mapsto c$ and
2. morphism function $1_{C}: f \mapsto f$.

It is indeed a functor as follows:

1. $1_{C}\left(1_{c}\right)=1_{c}=1_{1_{C}(c)}$ and
2. $1_{C}(g \circ f)=g \circ f=1_{C}(g) \circ 1_{C}(f)$.

Let C and B be small categories and $T: C \rightarrow B$ be a functor. We have

$$
1_{B} \circ T=T=T \circ 1_{C} .
$$

Let E, D, C, and B be small categories and $R: C \rightarrow B, S: D \rightarrow C$, and $T: E \rightarrow D$ be functors. We have

$$
(R \circ S) \circ T=R \circ(S \circ T)
$$

Hence Cat is indeed a category.
Lemma 20. Let C and B be small categories. Functors from C to B form the category B^{C} with natural transformations as morphisms.

Proof. Let $R, S, T: C \rightarrow B$ be functors and let $\alpha: R \rightarrow S, \beta: S \rightarrow T$ be natural transformations. The composition $\beta \circ \alpha$ with $(\beta \circ \alpha)_{c}=\beta_{c} \circ \alpha_{c}$ is a natural transformation from R to T as follows:

For each functor $T: C \rightarrow B$, let $1_{T}: T \dot{\rightarrow} T$ be the identity natural transformation with $\left(1_{T}\right)_{c}=1_{(T c)}$. It is indeed a natural transformation as follows:

Let $S, T: C \rightarrow B$ be functors and $\alpha: S \dot{\rightarrow} T$ be a natural transformation. We have

$$
1_{T} \circ \alpha=\alpha=\alpha \circ 1_{S} .
$$

Let $Q, R, S, T: C \rightarrow B$ be functors and $\alpha: S \rightarrow T, \beta: R \dot{\rightarrow} S, \gamma: Q \dot{\rightarrow} R$ be natural transformations. We have

$$
(\alpha \circ \beta) \circ \gamma=\alpha \circ(\beta \circ \gamma)
$$

Hence B^{C} is indeed a category.
Note that the set of morphisms of a functor category is not necessarily small.

5 Yoneda Lemma

First, we present the (covariant) morphism functor. It enables us to state Yoneda Lemma and prove reducibility of the notion universal arrow to the notion universal object.

Lemma 21 (Morphism Functor). Let C be a small category with small morphism sets, i.e., for all $a, b \in C, \operatorname{Mor}_{C}(a, b)$ is a small set. Let a be an object in C. The following two functions form the (covariant) morphism functor $C(a,-): C \rightarrow \boldsymbol{S e t}$.

1. object function $C(a,-): b \mapsto \operatorname{Mor}_{C}(a, b)$ and
2. morphism function $C(a,-): f \mapsto(C(a, f): g \mapsto f \circ g)$

Proof. 1. $C\left(a, 1_{b}\right)(g)=1_{b} \circ g=g$, so $C\left(a, 1_{b}\right)=1_{\operatorname{Mor}_{C}(a, b)}=1_{C(a, b)}$ and
2. $(C(a, g) \circ C(a, f))(h)=C(a, g)(f \circ h)=g \circ f \circ h=C(a, g \circ f)(h)$, so $(C(a, g) \circ C(a, f))=$ $C(a, g \circ f)$.

Notation 22. To be consistent with the notation of the (covariant) morphism functor, by $C(a, b)$ is meant $\operatorname{Mor}_{C}(a, b)$ for a category C and objects $a, b \in C$.

Lemma 23 (Yoneda Lemma). Let D be a small category with small morphism sets, r be an object in $D, K: D \rightarrow \boldsymbol{S e t}$ be a functor, and $y: \boldsymbol{S e t}^{D}(D(r,-), K) \rightarrow K r$ be

$$
y(\alpha)=\alpha_{r} 1_{r}
$$

for each $\alpha: D(r,-) \dot{\rightarrow} K$. Then y is bijective.
Proof. Let $\alpha: D(r,-) \dot{\rightarrow} K$. Consider the following commutative diagram for each $d \in D$ and $f: r \rightarrow d:$

Especially for $1_{r} \in D(r, r)$, we have

Let $\alpha, \beta: D(r,-) \dot{\rightarrow} K$ be natural transformations such that $y(\alpha)=y(\beta)$, i.e. $\alpha_{r} 1_{r}=\beta_{r} 1_{r}$. By the commutative diagram above, we have for each $d \in D$ and $f: r \rightarrow d$:

$$
\alpha_{d} f=(K f)\left(\alpha_{r} 1_{r}\right)=(K f)\left(\beta_{r} 1_{r}\right)=\beta_{d} f
$$

Hence $\alpha=\beta$. Thus y is injective.
Conversely, for any $s \in K r$, define $\alpha_{d}: D(r, d) \rightarrow K d$ by

$$
\alpha_{d}: f \mapsto(K f)(s) .
$$

We have a commutative diagram for each $d, d^{\prime} \in D$ and $f: d \rightarrow d^{\prime}$:

Hence α is a natural transformation and $\alpha_{r} 1_{r}=s$. Thus y is surjective.

6 Universal Morphisms and Universal Objects

In this section, we introduce universal morphisms and universal objects which play a key role in this paper. To introduce universals in an elegant way, we construct comma categories based on other categories and functors.

Lemma 24 (Comma Category). Let C, D, and E be small categories and $T: E \rightarrow C$ and $S: D \rightarrow C$ be functors. The comma category $T \downarrow S$ consisting of

1. set of objects (e, d, f) where $e \in E, d \in D$ and $f: T e \rightarrow S d$ and

2. set of morphisms $(k, h):(e, d, f) \rightarrow\left(e^{\prime}, d^{\prime}, f^{\prime}\right)$ where the following diagram commutes:

is indeed a small category.
Proof. The set-theoretical representation of $T \downarrow S$ is small thanks to the axioms on the universe U.

Morphisms have a natural composition $\left(k^{\prime}, h^{\prime}\right) \circ(k, h)=\left(k^{\prime} \circ k, h^{\prime} \circ h\right)$ as follows:

Associativity comes from the associativity of morphism compositions in E and D. We have the identity $1_{(e, d, f)}=\left(1_{e}, 1_{d}\right)$ for each object (e, d, f).

Notation 25. Consider functors $T: * \rightarrow C$ and $S: D \rightarrow C$ and the comma category $T \downarrow S$. Since functor T is effectively an object $T * \in C$, we denote $c \downarrow S$ to mean $T \downarrow S$ where $T: * \rightarrow C$ and $T *=c$. Dually for $T \downarrow c$ and eventually for $c \downarrow c^{\prime}$.
Definition 26 (Universal Morphisms). Let C and D be small categories and $S: D \rightarrow C$ be a functor. A universal morphism from c to S is an initial object in $c \downarrow S$.

Definition 27 (Universal Objects). Let D be a small category and $S: D \rightarrow$ Set be a functor. A universal object of S is a universal morphism from $*$ to S. Here $*$ is the one-element set.

Remark 28. Conversely, "the notion universal arrow[morphism] is a special case of the notion universal element[object]" [1]. Let C and D be small categories, c an object in C, and $S: D \rightarrow C$ be a functor. A universal morphism $(d, r: c \rightarrow S d)$ from c to S is a universal object of the functor $C(c, S-)$.

In many cases, "the function embedding a mathematical object in a suitably completed object can be interpreted as a universal arrow[morphism]," including free functors and fields of quotients [1].

7 Representable Functors

Definition 29 (Representable Functor). Let D be a small category. A functor $K: D \rightarrow$ Set is representable if there exists $d \in D$ and a natural isomorphism $\alpha: D(d,-) \cong K$. Such (d, α) is called a representation of K.

Definition 30 (Category of Representable Functors). For a small category C, let R_{C} be the full subcategory of $\mathbf{S e t}^{C}$ consisting of

1. representable functors as objects and
2. $\operatorname{Mor}_{R_{C}}(F, G)=\operatorname{Mor}_{\mathbf{S e t}^{C}}(F, G)$ for all representable functors $F, G: C \rightarrow$ Set.

It is trivially a category.
Remark 31. Let C and D be small categories and $S: D \rightarrow C$ be a functor. A universal morphism from c to S amounts to a natural isomorphism $D(r,-) \cong C(c, S-)$, which in turn is a representation of $C(c, S-)$.

Now universal morphisms can be stated with morphisms.
Lemma 32. Let C and D be small categories, $c \in C$, and $S: D \rightarrow C$ be a functor.

1. A pair $(r, u: c \rightarrow S r)$ is a universal morphism from c to S if and only if for each $d \in D$, function $\alpha_{d}: D(r, d) \rightarrow C(c, S d)$ such that

$$
\alpha_{d}: f \mapsto S f \circ u
$$

is bijective. In such a case, α is a natural isomorphism.
2. Conversely, given r and c, any natural isomorphism $\alpha: D(r,-) \cong C(c, S-)$ is determined in this way by a unique universal morphism (r, d) from c to S.

Proof. 1. The universal property of (r, u) is exactly for each $d \in D, \alpha_{d}$ being bijective. We have a commutative diagram

Hence α is a natural transformation.
2. By Lemma $23, y: \operatorname{Set}^{D}(D(r,-), C(c, S-)) \rightarrow C(c, S r)$ such that

$$
y(\alpha)=\alpha_{r} 1_{r}
$$

is bijective. Being a natural isomorphism further requires α_{d} be bijective for each $d \in D$ in the following diagram:

This is exactly $y(\alpha)$ being a universal moprhism from c to S. Hence there exists a bijection from natural isomorphisms from $D(r,-)$ to $C(c, S-)$ and universal morphisms $(r, u: c \rightarrow$ $C r)$.

Lemma 33. Let D be a small category, $K: D \rightarrow \boldsymbol{S e t}$ be a functor, and $(r, u: * \rightarrow K r)$ be a universal arrow from * to K. Let $\alpha_{d}: D(r, d) \rightarrow K d$ be

$$
\alpha_{d}: f^{\prime} \mapsto K\left(f^{\prime}\right)(u *) .
$$

Then α is a representation of K.
Conversely, every representation of K is obtained in this way from exactly one such universal morphism.

Proof. We have $\operatorname{Set}(*,-)$ and $1_{\text {Set }}$ are naturally isomorphic. By composing with K, we have $\operatorname{Set}(*, K-)$ and K are naturally isomorphic. Hence a representation of K amounts to a natural isomorphism between $\operatorname{Set}(*, K-)$ and $D(r,-)$ for some r. Lemma 32 concludes the proof.

As a corollary of Lemma 23 , category k-CommAlg of commutative k-algebras for a commutative ring k is anti-equivalent to the category of representable functors for k-CommAlg [2].

Lemma 34. Category D is anti-equivalent to the category R_{D} of representable functors for the category D.

Proof. Let $\mathcal{F}: D \rightarrow R_{D}$ be a contravariant functor with

1. object function $\mathcal{F}: r \mapsto D(r,-)$ and
2. morphism function $\mathcal{F}: f \mapsto[u \mapsto u \circ f]$.

It is indeed a contravariant functor as follows:

1. $\mathcal{F}\left(1_{r}\right)=1_{D(r, r)}$ and
2. $\mathcal{F}(g \circ f)=[u \mapsto u \circ(g \circ f)]=[u \mapsto(u \circ g) \circ f]=\mathcal{F}(f) \circ \mathcal{F}(g)$.

By definition 29 , for all $F \in R_{D}$, there exists $r \in D$ such that $F \cong D(r,-)$. Also, \mathcal{F} is full and faithful. To see this, by Lemma 23, $y: \boldsymbol{\operatorname { S e t }}^{D}(D(r,-), D(s,-)) \rightarrow D(s, r)$ defined by

$$
y: \alpha \mapsto \alpha_{r} 1_{r}
$$

is bijective. Thus D and R_{D} are equivalent by \mathcal{F}^{1}.
Lemma 35. For a category C and objects $c, c^{\prime} \in C, C(c,-)$ and $C\left(c^{\prime},-\right)$ are isomorphic if and only if c and c^{\prime} are isomorphic.

[^0]Proof. (\Leftarrow) obvious.
(\Rightarrow) Let $\alpha: C(c,-) \dot{\rightarrow} C\left(c^{\prime},-\right)$ and $\beta: C\left(c^{\prime},-\right) \dot{\rightarrow} C(c,-)$ be functors such that $\beta \circ \alpha=$ $1_{C(c,-)}$ and $\alpha \circ \beta=1_{C\left(c^{\prime},-\right)}$. By Lemma 23, there exists $f \in C\left(c, c^{\prime}\right)$ and $g \in C\left(c^{\prime}, c\right)$ such that $\alpha_{d}: C(c, d) \rightarrow C\left(c^{\prime}, d\right)$ satisfies

$$
\alpha_{d}: u \mapsto u \circ g
$$

and $\beta_{d}: C\left(c^{\prime}, d\right) \rightarrow C(c, d)$ satisfies

$$
\beta_{d}: v \mapsto v \circ f
$$

Hence $(\beta \circ \alpha)_{c}$ maps 1_{c} to $g \circ f$ and $(\alpha \circ \beta)_{c^{\prime}}$ maps $1_{c^{\prime}}$ to $f \circ g$. Since $\beta \circ \alpha$ and $\beta \circ \alpha$ are identity functors, $g \circ f=1_{c}$ and $f \circ g=1_{c^{\prime}}$. Thus c and c^{\prime} are isomorphic.

8 Discussion

Definition 27, Remark 28, Remark 31, and Lemma 33 collectively prove that "each of the notions universal arrow[morphism], universal element[object], and representable functor subsumes the other two" [1].

Lemma 34 and Lemma 35 implies that the study of a category and the study of its representable functors are closely related [2]. First of all, the categories are anti-equivalent. Secondly, Yoneda lemma embeds a category into the category of its representable functors, i.e. representable functors are isomorphic if and only if their representers are isomorphic. This is called the Yoneda embedding [1].

Bibliography

[1] S.M. Lane. Categories for the Working Mathematician. Graduate Texts in Mathematics. Springer, 1998.
[2] 이인석. Affine group scheme의 이해. preprint, 2002.

[^0]: ${ }^{1}$ In this paper, we have deliberately addressed set-theoretical foundations by introducing a universe. However, in this step, a kind of the axiom of choice for as large classes as R_{D} is required. We do not address this and implicitly appeal to the categorical foundations.

