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My research is motivated by the goal of making non-blocking concurrent programming easier. Non-
blocking (think: lock-free) concurrency is an essential ingredient for exploiting parallelism—which is becoming
more and more important since the slowdown of Moore’s law—but it is notoriously error-prone and difficult to get
right. I have personally suffered from this difficulty in the course of maintaining the Crossbeam project [1], which
serves as the de facto standard concurrency library for the Rust programming language [2]. Crossbeam provides
an epoch-based semi-automatic garbage collector and, on top of the garbage collector, various production-ready
non-blocking concurrent data structures which are deployed in the recent versions of Firefox. Developing an effi-
cient and yet correct concurrency library was difficult: bugs are constantly popping up and some of them are even
found in the released versions of the library, even though we followed the best practice such as using the C/C++
concurrency features and testing with the state-of-the-art tools.

My general strategy for facilitating non-blocking concurrent programming is to develop formal methods for
reasoning about programs. In my experience of Crossbeam, concurrent programming is difficult primarily due to
the fact that concurrency bugs are usually manifested only in a subtle and nondeterministic way so that they are
not easily uncovered by auditing or testing. Therefore I believe that formal methods, despite their usually high
cost, are actually cost-effective for implementing efficient and correct concurrent algorithms. In particular, I aim
to develop reasoning principles on which programmers can manually reason about concurrent program’s safety
and functional correctness, and based on the principles, to develop precise analysis/verification tools that are ca-
pable of automatically proving such properties. If successful, my research will advocate “correct-by-construction”
approaches by helping programmers to fix subtle concurrency bugs without much labor even before deploying the
code, thereby having a profound impact on real-world concurrent and parallel programming.

The main challenge I face is that most prior work on principles and tools of concurrent programming makes
big simplifying assumptions on the underlying programming model—for example, that target programs are com-
pletely synchronized with locks and are completely free from any races (and thus “blocking”), or that they are
based on sequential consistency (SC) semantics. Unfortunately, these assumptions do not hold for real-world
concurrent programs, which intentionally cause benign race conditions and are based on relaxed consistency se-
mantics for better performance. Thus my research aims to build, without making such unrealistic assumptions,
new theoretical and practical foundations for formal reasoning about non-blocking concurrency in the wild.

In the rest of this research statement, I will describe some of my previous and ongoing projects on developing
such reasoning principles and tools for concurrent programming.

Promising semantics for relaxed consistency Non-blocking concurrent programs in the wild are usually writ-
ten in low-level programming languages like C/C++ or even assembly languages. The defining characteristic of
the concurrency features in low-level programming language and hardware concurrency is their relaxed nature,
or in other words, that instructions may be executed in an out-of-order fashion—for example, in certain circum-
stances, loads and stores can be hoisted above the previous instructions. Thus I aim to develop formal methods that
account for load and store hoisting as well as other concurrency features such as thread interleaving, coherence,
and synchronization.

The problem is that, despite many years of research, it has been proven very difficult to even define the
semantics of store hoisting in C/C++ and other programming languages that adequately balances the conflicting
desiderata of programmers, compilers, and hardware. Obviously, without an established semantics, it is simply
impossible to formally reason about programs! C/C++ carelessly allows a too broad class of store hoisting and ends
up allowing certain bad program behaviors (which we call “out-of-thin-air” behaviors) that break fundamental
properties of concurrency semantics programmers expect to hold, such as the data-race freedom (DRF) guarantees
and the soundness of simple invariant-based reasoning. On the other hand, Java reluctantly allows a too narrow
class of store hoisting and fails to validate essential compiler optimizations that are actually performed by Java
HotSpot VM. As far as we know, none of many proposals in the past decades succeeded in defining a programming
language semantics of store hoisting that satisfies programmers, compilers, and hardware at the same time.

In our POPL 2017 paper [3], we proposed the first relaxed consistency model for C/C++—which we call the
promising semantics—that (1) accounts for a broad spectrum of features from the C++11 concurrency model, (2)
is implementable, in the sense that it provably validates many standard compiler optimizations and reorderings, as
well as standard compilation schemes to x86-TSO and Power, (3) justifies simple invariant-based reasoning, thus
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demonstrating the absence of bad out-of-thin-air behaviors, (4) supports DRF guarantees, ensuring that program-
mers who use sufficient synchronization need not understand the full complexities of relaxed-memory semantics,
and (5) defines the semantics of racy programs without relying on undefined behaviors, which is a prerequisite for
applicability to type-safe languages like Java.

The key novel idea behind our model is the notion of promises and certification: a thread may promise to
execute a write in the future, thus enabling other threads to read from that write out of order. Crucially, to prevent
out-of-thin-air behaviors, a promise step requires a thread-local certification that it will be possible to execute the
promised write even in the absence of the promise. We demonstrated that the notion of promises and certification
is not limited to modeling store hoisting in C/C++ but is actually universal for relaxed consistency semantics in
general: in a submitted paper [4], we propose a promising semantics for hardware that models store hoisting in
ARMv8 and RISC-V in a much simpler and efficiently explorable way than the previously proposed models.

To establish confidence in our promising semantics for C/C++ and ARMv8/RISC-V, we have formalized most
of our key results in the Coq proof assistant [5], which rigorously checked that all our proofs are valid. In doing
so, much to our surprise, we uncovered a severe flaw in the official C/C++ semantics: in contrary to published
results [6, 7], the standard mapping from C/C++ SC atomics to Power processors used in mainstream compilers is
unsound. We subsequently proposed a fix to the semantics of C/C++ SC atomics in our PLDI 2017 paper [8], but
we left its application to our C/C++ promising semantics as a future work.

We recently discovered that the standard mapping from C/C++ read-modify-write instructions to ARMv8 pro-
cessors used in mainstream compilers is unsound for our C/C++ promising semantics. Roughly speaking, the
specification of ARMv8 basically allows—while not observable on actual hardware—certain cooperative out-of-
order execution among processor cores that happens to bring about certain global behaviors, which were beyond
our imagination when designing the C/C++ promising semantics. These global behaviors are unique to ARMv8
since ARMv7, RISC-V, Power, and any other architectures we are aware of forbid cooperative out-of-order execu-
tion. As an ongoing work, we are slightly generalizing our C/C++ promising semantics to account for these global
behaviors in order to validate the standard mapping from C/C++ to ARMv8.

Based on the promising semantics, I am currently working on developing practical verification/analysis tools
for reasoning about concurrent programs, which I will explain in the following paragraphs.

Promise analysis Promises and certification—the key idea of the promising semantics—introduce considerable
nondeterminism so that they are the main difficulty in reasoning about concurrent programs. Currently, we are
designing promise analysis that statically checks whether promising to execute any store instruction introduces
any new observable behaviors at the program level, and if so, inserts fences as few as possible in order to offset
the effect of store hoisting. After a program is analyzed and fences are minimally inserted, it is safe to treat all
the store instructions as if they are forbidden to be promised in the execution, thereby greatly simplifying the
verification of concurrent programs. The key idea of our analysis is that a promise to write a store instruction
introduces additional behaviors to a program only if the previous instructions of the store are affected by that
promise via inter-thread interactions, which we can safely analyze by conservatively tracking the dependency
among instructions.

We believe our analysis is precise enough that it will insert fences into the real-world concurrent programs
only rarely. Actually, we observed that promises do not seem to introduce any new observable behaviors in most
real-world concurrent programs, because they are already quite strongly synchronized and the effect of promises
via store hoisting is confined to local regions of code: we informally examined dozens of real-world concurrent
data structures—including queues, stacks, deques, hash tables, and B-trees—and so far we have found only one
exception to the observation, namely the Chase-Lev deque [9]. Even for Chase-Lev deque, inserting a single fence
in the code will nullify the effect of store hoisting.

Program verification in the absence of promises Even if we can safely ignore the effect of store hoisting in rea-
soning thanks to promise analysis, concurrent programs are still difficult to reason about due to the nondetermin-
istic interleaving of multiple threads, load hoisting, coherence, synchronization, and other concurrency features.
Fortunately, recent advances in concurrent separation logic (CSL) allow programmers to verify more and more re-
alistic concurrent programs in terms of ownership [10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. In particular, iGPS [19],
which is one of the state-of-the-art CSL’s, supports a significant subset of the C/C++ concurrency features—such
as release, acquire, and nonatomic accesses, but not store hoisting—and successfully verifies various real-world
concurrent algorithms like spinlock, message passing, circular buffer, bounded ticket lock, Michael-Scott queue,
and the read-copy-update (RCU) technique employed in the Linux kernel. What is particularly interesting is that by
combining the result of promise analysis and verification in any CSL, one can formally guarantee that a program’s
implementation—even considering the effect of store hoisting due to promises—satisfies its specification.
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The problem is that most of the concurrent algorithms verified in an existing CSL are actually simplified
from the original algorithms: most notably, C/C++ relaxed accesses, which are beyond the reach of the current
generation of CSL’s, are strengthened to acquire/release accesses. I aim to solve this problem by generalizing
the iGPS program logic to account for relaxed accesses (except for store hoisting, as it is the responsibility
of promise analysis) and verifying the state-of-the-art concurrent algorithms without any simplifications in the
generalized iGPS.

As a first step, we informally verified various real-world concurrent algorithms to get the insight of why
they are correct. In particular, we successfully verified the Chase-Lev deque [9], which employs one of the most
complex synchronization patterns we are aware of [20]. Furthermore, in the course of doing so, we observed that
a few synchronization patterns are frequently used for multiple algorithms [21]. We believe this experience and
observation will help in generalizing iGPS for verifying real-world concurrent algorithms.

Model checking An alternative approach to verifying concurrent programs is model checking, which is an auto-
mated method that basically enumerate all possible executions of a given program and checks if all the executions
satisfy desirable properties—for example, safety or functional correctness. The biggest advantage of model check-
ers in verifying concurrent programs is that they are push-button solutions and are much easier to use than CSL’s.
However, it is difficult to develop a scalable model checker for concurrent programs: the existing model checkers
for concurrent programs can verify only simple properties of tiny examples [22, 23, 24].

We observe that we can improve the scalability of model checkers for concurrent programs by exploiting the
precise characterization of store hoisting in the promising semantics. The existing model checkers either ignore
store hoisting at all, thereby resorting to a simplified programming model, or naively enumerate the executions
with store hoisting, suffering from unbounded nondeterminism. The promising semantics can tame this nonde-
terminism by precisely classifying store hoistings into valid and invalid ones, thereby exponentially reducing the
number of states to consider compared to the existing model checkers. This optimization is particularly effective
for ARMv8/RISC-V thanks to their inherently operational nature: we already successfully implemented a proto-
type model checker for ARMv8/RISC-V and verified spinlock, and we are working on verifying the concurrent
algorithms in the Linux kernel such as RCU and hash tables. We also have a plan to develop an efficient model
checker for C/C++.

End-to-end verification of concurrent programs So far I introduced my research projects on verifying the
implementation of concurrent programs, but it is not enough to guarantee end-to-end correctness concurrent pro-
grams from specification to bare-metal. In order to fill the gap, I also aim to verify that the concurrent program’s
semantics is preserved by compilers and then observed by hardware.

Compiler verification is a holy grail in the study of programming languages, but it is known to be an extremely
difficult problem even for sequential programs without concurrency. Yet a decade ago Xavier Leroy and his col-
laborators demonstrated in the CompCert project [25] that formal verification of a C compiler within a theorem
prover is actually feasible. Since then CompCert has been extended to support almost the entirety of ISO C99,
major optimizations of GCC and LLVM, and commodity architectures such as x86, Power, ARM, and RISC-V.
After many years of effort, CompCert is now mature enough to be used for real-world safety-critical systems [26].

I also have contributed on applying compiler verification techniques to real-world C programs and mainstream
compilers in the following projects:

• First, we observed that CompCert does not properly support casts between integers and pointers, which
is one of the defining characteristic of C. Here again, the problem is that it is difficult to define the pro-
gramming language semantics of integer-pointer casts that adequately balances the conflicting desiderata
of programmers and compilers. In our PLDI 2015 paper [27], we proposed the first formal semantics of
integer-pointer casts that supports both reasoning principles and compiler optimizations at the same time.

• Furthermore, we observed that CompCert simplified the verification problem by restricting attention to the
correctness of whole-program compilation, leaving open the question of how to verify the correctness of
separate compilation and linking. In our POPL 2016 paper [28], we developed several lightweight tech-
niques that recast the verification of separate compilation in terms of that of whole-program compilation,
thereby enabling us to verify separate compilation for CompCert with only a 3% increase of LOC. In the
course of doing so, we found a miscompilation bug in CompCert due to an analysis that is invalidated in
the presence of linking. This bug was subsequently fixed in CompCert 2.5, and our verification techniques
were adopted in CompCert 2.7.
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• Last but not least, compiler verification techniques had not yet been applied to formally verifying main-
stream compilers such as GCC and LLVM due to the huge cost of applying formal methods to millions of
lines of code in compilers. In our PLDI 2018 paper [29], we proposed CRELLVM: a verified credible com-
pilation framework for LLVM, which can be used as a systematic way of providing a high level of reliability
for major optimizations in LLVM. Specifically, we augment an LLVM optimizer to generate translation re-
sults together with their correctness proofs, which can then be checked by a formally verified proof checker.
As case studies, we applied our approach to two major optimizations of LLVM, namely register promotion
and global value numbering, having found four new miscompilation bugs (two in each).

To establish confidence in our results, we formalized most of the results of the above research projects in Coq.
Based on these experiences, now I aim to verify compilers for concurrent programs. In our C/C++ promising

semantics paper [3], we already verified peephole optimizations for concurrent programs—such as reorderings and
merges—that serve as the building block of major optimizations including register promotion, store forwarding,
or loop-invariant code motion. As a future work, I will introduce C/C++ concurrency features to CompCert and
re-verify CompCert’s existing optimizations, and based on the experience, validate LLVM optimizations in the
presence of C/C++ concurrency features on CRELLVM.

Now down to the bare-metal, hardware verification aims to verify the design of electronic circuits before
taping it out. It is a crucial process in the semiconductor industry because circuits, once fabricated, cannot be
modified. The problem is that the current practice of hardware verification requires manual inspection of experts
for each component and thus incurs tremendous cost: automated tools like model checkers, which would greatly
reduce verification cost if exist, are usually limited to verifying only small components of hardware due to the huge
space of states to consider. Even worse, verification tasks are severely time-constrained due to the importance of
time-to-market. Furthermore, concurrency—which I aim to verify in the beginning—adds significant additional
complexity to hardware design and verification problems because concurrent components are tightly coupled with
each other. I personally suffered from this difficulty in architecting Furiosa AI’s highly-concurrent, massively-
parallel MadRun deep learning accelerator (currently in preparation for RTL freeze).

As a future work, I would like to approach this problem by applying software verification techniques to hard-
ware verification problem. Recent advances in formal verification of compilers, operating systems [30, 31], and
database management systems [32] show that formal verification techniques scale up for real-world systems. I be-
lieve it can be successfully applied to hardware verification as well, and besides, formal verification of hardware is
actually cost-effective in the long run because once a component is formally verified, it can be reused or adapted
to other designs with low cost.

I will use Furiosa AI’s MadRun accelerator as the testbed because its high concurrency makes it an excellent
playground for concurrent hardware verification problems, and Furiosa AI, for which I am currently working
as Co-founder & Chief Scientist, will give me full cooperation. As a preliminary step, we wrote MadRun in
the Chisel hardware description language [33], which provides programming language features—such as data
abstraction and module system—that enable a precise and efficient description of specification. In the future, we
will write a precise specification for each component of MadRun, and then formally verify it in Coq or using other
verification tools such as SMT solvers, model checkers, and program analyzers.

Funding For the first few years, I would like to set a budget of $170K/year. First, I intend to advise up to four
graduate students, whose labor cost amounts to approximately $100K/year. Second, I want myself and my stu-
dents to attend conferences and other academic events, totaling eight times a year, which will cost approximately
$30K/year. Furthermore, I want to buy new computer systems worth $30K/year. Finally, I expect there will be
miscellaneous expenditure worth $10K/year.

In order to get funded, I will make several proposals for research programs and industry collaboration. For
research funds, I will apply for Basic Science Research Program of National Research Foundation (한국연구재
단 이공분야 기초연구사업 신진/중견연구자지원사업) and ICT Creative Research Projects of Samsung Future
Technology Foundation (삼성미래기술육성센터 ICT 창의과제). For industry collaboration, I will set up R&D
projects with Furiosa AI and other companies working on concurrent and parallel systems such as SAP and
Microsoft.
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