Ph.D. DISSERTATION

Reconciling Low-Level Features of C
with Compiler Optimizations

Co| A%z 757} Arkel] =5} 25477

BY

Jeehoon Kang

FEBRUARY 2019

DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE
COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

Ph.D. DISSERTATION

Reconciling Low-Level Features of C
with Compiler Optimizations

Co| A%z 757} Arkel] =5} 25477

BY

Jeehoon Kang

FEBRUARY 2019

DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE
COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

Reconciling Low-Level Features of C

with Compiler Optimizations

7} Antd o] H A5 23514]7]7]

-
[e)

Co| A% 7]

=1
2o

2019 1%

__o_w_

p—

=0

Jeehoon Kang 9] &

2019 {1 ¥

M|~
Ho [Nl
o |6

Bhl
O
X

Derek Dreyer

Abstract

To improve the performance of C programs, mainstream compilers perform aggressive
optimizations that may change the behaviors of programs that use low-level features in
unidiomatic ways. Unfortunately, despite many years of research and industrial efforts,
it has proven very difficult to adequately balance the conflicting criteria for low-level
features and compiler optimizations in the design of the C programming language. On
the one hand, C should support the common usage patterns of the low-level features in
systems programming. On the other hand, C should also support the sophisticated and
yet effective optimizations performed by mainstream compilers. None of the existing
proposals for C semantics, however, sufficiently support low-level features and compiler
optimizations at the same time.

In this dissertation, we resolve the conflict between some of the low-level features
crucially used in systems programming and major compiler optimizations. Specifically,
we develop the first formal semantics of relaxed-memory concurrency, separate com-
pilation, and cast between integers and pointers that (1) supports their common usage
patterns and reasoning principles for programmers, and (2) provably validates major
compiler optimizations at the same time. To establish confidence in our formal seman-
tics, we have formalized most of our key results in the Coq theorem prover, which au-
tomatically and rigorously checks the validity of the results.

Keywords: C, formal semantics, compiler verification, relaxed-memory concurrency,
separate compilation, integer-pointer cast
Student Number: 2013-20737

The outcomes that matter in research are not numerous publications,
best-paper awards, completed PhD theses, keynote invitations, software tools,
citations and other measurable signs of progress. I was after real success, in
the sense of changing the way the IT industry develops software. [...] By that
standard, the story told in this article is one of glaring, unremitted and prob-
ably definitive failure. —Bertrand Meyer [17]

ii

Acknowledgements

Without great sacrifices of teachers, I would not have been able to finish my Ph.D. Prof.
Kwangkeun Yi bore with my childish enthusiasm and tamed it into a dedication. My
advisor Prof. Chung-Kil Hur taught me how to read, write, listen, speak, and think by
doing together. Dr. Derek Dreyer gave constructive advice that I can follow at just the
right times. Now I realize everything they have done to me requires a lot of patience. I
would like to say thank you with all my heart.

I would also like to thank Prof. Byung-Gon Chun and Prof. Jae W. Lee for reviewing
and giving feedback on this dissertation and my job talk as committee members. I also
thank William Mansky, Dmitri Garbuzov, Steve Zdancewic, Viktor Vafeiadis, Yoonse-
ung Kim, and Ori Lahav for working together on the papers which this dissertation is
based on, and thank Robbert Krebbers, Jim Apple, Xavier Leroy, Doug Lea, Alan Jef-
frey, Andreas Lochbihler, James Riely, Peter Sewell, and Joe Tassarotti for very helpful
feedback on the papers.

The papers on which this dissertation based are supported in part by the Engineer-
ing Research Center of Excellence Program of MSIP/NRF (Grant NRF-2008-0062609),
the ICT R&D program of MSIP/IITP (Grant Ro132-15-1006), Samsung Research Fund-
ing Center of Samsung Electronics (Project Number SRFC-1T1502-07), a Kwanjeong
Educational Foundation Scholarship, and a Korea Foundation for Advanced Studies
Scholarship.

I remember my friends. Jaeyeol have always been my teacher, mentor, friend, and
brother, and he organized “Kang Sa Mo” for my wedding ceremony. Minsuk and Jong-
hwan took care of me as if I'm their younger brother. Hyeong Kyun and I went through
bad times together as comrades, and Joonhyuk, Tachong, Hyunsung and I went through
good times together as comrades. I remember Wonha. I also remember all ROPAS and

iii

SF members, and especially Soonho, Wonchan, and Wontae for helping me in my early

career.

None of this could have happened without my family. Mom and Dad, you have always
provided me with all that I needed so far. Now I am starting to realize what it meant
for you only after having my own child. All I can say is just thank you and love you.
Grandma, you colored my childhood with joy and warmth. I miss you so much and
I really hope you could attend my commencement ceremony. Minjung, your positive
thinking helped us bond together as a family, in good times and in bad. You are probably
the greatest sister in the history.

And Eunjung, my lovely and brilliant wife, you sacrificed a lot of things for this dis-
sertation and my career. Thank you for supporting and loving me. This dissertation, as
well as the rest of my life, is dedicated to you. Saeun, your smile raises me up even when
I am totally exhausted. Someday you will grow up, but I will be your shelter forever.
Eunjung and Saeun, I will always love you no matter what.

iv

Contents

Abstract

Acknowledgements

Chapter I Prologue

1

2

Introduction

1.1 Conflict between Low-Level Features and Compiler Optimiza-
tions

1.2 Reconciling Low-Level Features with Compiler Optimizations

Background: A Brief Tour of CompCert
2.1 Compiler Correctness
2.2 MemoryModel
2.3 The RTLLanguage
2.4 Constant Propagation

ChapterII Relaxed-Memory Concurrency

3

6

Introduction
3.1 Criteria for a Programming Language Memory Model
3.2 The “Out of Thin Air” Problem
3.3 A “Promising” Semantics for Relaxed Memory

Basic Model for Handling Relaxed Accesses
4.1 MainIdeas.
4.2 Formal Definition
Supporting Atomic Updates
FullModel

iii

10
1
13
16
20

6.1 Release/Acquire Synchronization 40

6.2 Sequentially Consistent (SC) Fences 44

6.3 “Plain” Non-Synchronizing Accesses 45

6.4 SystemCalls. 46

6.5 Modifying Existing Promises 46

6.6 FormalModel 47

7 Results. e 51
7.1 Compiler Transformations 51

7.2 Compilationto TSO 53

7.3 DRF Theorems oo i ittt 54

7.4 An Invariant-Based Program Logic 56

8 Proofs e 57
8.1 Thread-Local Simulation Relation 57

8.2 Proof of DRF-RA 60

8.3 Proof of DRF-LOCK 64

9 Related Work e 66
10 Follow-upand Future Work 69
Chapter III Separate Compilation and Linking 72
11 Introduction e 72
12 OVEIVIEW . . o o o ottt e e e e e e e e e e 75
12.1 Compositional Correctness Level A 75

12.2 Compositional Correctness Level B 77

13 Adapting Constant Propagation to Separate Compilation 80
13.1 Verifying Compositional Correctness Level A 8o

13.2 Verifying Compositional Correctness Level B 83

14 Adapting the Other Passes to Separate Compilation 84
141 RTL-Level Optimizations that Rely on Value Analysis 85

14.2 Selection e 85

14.3 Inlining 87

14.4 SImpIEXpr 87

15 Results. e 87
16 Discussion e e e 89
16.1 Related Work 89

16.2 Generality of Our Techniques 92

16.3 Impact 93

vi

Chapter IV

Cast between Integers and Pointers

17 Introduction e
18 Formal Semantics of Hybrid Model

18.1
18.2
18.3
18.4
18.5
18.6
18.7
18.8

Hybrid of Concrete and Logical Blocks
Combining Logical and Concrete Blocks
Choosing Concrete Blocks
Assigning Concrete Addresses
Operationson Pointers
Dead Cast Elimination
Drawbacks of the Hybrid Model
Language Semantics, ..

19 Fix to the LLVM and GCC miscompilation Bugs
20 Compiler Verification Techniques and Examples

20.1
20.2
20.3
20.4
20.5

Specification of Out of Memory
Running Example & Informal Verification
MemoryInvariants o 0oL
Proving Simulation L.
Examples

21 Discussion e

21.1
21.2
21.3
21.4

Chapter V

Implementation and Experiment Details
Related Work
Compatibility
Impact

Epilogue

22 Conclusion e

P

=
=

vii

94
94
97
97
97
98
99

101
102
103
105
106
106
107
109
111
112
114
114
115
116
118

119
119

129

List of Figures

Figure L1
Figure 1.2
Figure 1.3
Figure 1.4
Figure L5
Figure 1.6

Figure 111
Figure I1.2
Figure I1.3
Figure II.4

Figure I11.1
Figure IIL.2
Figure II1.3
Figure III.4
Figure IIL5

Figure IV1
Figure IV.2
Figure IV.3
Figure IV.4
Figure IV.5
Figure IV.6
Figure IV.7
Figure IV.8

An LLVM bug in the presence of integer-pointer casts
RTLsyntaxo vt
RTL semanticdomains
Operational semanticsof RTL
Example of constant propagation
CompCert’s simulation relation for the constant propagation .

Operational semantics for only relaxed read and write
Additional rule forupdates

Full operational semantics

A simple derivation in the invariant-based program logic . . .

Proving Level A correctness
Proving Level B correctness for RTL passes
A bug due to CompCert 2.4 value analysis.
Classification of optimization passes in CompCert

Changes to lines of codes for Level A and LevelB correctness .

A GCC bug in the presence of integer-pointer casts
Arithmetic optimization exampleI
Dead code elimination example
Ownership transferexample
Arithmetic optimization example II

Dead cast elimination example

Memory invariants for the running example

Memory invariants for hybrid model

viii

16
17
19
22

23

75
78
82
84
88

Chapter I

Prologue

1 Introduction

The C programming language is the lingua franca for systems programming, mainly
due to its three notable advantages: low-level features, portability, and performance. C
provides low-level features that offer programmers precise control over hardware such
as pointer manipulation, shared-memory concurrency, and asynchronous interrupt.
At the same time, C is portable in that C programs can be compiled and then exe-
cuted in most of the existing hardware. Furthermore, C provides decent performance:
a program written in C are usually outperforming equivalent programs written in other
languages—even including carefully hand-written assembly programs—when they per-
form exactly the same task. These advantages for decades have attracted system pro-
grammers, and as a result, a giant ecosystem was built around the C programming lan-
guage.

C provides low-level features and portability—seemingly conflicting properties—
at the same time because it is a balanced abstraction over various hardware assembly
languages. If C were exposing too much detail of particular hardware architectures, then
it would have not been able to support mismatching architectures, losing a significant
degree of portability; on the other hand, if C were exposing too little detail of hardware
architectures, then it would have not been able to provide low-level features. The design
choice of C as a hardware abstraction is so popular that other systems programming

languages—such as C++, D, Objective C, Swift, and Rust—Ilargely follow the design of
C and are often called “C-like”.

Compiler Optimizations Being a simple syntax translator from C to assembly lan-
guages, however, is insufficient for C compilers to provide the desired level of perfor-
mance. Instead, compilers perform optimizations that transform the given program to
be executed more efficiently in hardware while preserving its semantics. Optimizations
are so effective that they have been an essential ingredient of compilers since the early
days. For example, every system programmer expects a compiler to perform quite so-
phisticated optimizations such as register promotion [5] and register allocation [6]. Op-
timizations are becoming more important these days because recent hardware trends—
such as SIMD, GPU, and accelerators—offer potential for compiler optimizations to
further improve the performance of systems.

The following is an instance of the constant propagation optimization, which sig-
nificantly improves the performance of compilation results and is thus performed by
mainstream compilers such as GCC [2] and LLVM [3]:

void f() { void () {
1: int a = 42; 1: int a = 42;
2: 90); ~ 20905
3: print(a); 3: print(42); // const. prop.
} }
Suppose g () is an external function whose body is unknown to the compiler, and

print(a) prints the value of a to the screen. The function f () first assigns 42 to the
local variable a (line 1), calls some unknown external function g () (line 2), and then
prints a (line 3). As an optimization, mainstream compilers replace a with 42 at line
3, effectively propagating the constant 42 at line 1 to line 3. Compilers perform such
an optimization even in the presence of a function call to the unknown function g (),
because—at least in the viewpoint of compilers—the address of the variable a is not
leaked to g () and thus its content cannot be modified by g ().

This optimization, however, may change the program’s behavior, putting the sound-
ness of the optimization in danger. For instance, suppose that () is linked with the

following g ():

void g() {

1: int anchor;

2: int *xguess = &anchor + 10; // guessing &a
3: xguess = 666;

}

Here, the function g () tries to guess the address of a by exploiting the fact that stack
usually grows downwards with a fixed offset: it first declares a variable anchor and
guesses that a is located 10 words later than than anchor is. While extremely danger-
ous and thus discouraged, the guess sometimes happens to be correct, invalidating the
compiler’s reasoning that a is accessible only within the function f (). If it is the case,
when linked with g (), the original f () will print the evil value 666; on the other hand,
the optimized f () will print the expected value 42.!

To rescue the soundness of constant propagation, the ISO C18 standard [37] blames
g() for violating the rule of the C programming language by marking it as invoking
undefined behavior [37, §3.4.3p1]. Specifically, line 2 invokes undefined behavior be-
cause guess is derived from anchor and yet it does not point to the valid location
within anchor’s allocation [37, §6.5.6p8]. (Roughly speaking, all the pointers derived
from anchor shall point to anchor; otherwise, the behavior is undefined.) Now an
instance of undefined behavior allows compilers to do anything it chooses, from arbi-
trarily changing the code and thereby justifying the constant propagation optimization
to even making “demons fly out of your nose” [8].

Notice that C intentionally loses the ability to manipulate pointers in an unrestricted
way—e.g., deriving the address of a from that of anchor—in order to justify the con-
stant propagation optimization. This is beneficial because the performance improve-
ment offered by compiler optimizations outweights the cost of the restriction on the
low-level feature for unidiomatic programs. As a result, pointers in C should have a
richer structure than those in assembly languages that have the same representation as
integer values of the appropriate width and simply index into a single flat array repre-
senting memory.

"We got these results by separately compiling f () and g () and then linking them using GCC 8.2.1 with
compile option - fno-stack-protector in an x86-64 machine running Linux 4.20.

*Notice that undefined behavior is not necessary for higher-level languages—such as Java, C#, OCaml,
Haskell—to justify compiler optimizations thanks to their lack of low-level features. For example, constant
propagation is immediately justified in Haskell without resorting to undefined behavior thanks to its lack
of raw pointer.

Such a practice of taming low-level features for supporting compiler optimizations
is actually quite common in the design of the C programming language: mainstream
compilers perform aggressive optimizations that may change the behaviors of programs
that use low-level features in unidiomatic ways. As a result, C programs may have dif-
ferent meaning than the exactly same programs written in assembly languages (modulo
syntactic differences). In other words, C is no longer just a thin wrapper around assem-
bly languages but it should rather be an abstraction over both assembly languages and
compiler optimizations.

1.1 Conflict between Low-Level Features and Compiler Optimizations

Unfortunately, despite many years of academic and industrial efforts [37], it has proven
very difficult to adequately balance the conflicting criteria for low-level features and
compiler optimizations in the design of the C programming language. On the one hand,
C should support the common usage patterns of the low-level features in systems pro-
gramming, such as relaxed-memory concurrency, separate compilation, and cast be-
tween integers and pointers. In addition, programmers should be able to reason about
programs that use the low-level features. On the other hand, C should also support the
sophisticated and yet effective optimizations performed by mainstream compilers, such
as register promotion, constant propagation, and dead code elimination. To the best of
our knowledge, none of the existing proposals for C semantics sufficiently support both
low-level features and compiler optimizations at the same time.

Prior Work The ISO C standard, even after a series of revisions including C89, Coo,
C1, and C18, still has quite unclear specification for some of the low-level features as
of this writing. First, ISO C18 [37] informally describes the C programming language
in English prose, which is often ambiguous and confusing. The problem has only wors-
ened by the fact that the description contains many ad-hoc exceptions including 203
cases of undefined behavior [37, J.2]. Second, ISO C18 intentionally leaves the precise
meaning of some of the low-level features undefined. For example, the semantics of cast
between integers and pointers is not properly defined in ISO Ci18, while it is essential
for applications such as operating system kernels and language runtimes.

Accordingly, there have been numerous efforts to capture the subtleties of the ISO
C standard by giving an alternative formal language definition [56, 83, 26, 63, 46]. How-
ever, all these projects—while supporting a significant subset of ISO C99 or LLVM IR—
make unrealistic simplifying assumptions on C semantics and lack support for various
low-level features.

As a result, many systems programming communities, e.g., the Linux kernel de-
velopers, use their own dialect of C that is closer to assembly languages and supports
more low-level features and less compiler optimizations than the standard. The dialects,
however, are often informally described as the set of turned-on compiler optimizations
(e.g., “gcc -027), whose meaning is unclear and unstable.

Problem The unresolved conflict between low-level features and compiler optimiza-
tions causes difficulties to both programmers and compiler writers. For programmers, it
is difficult to expect how programs that use low-level features will behave because com-
pilers may perform conflicting optimizations, which introduce surprising non-local
changes and difficult-to-find bugs in program behavior [80, 81]. As a result, mainstream
compilers are typically unused for safety-critical systems or used with only few com-
piler optimizations turned on, significantly increasing verification cost and degrading
performance of safety-critical systems. One the other hand, for compiler writers, it is
difficult to figure out whether an optimization is sound or not in the presence of low-
level features. Even worse, sometimes a combination of optimizations—while each and
every one of them seems legit—results in miscompilation bugs, for which it is unclear
how to fix.

A Miscompilation Bug Figure .1 presents an LLVM miscompilation bug® due to con-
flicting optimizations. Note that the type uintptr_t is an integer type that is capable
of holding a pointer value [37, §7.20.1.4]. For this program, the expected outcome is
either a=0 x=15 or a=100 x=0 for the following reasons:

« Suppose n=0. Then pi points to X after line 12. Thus line 13 writes 15 to X, and
the end result is a=0 x=15.

o Suppose otherwise. Then a=100 and pi points to y after line 12. Thus line 13
writes 15 to y, and the end result is a=100 x=0.

However, the result a=0 x=0 is observed when c. c and b. ¢ are compiled with clang
-02 and then executed due to the following series of optimizations:

1. The integer comparison pi != yi atline 4 is replaced with the pointer compar-
ison & = y+1.

*This bug is reported in the LLVM bug tracker: https://bugs.1lvm.org/show_bug.cgi?id=
34548

https://bugs.llvm.org/show_bug.cgi?id=34548
https://bugs.llvm.org/show_bug.cgi?id=34548

// c.c
#include <stdio. h>
#include <stdint. h>

void f(intx, intx);

int main()

{

1: int a=0, y[1l], x = 0O;

2: uintptr—t pi = (uintptr_t) &x;
3: uintptr—t yi = (uintptr_t) (y+1);
4: uintptr—t n = pi != yi;

5: if (n) {

6: a = 100;

7: pi = yi;

8: }

9: if (n) {

10: a = 100;

11: pi = (uintptr_t) y;
12: }

13: *(int *)pi = 15;

14: printf("a=%d x=%d\n", a, x); // observed: a=0 x=0

15: f(&x,y);
16: return 0;
}

// b.c

void f(int+x, intxy) {}

Figure I.1 An LLVM bug in the presence of integer-pointer casts

2. The compiler assumes n=0, which is allowed since now line 4 is comparing point-
ers from different origins.

3. Lines 5-12 is eliminated since the condition n evaluates to false.

4. (intx*)pi atline 13 is replaced with (int*)y1i since n=0, and then with y+1
since yi=(uintptr_t) (y+1).

5. Line 13 is eliminated since it is writing to an invalid address y+1. Then line 14
prints a=0 x=0.

In short, LLVM has a miscompilation bug due to the conflict among the above five
optimizations. However, each of them looks legit—at least in the viewpoint of the LLVM
compiler—and it is unclear which one(s) is to blame. That is one of the reasons this bug
is still open in the bug tracker as of this writing.

1.2 Reconciling Low-Level Features with Compiler Optimizations

In this dissertation, we resolve the conflict between some of the low-level features cru-
cially used in systems programming and major compiler optimizations. Specifically,
we develop formal semantics of relaxed-memory concurrency (Chapter II), separate
compilation (Chapter III), and cast between integers and pointers (Chapter IV) that
(1) supports their common usage patterns and reasoning principles, and (2) provably
validates major compiler optimizations at the same time.

Our formal semantics is beneficial to both programmers and compiler writers. Since
formal semantics is a mathematically clear definition of program behaviors, it makes
possible for programmers to expect how compiled programs will behave regardless of
which optimizations are performed by compilers. On the other hand, compiler writers
can figure out whether an optimization is sound or not using formal semantics as the
criteria. In particular, with formal semantics, we can point out which optimization(s)
is to blame in the miscompilation bug above.

To establish confidence in our formal semantics, we prove the soundness of com-
piler optimizations in the presence of the low-level features. The soundness proof guar-
antees that they preserve the semantics of source programs and do not introduce any
bugs. The absence of miscompilation bugs ensures higher level of reliability and thus en-
ables optimizations to be used even for safety-critical systems with confidence. We have
formalized all the soundness proofs reported in this dissertation in the Coq theorem
prover [35], which automatically and rigorously checks the validity of the soundness
proofs. The formalization is available online [1].

In the rest of this section, we will briefly describe our main contributions, namely
developing formal semantics of three low-level features of C.

Chapter II: Relaxed-Memory Concurrency Relaxed-memory concurrency is the study
of relaxed behaviors, which are observable behaviors of concurrent programs beyond
those allowed in sequential consistency (think: interleaving of the executions of threads).
Relaxed behaviors are made possible due to hardware and compiler optimizations such
as out-of-order execution or instruction reordering/merging. While relaxed behaviors
complicate reasoning of concurrent programs, they are unavoidable in effectively ex-
ploiting the parallelism provided by shared-memory architecture. Despite many years
of research, however, it has proven very difficult to develop a formal semantics for pro-
gramming languages with relaxed-memory concurrency that adequately balances the
conflicting desiderata of programmers and compilers.

In this chapter, we propose the first formal semantics of relaxed-memory concur-
rency that (1) justifies simple invariant-based reasoning, thus demonstrating the ab-
sence of bad “out-of-thin-air” behaviors, (2) supports “DRF” guarantees, ensuring that
programmers who use sufficient synchronization need not understand the full com-
plexities of relaxed-memory semantics, (3) is implementable, in the sense that it prov-
ably validates many standard compiler optimizations and reorderings, as well as stan-
dard compilation schemes to x86-TSO, (4) accounts for a broad spectrum of low-level
concurrency features in C, and (5) defines the semantics of racy programs without re-
lying on undefined behaviors, which is a prerequisite for applicability to type-safe lan-
guages like Java. The key novel idea behind our semantics is the notion of promises: a
thread may make the effect of a write before actually executing it, thus enabling other
threads to read from that write out of order. Crucially, to prevent out-of-thin-air be-
haviors, a promise step requires a thread-local certification that it will be possible to
execute the promised write even in the absence of the promise.

Our semantics draws interest from both industry and academia. Our semantics not
only serves as a guide to C/C++ relaxed-memory concurrency [7, 4] but also influences
the discussion on the standard semantics for C/C++ and compiler IRs (private com-
munication in mailing lists). Svendsen et. al. developed reasoning principles for our
semantics [77], and Podkopaev et. al. validated compilation schemes for our semantics
to various architectures such as ARMv7, ARMvS, RISC-V, and Power [68]. Furthermore,
the idea of promises and certification is also used to model the relaxed-memory con-
currency in ARMv8 and RISC-V [70].

This chapter draws heavily on the work and writing in the following paper:

[40] Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, Derek Dreyer. A Promising
Semantics for Relaxed-Memory Concurrency. POPL 2017.

Chapter III: Separate Compilation and Linking Separate compilation and linking
is essential in practice because they significantly reduces compilation time. However,
major compiler verification efforts, such as CompCert and Vellvm, have traditionally
simplified the verification problem by restricting attention to the correctness of whole-
program compilation, leaving open the question of how to verify the correctness of sep-
arate compilation. Recently, a number of sophisticated techniques have been proposed
for proving more flexible, compositional notions of compiler correctness, but these ap-
proaches tend to be quite heavyweight compared to the simple “closed simulations”
used in verifying whole-program compilation. Applying such techniques to a compiler
like CompCert, as Stewart et. al. have done [76], involves major changes and extensions
to its original verification.

In this chapter, we show that if we aim somewhat lower—to prove correctness of
separate compilation, but only for a single compiler—we can drastically simplify the
proof effort. Toward this end, we develop several lightweight techniques that recast the
compositional verification problem in terms of whole-program compilation, as far as
the compiler’s transformations and optimizations satisfy what we call monotonicity. The
proof techniques enable us to largely reuse the closed-simulation proofs from existing
compiler verifications.

We demonstrate the effectiveness of these techniques by applying them to Comp-
Cert 2.4, converting its verification of whole-program compilation into a verification
of separate compilation in less than two person-months. This conversion only required
a small number of changes to the original proofs. Along the way, we uncovered two
compiler bugs—one of which is on separate compilation and the other is orthogonal to
separate compilation—and our proof techniques are subsequently adopted in Comp-
Cert 2.7.

This chapter draws heavily on the work and writing in the following paper:

[42] Jeehoon Kang, Yoonseung Kim, Chung-Kil Hur, Derek Dreyer, Viktor Vafeiadis. Lightweight
Verification of Separate Compilation. POPL 2016.

Chapter IV: Cast between Integers and Pointers Cast between integers and point-
ers is one of the defining characteristic of the C programming language in that it allow
cross-platform low-level manipulation of memory layout, which is essential for appli-
cations such as operating system kernels and language runtimes. However, the feature

drastically conflicts with major compiler optimizations, as demonstrated by the example
shown in Figure I.1. The ISO C standards try to reconcile the feature and the optimiza-
tions using the notion of provenance, but it fails to support certain common optimiza-
tions and requires an intrusive change to the language semantics.

In this chapter, we propose the first formal semantics of cast between integers and
pointers that (1) fully supports operations on the representation of pointers, including
all arithmetic operations for pointers that have been cast to integers, (2) validates ma-
jor compiler optimizations on memory accesses, and (3) is simple to understand and
program with. The key novel idea behind our semantics is the notion of concretization:
when allocated, a memory block is not assigned a concrete address yet; only when it is
required by a pointer-to-integer cast, the block is lazily assigned a concrete address, i.e.,
the block is concretized.

Along the way, we discovered a GCC bug in the presence of integer-pointer casts,
which clearly shows it is safe to turn off too aggressive alias analyses. Furthermore, our
idea has subsequently been refined by follow-up papers by other researchers [54, 60],
which are accompanied with promising revision proposals to the LLVM IR and the ISO
C standard.

This chapter draws heavily on the work and writing in the following paper:

[41] Jeehoon Kang, Chung-Kil Hur, William Mansky, Dmitri Garbuzov, Steve Zdancewic, Vik-
tor Vafeiadis. A Formal C Memory Model Supporting Integer-Pointer Casts. PLDI 2015.

Organization The rest of this chapter provides the technical background on formal
semantics and compiler verification that informs the rest of this dissertation (Section 2).
Chapters II to IV present the main contributions of this dissertation. This dissertation
concludes with Chapter V, which summarizes its contributions, impacts, and future
work (Section 22).

2 Background: A Brief Tour of CompCert

Before delving into the main contributions, we briefly review the technical background
on formal semantics and compiler verification that informs the rest of this dissertation,
using the CompCert C compiler [55] as the learning material. The technical ideas and
results presented in this section apply not only to CompCert but also to other formal
semantics and compiler verification projects as well.

The CompCert project was initiated by Xavier Leroy over ten years ago and then
grows as the first realistic verified compiler. CompCert is verified in the sense that it
“is accompanied by a machine-checked proof of a semantic preservation property: the

10

generated machine code behaves as prescribed by the semantics of the source program.”
As such, CompCert guarantees that program analyses and verifications performed on
its input carry over soundly to its machine-level output. CompCert is realistic in the
sense that it “could realistically be used in the context of production of critical software”
It compiles a significant subset of ISO C99 down to several architectures, and it performs
a number of common and useful optimizations. It received significant interest from the
avionics industry [14, 75], and recently, it is certified for being used for nuclear power
plant [50]. It has also served as a fundamental building block in academic work on end-
to-end verified software [12].

In this section, we first explain CompCert’s correctness statement, as well as its sim-
ulation verification technique (Section 2.1). To flesh out the details on formal semantics
and compiler verification, we use RTL—one of CompCert’s internal representations—
and constant propagation—one of CompCert’s optimizations—as a running example.
Specifically, We first review CompCert’s memory model that is specifically designed
to verify compiler optimizations (Section 2.2). Then we explain the RTL language on
which constant propagation and most of the other optimizations are performed in the
CompCert’s compilation pipeline (Section 2.3), and how constant propagation works
and how CompCert verifies it (Section 2.4). Throughout this section, we keep the pre-
sentation semi-formal, abstracting away unnecessary detail to get across the main ideas.
For more details, we refer the reader to [55, 57].

2.1 Compiler Correctness

End-to-End Correctness Roughly speaking, the correctness result of CompCert can
be understood to assert semantic preservation, which in turn means the following. Sup-
pose s. cisa “source” file (in C), t . asmis a “target” file (in assembly), and C is a verified
compiler (represented as a function from C files to assembly files).

C(s.c) =t.asm s =load(s.c) t =load(t.asm)
Behav(s) 2 Behav(t)

If t.asmis the result of compiling s . ¢ with C, then executing t.asm according to as-

sembly semantics will result in a subset of the behaviors one could observe from execut-
ing s . c according to C semantics. (We write s = load(s.c) to denote the machine state
that results from loading s.c into memory, Behav(s) to denote the observable behav-
iors of the execution of s, and analogously for ¢ and t.asm.) Hence, we say that t.asm,
the target-level output of C, refines its source-level input, s . C.

Notice that the compiler correctness statement presented here will be generalized
to support separate compilation in Chapter III.

11

Set of Behaviors We consider sets of behaviors as opposed to single behaviors be-
cause a program may produce multiple behaviors due to nondeterminism. Given a set
of I/O events that programs may generate and users may observe, a behavior is one of
the following three forms: (1) a terminating execution producing a finite sequence of
I/O events, ey, -+, e, term; (2) a diverging execution that has produced only a finite se-
quence of I/O events, e,, -+, e,, nonterm; and (3) a diverging execution producing an
infinite sequence of I/O events, e, -, ey, -

Undefined behavior requires special attention in defining the set of behaviors, be-
cause the program states in the condition are neither terminated nor transitioning to
other states, fitting into none of the behavioral categories. We assign the set of all behav-
iors to the program states invoking undefined behavior in order to validate compiler
optimizations: if the source program’s behavior is undefined, then compiler can choose
any program as its result; on the other hand, if the target program’s behavior is unde-
fined, then the source program’s behavior should also be undefined.

Notice that the notion of behaviors presented here will be generalized to support
out-of-memory in Chapter I'V.

Per-Pass Correctness To verify compilation correctness for the compiler C, Comp-
Cert verifies each pass of C independently. Specifically, for each pass (transformation)
T from language L, to L,—where the L;’s may be C, assembly, or some intermediate
languages—we show the following:

T(s.11)=t.12 s =load(s.11) t =load(t.12)
Behav(s) 2 Behav(t)

That is, given the input 5. 11 and output t.12 of the 7 transformation, we show that
the behaviors of t.12 are contained within those of s.11. Since subset inclusion is
transitive, it easy to see that the proofs of the constituent passes of C compose to estab-
lish the correctness of C as a whole.

Verifying Per-Pass Correctness Now how does one actually prove the verification
condition for each individual pass? The standard approach taken by CompCert is to
use (closed) simulations. Informally, we will say that a simulation R is a relation be-
tween running programs (i.e., machine states) in L, and L, such that, if (s,) € R, then
the behaviors one observes while stepping through the execution of ¢ are matched by
corresponding observable behaviors in the execution of s. One can think of R as im-
posing an invariant, which describes (and connects) the possible machine states of the
source and target programs, and which must be maintained as the programs execute.

12

We leave further details about simulations until Section 2.4; suffice it to say that they
satisty the following “adequacy” property:

R is a simulation (s,t) €R
Behav(s) 2 Behav(t)

Thus, to establish the verification condition for pass 7T, it suffices to exhibit a simulation
R that relates load(s.11) and load(t.12).

In the rest of this section, we flesh out the details on formal semantics and compiler
verification in CompCert, using constant propagation as the running example. Con-
stant propagation is essentially a transformation that optimizes memory operations, so
we will first review their semantics in CompCert.

2.2 Memory Model

CompCert supports the following memory operations:

load € Mem — Addr — P(Val)

store € Mem — Addr — Val » P(Mem)
malloc € Mem — uint32 — P(Addr x Mem)

free € Mem — Addr - P(Mem)

Memory, m € Mem, supports four operations: load, store, malloc, and free. Note that all
operations may produce multiple results due to the nondeterminism arising from e.g.,
concurrency. A load operation reads the value, v € Val, of an address, a € Addr, and a
store operation writes a value to an address in the memory. If a load or store operation
access an illegal address, then there are no valid results. A malloc operation allocates a
memory object of the specified size of type uint32 (the set of 32-bit unsigned integers),
returning the new memory and the address of the allocated object, and a free operation
deallocates an allocated memory object.

Now we define the semantic domain for and the semantics of those memory oper-
ations, or in other words, define the memory model. The memory model presented here
will be generalized to support integer-pointer casts and relaxed-memory concurrency
in Chapter IV and Chapter II, respectively.

To simplify the presentation, we do not discuss many aspects of C memory models
that are orthogonal to the contributions of this dissertation. Specifically, we (1) assume
a 32-bit architecture: words are 4 bytes wide and the size of the address space is 23, as
eminent from the signature of malloc; (2) consider only unsigned integer and pointer

13

values, and omit values of other types such as int32, float or char; and (3) omit
subword arithmetic, and assume each address stores a 32-bit value.

Concrete Model The most straightforward way to define a memory model is closely
following the assembly language: pointers have the same representation as integer val-
ues of the appropriate width, and they simply index into a single flat array representing
memory. In such a concrete memory model, memory consists of a 23*-sized array of val-
ues, and a list of allocated blocks, represented as pairs (p, n) of the blocK’s starting ad-
dress and its size. Loading from or storing to an unallocated address raises an error (i.e.,
undefined behavior). Values are just 32-bit integers, since pointers are merely integers
in the concrete model.

Mem % (uint32 — Val) x list Alloc

Alloc & (p,n) | peuint32Ancuint32}

Val % {icuint32}

Memory allocation inserts a block into the list of allocated blocks, whereas deallo-
cation removes one. Overall, the list of allocated blocks should be consistent:*

o If (p, n) is allocated, then @ # [p, p + n) € (0,2%* —1).

o If blocks (p;,n,) and (p,, n,) are distinct allocations, their ranges [p;, p; + #,)
and [p,, p, + n,) are disjoint.

The concrete model, however, does not support standard compiler optimizations. As
we have seen in Section 3, constant propagation is unsound on the concrete model in the
presence of external function calls, because the model does not provide a mechanism for
ensuring that a module has exclusive control over some part of memory, and as a result,
programmers should pessimistically assume that unknown code can read and update
the contents of every allocated memory cell. Furthermore, dead allocation elimination
is also unsound in the concrete model. For example, the following transformation—
removing the unused local variable a—might change the behavior of the program: by
virtue of there being one fewer memory cells allocated, the call to g () might succeed

“These are a subset of mallocC’s properties according to the ISO Ci8 standard. For more details, see
[37, §7.22.3p1 and $6.5.8ps].

14

where initially it exhausted memory:

void f() { void f() {

1: int a = 42; 1: // dead allocation elimination
2: 90); ~ 20 90);

3: print(42); 3: print(42);

} }

CompCert’s Logical Model In order to support standard compiler optimizations,
CompCert is based on a logical memory model [56, 57] rather than the naive concrete
model. In the logical model, memory is a finite collection of logical blocks with unique
block identifiers, together with the maximum of the allocated block identifiers. Each
block is a contiguous, fixed-sized array of values annotated with a validity flag v that
indicates whether the block is accessible or has been freed. As before, accessing a freed
block raises an error. Values are either 32-bit integers, logical addresses, or the special
undefined value that represents uninitialized data. Here, a logical address (1, i) consists
of a block identifier / and an offset i inside the block.

Mem %' { (nb, bs) | nb € Blockld A bs € Blockld —g, Block }
Block déf{ (v,n,c) |ve{valid,freedf AneNAce Val"}
Val d:ef{ i €uint32 } w Addr w {undef}

Addr % { (1, 1) e Blockld x uint32}

An important advantage of the logical model over the concrete one is that it allows
functions to have exclusive control over a logical block as long as they do not allow its
address to escape. The reason is that it is not possible to manufacture the logical address
of an already allocated block. This property guarantees the correctness of many useful
optimizations, such as constant propagation across function calls and dead allocation
elimination. A secondary advantage is that programs have infinite memory, rendering
their allocation behavior unobservable, which in turn makes it easy for compilers to
remove dead allocations.

Apart from that logical models have a slightly more complicated semantics, their
main disadvantage is that they do not support integer-to-pointer casts very well. As a
result, CompCert does not support real-world use cases of integer-pointer casts well.
Specifically, they are treated as nops (i.e., the identity function), and thus variables of
integer (or pointer) types can contain both integers and logical addresses. This conflicts
with the intention of integer-pointer casts to freely manipulated pointers as if they are
integer values. We will address this disadvantage in Chapter IV.

15

Prog :=Decl

Decl :=extern [const] Id[uint32] // External Variable
| [const]Id[uint32]:= { GVal } /] Variable
| externId FSig /] External Function
| Id FDef // Function

FSig := (Reg) // Function Signature

FDef ::= (Reg) { Reg; sp[uint32]; Code} // Function Definition
Code ::= Nodeld : Instr

Instr ::= Reg := FVal jmp Nodeld /] Immediate Value
| Reg:=op Reg jmp Nodeld /] Operation
| Reg:=FVal[uint32] jmp Nodeld // Load
| FVal[uint32] := Reg jmp Nodeld /] Store
| cond-op Reg ? jmp Nodeld : jmp Nodeld /! Conditional
| Reg:= FVal(Reg) jmp Nodeld // Call
| return Reg /] Return
-

GVal :=1d | uint32 |undef

Fval :=GVal|Reg|sp

uint32 == the set of 32-bit unsigned integers

Id ::= the set of identifiers for variables and functions
Reg ::= the set of register names

Nodeld := the set of node labels

Figure I.2 RTL syntax

It is worth noting that the logical model is not intended to replace the memory
model in the ISO Ci18 standard. It is a formal refinement of the (informal) standard that
can be used for formally reasoning about programs and program transformations (as
in compiler verification).

2.3 The RTL Language

So far we discussed CompCert’s logical memory model and its advantages. To provide
a more concrete context for formal semantics and compiler verification, we explain the
syntax and semantics of CompCert’s register transfer language (RTL), the compiler’s
internal language where most of its optimizations take place. For presentation purposes,
we simplify the language a bit by removing types and other unnecessary details.

16

GEnv d:ef{ (g.d) | g € Id =g, Blockld A
d € Blockld —gy, FSig ® FDef }

State " IState w CState & RState
IState % {istms fd sp pcrs|
m € Mem A s € StkFrm A fd € FDef A
sp € Addr A pc € Nodeld A rs € Reg —¢, Val }
CState d:ef{cst m s fdsvs | m e Mem A s € StkFrm A
fds e FDef & FSig A vs € Val }
RState d:ef{rst msv|meMemAseStkFrm A v € Val }
StkFrm d:ef{ (r, fd,sp, pc,rs) | r € Reg A fd € FDef A
sp € Addr A pc € Nodeld A rs € Reg —~, Val }

Figure I.3 RTL semantic domains

Syntax The syntax of the CompCert’s RTL is given in Figure I.2. Programs are just
a list of global declarations, which consist of (1) declarations of external variables and
functions provided by different compilation units, and (2) definitions of variables and
functions provided by the current compilation unit. For global variable declarations
and definitions, we also specify a (non-negative) integer number denoting the size of
the declared block in bytes.

Function declarations only contain the function signature, which is a list of param-
eters, but function definitions additionally contain a list of local registers, the size of
their stack frame, and the code. The code is essentially a control-flow graph of three-
address code: it is represented as a mapping from node identifiers to instructions, where
instructions either do some local computation (e.g., write a constant to a register, or per-
form some arithmetic computation), load from a memory address, store to memory, do
a comparison, call a function, or exit the function and return a result. Each instruction
also stores the node identifier(s) of its successor instruction(s).

Throughout we assume that programs satisfy some basic well-formedness proper-
ties: there cannot be multiple definitions for the same global variable, declarations and
definitions of the same variable should have matching signatures, and the parameter
and local variable lists for each function do not have duplicate entries.

Semantics The semantic domain used in CompCert’s RTL is given in Figure L3.
A global environment, ge = (g,d) € GEnv, maps each global variable name to a

17

logical block identifier, and each logical block identifier corresponding to some func-
tion’s code to either the corresponding function signature for external functions or the
corresponding function definition for functions defined in the program.

Program states can be of three kinds: normal instruction states (ist), call states
(cst) just before passing control to an invoked function, and return states (rst), just
after returning from an invoked function. Instruction states store the memory (m), the
sequence of parent stack frames (s), the definition of the function whose body is cur-
rently executed (fd), the current stack pointer (sp), the program counter (pc), and the
contents of the local registers (rs). Call states record the memory, the stack, and the
function to be called (fds) with its arguments (args). The function to be called can be
either an internal function, in which case we record its definition, or an external one,
in which case we record its signature. Return states record just the memory, the stack,
and the value that was returned by the function. A stack s is a list of stack frames, each
of which records the same information as normal instruction states, except with the
addition of a register name r where its return value should be stored, and minus the
memory (m) and stack (s) components.

The meaning of programs is described by three definitions:

get-genv € Prog — GEnv
load € Prog — State
— ¢ P(GEnv x State x Event x State)

The first function, get-genv(prg), returns the global environment corresponding to the
program: it “allocates” the global variables of the program sequentially in blocks 1, 2,
3, and so on, and maps the blocks corresponding to function symbols to the relevant
function definition or signature. Similarly, load(prg) returns the initial state obtained
by loading a program into memory: it initializes the memory m with the initial values
of the global variables at the appropriate addresses generated by get-genv(prg), and
returns a call state, cst m [] fd [|, where fd is the function definition corresponding
tomain(). Loading is a partial function because it is undefined for programs without
amain() function.

The < relation is a small-step reduction relation describing how program states
evolve during the computation. For clarity, we write s <> ge §' instead of (ge, s, 0,5") € —.
The operational semantics for RTL is fairly standard and shown in Figure I.4: there is
a rule for each of the various basic instructions of the language. Starting from normal
instruction states, the instruction at the node pointed to by the program counter is scru-
tinized (fd@pc). Depending on what instruction is there, only one rule is applicable.

18

(1MM) (op)

fd@pc = (dst := src jmp pc’) fd@pc = (dst = op args jmp pc’)
rs' = rs[dst < [src] (ge,sp,rs)] rs' = rs[dst < [op] (ge, sp, [args] (rs))]
ist ms fd sp pcrs g ist ms fd sp pc’ rs' ist ms fd sp pcrs g ist ms fd sp pc’ rs'
(LoAD) (STORE)
fd@pc = (dst == src[n] jmp pc’) fd@pc = (dst[n] := src jmp pc’)
(1,i) = [src] (ge,sp, rs) (1,1) = [dst] (ge, sp,rs)
rs' = rs[dst < m[(L,i+n)]] m' =m[(L,i+n) < [src] (rs)]
ist ms fd sp pcrs Sg ist ms fd sp pc’ rs' ist ms fd sp pcrs g ist m's fd sp pc’ rs
(conND)

fd@pc = (cond-op args ? jmp pc, : jmp pc,)
b = [cond-op] (ge, sp, [args] (rs))
pc’ =b?pe :pe,
ist ms fd sp pcrs Sg ist ms fd sp pc’ rs

(cALL)
fd@pc = (res := f(args) jmp pc’)
(L,o) = [f] (gesp,rs)
fds' = findfunc(ge, 1)

vs = [args] (rs)
ist ms fd sp pcrs Sge cst m ((res, fd, sp, pc’,rs)us) fds' vs

(CALL2-INTERNAL)
(m', 1) = alloc(m, stacksize(fd))

pc = entrynode(fd) (CALL2-EXTERNAL)
rs = init-regs(params(fd), vs) (0,v,m") e extcall-sem(fs, ge, vs, m)
cstms fdvs ige istm’ s fd (1,0) pcrs cstms fsvs &ge rstm' sv
(RETURN1)
fd@pc = (returnr)
v =[r] (rs) (RETURN2)
m' = free(m, sp, stacksize(fd)) rs' = rs[res < v]
ist ms fd sp pcrs Sgerstm'sv rst m (res, fd,sp, pc,rs)is v g ist ms fd sp pcrs'

Figure I.4 Operational semantics of RTL

19

The corresponding rule calculates the new values of the registers, the memory (for store
instructions), and the next program counter. Calls and returns are treated a bit differ-
ently: they do not directly transition from an instruction state to the next instruction
state—they go through an intermediate call/return state.

In more detail, if the next instruction is a call instruction, rule (carL1) looks up the
function in the global environment, evaluates its arguments, creates a new stack frame
corresponding to the current instruction state, and transitions to a call state. From a call
state, there are two possible execution steps. If the function to be called is internal, i.e.,
we have its function definition fd € FDef, rule (CALL2-INTERNAL) applies. It allocates
the necessary stack space for the called function, initializes the parameter registers with
the values passed as arguments, sets the program counter to point to the first node of the
called function, and moves to the appropriate instruction state of the called function.
If the function to be called is external, i.e., we have a function signature fs € FSig, rule
(cALL2-EXTERNAL) goes directly to the return state, and generates an event ¢ indicating
that it called an external function.

Conversely, rule (RETURN1) returns from a function by evaluating the result to be
returned, deallocating the stack space used by the function, and transitioning to the
return state. Then rule (RETURN2) pops the top-most stack frame and transitions to
a normal instruction state thereby restoring the registers, program counter, and stack
pointers of the calling function.

2.4 Constant Propagation

Now we explain how CompCert’s constant propagation works, and how it verifies the
optimization using the simulation technique.

Algorithm Given a program prg, constant propagation walks through each function
definition fd of the program and transforms it using the function transfun(prg, fd).
This in turn runs a “value analysis” to determine which variables (whether global vari-
ables or local registers) hold a known constant value at each program point and then,
based on that information, simplifies the program.

The analysis consists of two parts: (a) the global part, which detects which global
variables cannot be updated (i.e., those declared with the const qualifier), and (b) the
local part, which analyzes the code of a function and calculates an abstract value for each
register and stack variable. The abstract value of a variable can be either 1 if the variable
holds undef, or a constant number, or NS if the variable contains anything except for
a pointer pointing into the current stack frame, or T if no more precise information is

20

known. These abstract values form a lattice by taking the order L c num = NSE T.

The value analysis performs a usual traversal of the code. When calling a function, if
it can be determined that no memory address can point to the current stack frame and
none of the function’s arguments point to the current stack frame (i.e., their abstract
value is at most NS), then the abstract value of the function’s result is also NS, and the
abstraction of the stack memory is preserved. If, however, a pointer to the current stack
frame has escaped, then any information about the stack memory is forgotten.

The transformation part itself is straightforward: at each node » of the function’s
CEG, if the analysis has determined that a variable has a constant value at node 7, then
the use of that variable is replaced by the constant it holds, and the instruction is suitably
simplified.

For example, the algorithms works for the constant propagation example presented
in Section 3 as follows (albeit presented for a different language). First, the analysis re-
sult for X is the constant number 42 after line 10, and it continues to be 42 after line
20 because the address of X is not leaked to the external function. Then based on this
analysis result, CompCert replaces X with 42 at line 30.

As a more interesting example, Figure 1.5 shows the effect of constant propagation
applied to a simple program. The program contains one internal function, f, which calls
an external function, g, and three zero-initialized variables: a local variable (a register),
X, an address-taken variable on the stack, sp[0], and a global variable, gv [0]. After the
external function call, constant propagation can safely assume that X = o and thereby
simplify the conditional at node 5, but cannot do the same for sp[0] at node 4 be-
cause its address was passed to the external function and its value might therefore have
changed. Further, at node 6, constant propagation notes that the global variable gv[0]
has been declared with the const qualifier, and can therefore assume that gv[0] = o.

Verification The correctness proof of the constant propagation pass in CompCert
establishes the existence of a simulation relation, R, that relates the loading of the source
and target programs. That is, for every well-formed source RTL program prg, it proves
there exists a simulation R(prg) such that (load(prg),load(7ep(prg))) € R(prg).
The simulation relation, R, used for the constant propagation pass is given in Figure I.6.

It is defined in terms of matching relations on states, stack frames, and stacks and func-
tion definitions (~state> ~frame> ~stack> and ~¢def respectively). These relations take as a
parameter the source program, prg, which is used to relate the function definitions of
the source and target programs.®

>The version shown here is a slight simplification of the actual simulation used in the constant propa-

21

extern g(a,b); extern g(a,b);
const gv[l] := { 0 }; const gv[l] := { 0 };

) | () {

X, Y X, Y

spl4]; spl4];
1: sp[O] :=0 jmp 2; 1: sp[0] := 0 jmp 2;
2: x =0 jmp 3; 2: x =0 jmp 3;
3: y :=g(sp,x) jmp 4; 3: y :=g(sp,x) jmp 4;
4: sp[0] >0 ? jmp 5 : jmp 6; 4: sp[0] >0 ? jmp 5 : jmp 6;
5: x>0 7 jmp 6 : jmp 7; — 5: jmp 7; // CHANGED
6: return gv[0]; > 6: return 0; // CHANGED
7: return y; 7: return y;
} }

Figure 1.5 Example of constant propagation

We say that two function definitions are related in the program prg, written fd ~gef
fd', if the target function, fd', is the result of applying constant propagation to the
source function, fd. Two stack frames are related by prg + sf ~game sf if the func-
tion code in sf’ is the transformation of the function code of sf, the stack pointer and
program counters agree, and the registers of sf’ hold equal or more defined values than
those of sf. Two stacks are related, prg + s ~g,ci 8, if they have the same length and
their stack frames are related element-wise.

Two states are related, prg + s ~gate s if (1) they are of the same kind, (2) the
memory of s is an extension of that of s, (3) their stacks are related by ~gcx, (4) the re-
spective function definitions are related by ~¢4.f (When applicable), (5) the stack pointer
and program counter agree (when applicable), and (6) the registers/arguments/return
value of s is equal or less defined than that of s’.

Finally, the two states are in the simulation relation R if they are related by ~tate
and the source state satisfies the value analysis invariant, sound-state(prg, s). This in-
variant basically says that the (concrete) value of each variable in the state s is included
in the variable’s abstract value computed by the analysis at the current program point.
The invariant depends on the program for two reasons: (1) so that it can calculate the
global environment, ge = get-genv(prg), and (2) so that it can ‘run’ the analysis on the
program so as to be able to compare its results with the current state.

The basic soundness properties of the value analysis are (1) that the sound-state

gation pass. It abstracts away some tedious details of the actual ~f,me definition that are orthogonal to our
story. This is merely to streamline the presentation.

22

prg + fd ~ger fd' def fd' = transfun(prg, fd)

prg - fd ~ger fd' 7S <ger 15’
prg - (T’,fd,Sp,pC,TS) ~frame (T,fd',sp,pc, TS’)

prg+- Sf ~frame Sf, S ~stack s
pre =[] ~stack [] prg - sfus ~gpack sfus’

’ ’ / ’
m Eext M S ~stack S PTg = fd ~fdef fd 7S <def TS

prg+ist ms fd sp pcrs ~sae ist m' s’ fd' sp pers’

! ! ! l4
M Cext M S ~sack S Prg+ fd ~gaer fd args <get args

prg - cst ms fd args ~sae cst m' s’ fd' args’

/ / /
m Sext M S ~stack S V <det V

Prg - ISt m sV ~gae rst m’ s’ v/

(s,s") € R(prg) def Prg - s ~sae S A sound-state(prg, s)

Figure 1.6 CompCert’s simulation relation for the constant propagation

23

invariant holds for the initial state of a program, and (2) that it is preserved by execution
steps. Formally:

sound-state(prg, s) ,
s = load(prg) ge = get-genv(prg) S e S
sound-state(prg, s) sound-state(prg, s’)

/

The CompCert proof then establishes the following two properties of R, which col-
lectively imply compiler correctness, i.e., the target’s behaviors refine the source’s:

(1) (load(prg),load(7c,(prg))) € R.

(2) Risindeed asimulation relation. Specifically, it is a “backward” simulation, mean-
ing that for any related states (s, t) € R, if the target state ¢ takes a step to t' with
an event o, the source s also takes a step to some state s’ with the same event o,
such that (s/,t") € R.

As for (1), the initial states after loading satisfy ~sate by construction, and the initial
source state satisfies sound-state thanks to the soundness of the value analysis above.
Asfor (2), Ris indeed a backward simulation for the following reasons. From (s, t) € R,
we know that we are executing the instructions at the same pc. Thus by the definition of
constant propagation, the target instruction is either identical to the source instruction
or obtained by replacing a variable with a constant or converting a conditional jump
to an unconditional jump, depending on the value analysis result. Here, thanks to the
soundness of the current state w.r.t. the analysis result and the relation between the two
states specified by ~te, We can easily deduce that executing the source and target in-
structions results in related states. Also, the soundness of the new source state s’ follows
from the soundness preservation property of the value analysis stated above.

Note: The verification approach described above, relying on backward simulations,
is something of an oversimplification of what CompCert actually does. In fact, to make
the proofs more convenient, CompCert uses “forward” simulations for the backend
passes. We briefly discuss why CompCert uses forward simulation, even though it im-
plies that the source’s behaviors refine the target’s, which seems the wrong way around.
First, a forward simulation is easier to establish than a backward one because a single in-
struction in the source may be compiled down to several instructions in the target. Sec-
ond, CompCert composes forward simulations of backend passes using the transitivity
of forward simulations, which is not hard to show. Then it converts the composed for-
ward simulation between an IR and assembly to a backward simulation between them

24

using some technical properties of the IR and assembly (namely, that the IR is “recep-
tive” and assembly is “determinate”). Finally, from this backward simulation, one can
establish that the target’s behaviors refine the source’s.

So far we discussed the technical background that is needed to understand the main

contributions of this dissertation, which we will present from now on. We will start with
a formal semantics of casts between integers and pointers.

25

Chapter I1

Relaxed-Memory Concurrency

3 Introduction

What is the right semantics for concurrent shared-memory programs written in higher-
level languages? For programmers, the simplest answer would be a sequentially consis-
tent (SC) semantics, in which all threads in a program share a single view of memory
and writes to memory take immediate global effect.

However, a naive SC semantics is costly to implement. First of all, commodity ar-
chitectures (such as x86, Power, and ARM) are not SC: they execute memory operations
speculatively or out of order, and they employ hierarchies of buffers to reduce memory
latency, with the effect that there is no globally consistent view of memory shared by
all threads. To simulate SC semantics on these architectures, one must therefore insert
expensive fence instructions to subvert the efforts of the hardware. Secondly, a num-
ber of common compiler optimizations—such as constant propagation—are rendered
unsound by a naive SC semantics because they effectively reorder memory operations.
Moreover, SC semantics is stronger (i.e., more restrictive) than necessary for many con-
current algorithms.

Hence, languages like C/C++ and Java have opted instead to provide relaxed (aka
weak) memory models [59, 36], which enable programmers to demand SC semantics
when they need it, but which also support a range of cheaper memory operations that
trade off strongly consistent and/or well-defined behavior for efficiency.

26

3.1 Criteria for a Programming Language Memory Model

Unfortunately, despite many years of research, it has proven very difficult to develop
a memory model for concurrent programming languages that adequately balances the
conflicting desiderata of programmers, compilers, and hardware. In particular, we would
like to find a memory model that satisfies the following properties:

 The model should support high-level reasoning principles that programmers and
compiler analyses depend on. At a bare minimum, it should validate simple invariant-
based verification, and should provide some “DRF” guarantees [10], ensuring that
programmers who employ sufficient synchronization need not understand the
tull complexities of relaxed-memory semantics.

« The model should be implementable, i.e., it should validate common compiler
optimizations, as well as standard compilation schemes to the major modern ar-
chitectures. To be implementable, it must justify many kinds of instruction re-
ordering and merging.

 The model should ideally avoid relying on undefined behavior to define the se-
mantics of racy programs. This is a prerequisite for applicability to type-safe lan-
guages like Java, in which well-typed programs may contain data races but are
nevertheless expected to have safe, well-defined semantics.

Both C/C++ and Java fail to achieve some of these criteria.

In the case of Java, the memory model fails to validate a number of common pro-
gram transformations performed by real Java compilers, such as redundant read-after-
read elimination and “roach motel” reordering [72]. Although this problem has been
known for some time, a satisfactory solution has yet to be developed.

In the case of C/C++, the memory model relies crucially on undefined behaviors to
give semantics to racy programs. Moreover, it permits certain “out-of-thin-air” execu-
tions which violate basic invariant-based reasoning (and DRF guarantees) [20].

3.2 The “Out of Thin Air” Problem

To illustrate the problem with C/C++, consider these two variants of the classic “load
buffering” litmus test (with two threads in parallel):

a:=x;

=y LB
yi=1 =y (LB)

X =y (LBd)

27

Here, we assume that all variables are initially o, and that all memory accesses are of the
weakest consistency level, i.e., they are compiled down to plain loads and stores at the
hardware level with no additional synchronization (in C/C++ this is called “relaxed”).
The question is: should it be possible for these programs to assign 1 to a? In the case
of LB, the answer is yes: architectures like Power and ARM may reorder the write of y
before the read of x in the first thread (since these are accesses to distinct variables),
after which a can be assigned 1 by a standard interleaving execution. In the case of
LBd, however, the answer ought to be no: all the operations simply copy one variable to
another and all are initially o, so if a could receive 1, it would come “out of thin air” No
hardware reorderings or reasonable compiler optimizations will produce this behavior.
If they did, it would cause major problems: one would not be able to establish even
basic invariants (such as x = y = 0), and basic sanity results like the aforementioned
DRF theorems would cease to hold. It is therefore a serious problem that the formal
memory model of C/C++ allows such out-of-thin-air (OOTA) behavior.

Intuitively, the reason C/C++ allows OOTA behaviors is that it is not clear how to
distinguish them from acceptable behaviors. The C/C++ model formalizes valid execu-
tions as graphs of memory access events (think: partially-ordered traces) subject to a
set of coherence axioms, and the same coherent event graph that describes a valid ex-
ecution of LB in which a receives 1 also describes a valid execution of LBd in which a
receives 1.

Hardware memory models (e.g., Power and ARM) handle this problem by taking
syntactic dependencies between instructions into account in determining program se-
mantics. Under such models, the out-of-order execution in LB is valid because the write
to y is independent of the read from x, whereas in LBd such out-of-order execution is
prevented by the syntactic dependency between the two instructions. Although this ap-
proach is suitable for modeling hardware, it is too brittle for a language-level semantics
because it fails to validate standard compiler optimizations that remove syntactic de-
pendencies (see also [20]). As a very simple example, consider the following variant of

LB and LBd:
a:= x;

X =y (LBfd)

yi=a+1—a;

Under the hardware models, this LBfd program would be treated similarly to LBd due
to the syntactic data dependency, so a could not receive 1. But even a basic optimizing
compiler could trivially transform LBfd to LB, in which case a could receive 1.

As a result, we still to this day lack a semantics for relaxed-memory concurrency
in C/C++ and Java that corresponds to how these languages are implemented and that

28

provides sufficient reasoning guarantees to programmers and compiler-writers. Several
proposals have recently been made for how to fix the C/C++ and Java memory models
(some of which are discussed in Section 9), but none have been proven to validate the
full range of standard optimizations/reorderings performed by C/C++ and Java com-
pilers and by commodity hardware like Power and ARM. Furthermore, for most of the
existing proposals, it is known that indeed they do not validate some important reorder-
ings.

3.3 A “Promising” Semantics for Relaxed Memory

In this paper, we present what we believe is a very promising way forward: the first
relaxed memory model to support a broad spectrum of features from the C/C++ con-
currency model while also satisfying all three criteria listed in Section 3.1.

We achieve these ends through a combination of mechanisms (some standard, some
not), but the most important and novel idea for the reader to take away from this paper
is the notion of promises.

Under our model, which is defined by an operational semantics, a thread T may
nondeterministically “promise” to write a value v to a memory location x at some point
in the future. From the point of view of other threads, a promise is no different from an
ordinary write: once T has promised to write v to x, other threads can read from that
write. (In contrast, T cannot read from its own promised write until T has fulfilled the
promise: this is crucial to preserve basic sanity of the semantics.) Intuitively, promises
simulate the effect of read-write reorderings by allowing write events to be visible to
other threads before the point at which they occur in the program order.

We must, however, ensure that promises do not introduce bad OOTA behaviors.
Toward this end, we only allow T to promise to write v to x if it is possible to thread-
locally certify that the promise can be fulfilled in a finite number of steps. That is, we must
show that T will be able to write v to x after some finite sequence of steps of T’s execution
(i.e., with no help from other threads). The certification requirement guarantees absence
of bad OOTA executions by ensuring that T can only promise to write a value v to x if
T could have written v to x anyway.

Returning to the examples from Section 3.2, it is easy to see how promises give us
the desired semantics:

o In LB, the first thread can promise to write 1 to y (since it will indeed write 1 to
y no matter what value is assigned to a), after which the second thread can read
from that promise and write 1 to x. Subsequently, the first thread can execute
normally, reading 1 from x and assigning it to a.

29

o The execution of LBfd may proceed in exactly the same way. The fact that the
write of y depends syntactically on a is irrelevant, because during certification of
the promised write of 1 to y, the expression a + 1 — a will always evaluate to 1.

« By contrast, the OOTA behavior will not be allowed for LBd. In order for the first
thread to promise to write 1 to y, it would need to certify that it can write 1 to y
without promises. But since all variables are initially o, this is not possible.

Our model supports all features of C/C++ concurrency except consume reads and
SCaccesses. Consume reads are widely considered a premature aspect of the C18/C++17
standard and are currently implemented the same as acquire reads in mainstream com-
pilers. In contrast, SC accesses are a major feature of C/C++, and originally our model
included an account of SC accesses as well. However, in the course of trying to prove
the correctness of compilation to Power, we discovered that our semantics of SC ac-
cesses was flawed, and this led us to discover a flaw in the C/C++11 standard as well!
(See [53] for further details.) Thus, a proper handling of SC accesses remains an open
and important problem for future work.

In the rest of the paper, we will flesh out the idea of promises—as well as the other
elements of our model—in layers. We begin in Section 4 by presenting the details of our
model restricted to relaxed reads and writes. In Section 5, we extend this base model fur-
ther to support atomic updates (i.e., read-modify-write operations, like CAS). Then, in
Section 6, we scale the model up to handle most features of the C/C++ memory model.
In Section 7, we present our formal results—validating many program transformations,
compilation to x86-TSO, DRF theorems, and an invariant-based logic—most of which
are fully mechanized in the Coq proof assistant (totalling about 37K lines of Coq). In
Section 9, we compare with related work, and in Section 10, we conclude with discussion
of future work.

4 Basic Model for Handling Relaxed Accesses

In this section, we introduce the key ideas of our memory model, first by example and
then more formally. At first we will only consider a semantics for fully “relaxed” atomic
read and write accesses (in the sense of C/C++). This is a natural starting point, since
the OOTA problem is fundamentally about how to give a reasonable semantics for these
relaxed accesses, and the key elements of our solution are easiest to understand in this
simpler setting. We will see in subsequent sections how to extend and generalize this
base model to account for a much richer variety of memory operations.

30

To illustrate our semantics, we will write small programs such as the following:

X:i=1

SB
a=y;//o (SB)

V=1
b:=x; //o

As a convention, we write a, b, ¢ for local variables (registers) and x, y, z for (distinct)
shared memory locations, and assume that all variables are initialized to 0. We refer to
thread i as T;. Moreover, in order to refer to a specific observation of the program, we
annotate the corresponding reads with the values expected to be read (e.g., in the above
program, the comment notation indicates the observed result that a = b = o).

4.1 Main Ideas

High-Level Requirements: Reorderings and Coherence Relaxed read and write op-
erations are intended to be compiled down directly to plain loads and stores at the ma-
chine level, so one of the main requirements of our semantics is that it be at least as per-
missive as commodity hardware. Toward this end, our semantics must justify reorder-
ing of independent memory operations (i.e., operations that access distinct locations),
since the more weakly consistent architectures (like ARM) may potentially perform
such reorderings. There are four such classes of reorderings—write-read, write-write,
read-read, and read-write—and in Section 7 we will prove formally that our semantics
justifies all of them.

On the other hand, it is also important that our semantics not be unnecessarily
weak. In particular, all the existing implementations of C/C++, even for weaker archi-
tectures like Power and ARM, guarantee at a bare minimum a property we call per-
location coherence (aka SC-per-location). Per-location coherence says that, even though
threads may observe writes to different locations in different orders, they must observe
writes to the same location in a single total order (called the “modification order” in
C/C++ lingo). In addition to being supported by hardware, per-location coherence is
preserved by common compiler optimizations as well. Hence, we want our semantics
of relaxed accesses to guarantee it. (In Section 6.3 we will present an even weaker mode
of accesses that does not provide full per-location coherence.)

Operational Semantics with Timestamps In contrast to the C/C++ memory model,
which relies on declarative semantics over event graphs, ours employs a more standard
SC-style operational semantics for concurrency, in which the executions of different
threads are nondeterministically interleaved. However, in order to account for weak
memory behaviors, we use a more elaborate memory representation than the standard

31

SC semantics does. Instead of being a flat map from addresses to values, our memory
records the set of all writes ever performed. It may help to think of writes as messages,
and memory as a message pool which grows monotonically. When a thread T reads
from a location x, it need not read “the latest” write to x, since there is no shared under-
standing among threads of what the latest write is. The thread T thus retains flexibility
in terms of which message it reads, but we must place some restrictions on this flexibility
in order to guarantee per-location coherence.

Specifically, we totally order the writes to each location by attaching a (unique)
timestamp to each write message. Thus, messages are triples of the form (x : v@t) (where
x is a location, v a value, and t a timestamp). (The modification order for a location x
is thus implicitly derivable from the order of timestamps on x’s messages.) In addition,
for each thread T, we keep track of a map from locations x to the largest timestamp of a
write to x that T has observed or executed. We refer to this map as T’s view of memory,
and one can think of it as recording the set of most recent write messages that T has
observed. Hence, when T reads from a location x, it must read from a message with a
timestamp at least as large as the one recorded for x in T’s view. And when T writes to
X, it must pick a timestamp strictly larger than the one recorded for x in its view.

Let us see now how our semantics, as explained thus far, already suffices to justify
desirable reorderings while ruling out violations of coherence. First, recall the write-
read reordering exhibited by the “store buffering” SB example above, and let us see how
the behavior can be justified. Initially, assume the memory contains the initialization
messages (x:0@o) and (y:o@o), and both threads maintain a view of x and y that
maps them to o. When T, performs the assignment x := 1, it will choose some timestamp
t > o, add the message (x : 1@¢) to the memory, and update its view of x to . But this
will have no effect on its view of y or T,’s view of x, which remain at o. Thus, when T,
subsequently reads y, it is free to read o. (And analogously for T,.)

On the flip side, per-location timestamps also explain why the following coherence
violation is forbidden.

xX:i=1

a=x;//2

X =2

H
b:=x; /1 (COH)

Here, the two writes to x must be totally ordered. Suppose, without loss of generality,
that the x := 1 was written at timestamp 1 and x := 2 at timestamp 2. Then, although T,
may read value 2, T, cannot read 1, because 1 was written at a smaller timestamp than
the one that T, already recorded in its view when it wrote x := 2.

One subtle point is that, when writing to a location x, a thread T may select any
unused timestamp ¢ larger than the one recorded in its view of x, but ¢ need not be

32

globally maximal. That is, f may be smaller than the timestamp that another thread has
already used for a write to x. This freedom is in fact crucial in order to permit write-
write reorderings, as exemplified by the following test case:

X =2 yi=2;
Y=L xX=1 (2+2W)
a=y; //2|b=x;//2

To get the desired weak outcome, the writes of x := 1 and y := 1 must pick smaller
timestamps than the x := 2 and y := 2 writes, respectively, but at least one of the 1-
writes must be executed affer the 2-write to the same location. Thus, it is essential to be
able to write using a timestamp that is not globally maximal.

Promises Unfortunately, our timestamp semantics alone does not suffice to explain
read-write reorderings, as exemplified by the (LB) and (LBfd) programs from Section
3.2. It is precisely these reorderings that motivate our introduction of promises.

As explained in Section 3.3, a thread T may at any point promise to write x := v at
some timestamp ¢ (provided that ¢ is greater than T’s current view of x). This promise
is treated to a large extent like an actual write operation. In particular, it adds a new
message (x : v@t) to memory, which may then be read by other threads. However, in
order to make such a promise, T must thread-locally certify it—that is, T must demon-
strate that it will be able to fulfill this promise (writing x := v at timestamp ¢) in a finite
number of thread-local steps. Certification is needed to guarantee plausibility of the
promise, but crucially, there is no requirement that the specific steps of execution taken
during certification must match the subsequent steps of actual execution. Indeed, we
already witnessed this with the (LB) and (LBfd) executions, where T, read x = o dur-
ing the initial certification of its promised write to y, but read x = 1 during the actual
execution.

Let us now briefly touch on a few technical points concerning the interaction of
promises and timestamps.

First of all, it is important that T cannot directly read its own promises, because
this would violate per-location coherence: for example, the single-threaded program
a = x; x := 1would be able to return a = 1! Note that we do not need to explicitly enforce
this restriction—it just falls out from our rules concerning timestamps. In particular, if
T were to promise (x : v@t), and then were to read from its own promise, then T’s view
of x would be updated to t, and there would be no way for T to subsequently fulfill
the promise because it would have to pick a timestamp strictly greater than t when
performing the assignment x := v.

33

(THREAD: READ)
(THREAD: SILENT) R(x,v)

Silent o ——>0 (x:vet)eM
o =50 V(x)<t V' =V[xwt]
((0) V,P),M) — ((UI, V,P),M) ((U, V,P>,M> — ((0',, V’,P),M)
(THREAD: WRITE)
PR Yy YO (x:v@t) (THREAD: PROMISE)
V(x)<t V'=V[xw~t] M=M%&m PP=P&m
({0, V,P), M) — ({0, V', P), M') ({0, V,P),M) = ({0, V,P'), M')

(THREAD: FULFILL) (MACHINE STEP)

PN (x:v@t)e P P =P~ {{x:v@t)} (TS(i), M) =+ (TS, M")
V(x)<t V'=V[xet] (TS', M") is consistent
({(a,V,P),M) — ({(¢', V', P'), M) (TS, M) — (TS[i~ TS'],M")

Figure II.1 Operational semantics for only relaxed read and write

That said, it is possible for T to read its promised value indirectly via another thread,
as in the LB and LBfd programs. It may even read the promised value from the same
location where it promised to write it, as in the following example [52].

a=x;//1

xX:=y; (ARM-weak)
xX:=1

This outcome can be explained by T, promising (x : 1@2), then T, reading x = 1 and
storing it to y, and T reading y = 1 and writing x := 1 at timestamp 1, which T, can
read before fulfilling its promise. Such behavior, strange though it may seem, is actually
allowed (though not yet observed) by the ARM memory model [27].

Last but not least, we wish to ensure that promises do not lead to impossible situ-
ations later down the road, i.e., that making a promise cannot cause the execution of
a program to get stuck. The thread-local certification that accompanies a promise step
goes some way toward ensuring this progress condition, but it is not enough. We also
amend the semantics in the following two ways:

1. Every step a thread takes, it must re-certify all its outstanding promises to make
sure they can still be fulfilled. To see why, consider a possible execution of the
following program:

34

4.2

Suppose that T; (for no particularly good reason) promises (x : 1@1). At first, this
is easy to certify: T, can read the initial value of x (the message (x : o@o)), and
then perform the assignment x := 1 picking timestamp 1. Suppose then that T,
picks the timestamp 2 when performing x := 2. If at this point in the execution T,
were permitted to read the message (x : 2@2), it would have the effect of bump-
ing up T’s view of x to timestamp 2, which would prevent it from subsequently
fulfilling its promise. It is thus crucial that T, not be allowed to read x = 2 (in
this particular execution), and indeed our semantics will not allow it to do so be-
cause the re-certification check would fail. As the example illustrates, promises
can restrict a thread’s future nondeterministic choices concerning the messages
it reads.

. We require the total order on timestamps to be dense (e.g., choosing timestamps

to be rational numbers), so that there is always a place to put intermediate writes
before a promise. Consider, for example, the following program:

L
| x=3

X
X

2;

Here, T; may promise (x : 2@2)—when validating this promise, T, might write
(x :1@1) before writing (x : 2@2). If, however, T, subsequently writes (x : 3@1) be-
fore T, has actually written x := 1, then T, can no longer pick 1 as a timestamp for
x := 1. To make progress here, T; needs a timestamp for x := 1 strictly between o
and 2, and 1 is already taken. By requiring the timestamp order to be dense, we
ensure that there is always some free timestamp (e.g., 1.5) that T, can use.

Formal Definition

We now define our model for relaxed accesses formally. Let Loc be the set of memory

locations, Val be the set of values, and Time be an infinite set of timestamps, densely

totally ordered by <, with o being the minimum element. A timemap is a function T :

Loc — Time. The order < is extended pointwise to timemaps.

Programming Language To keep the presentation abstract, we do not fix a particular

programming language; we simply consider each thread i as a transition system with a

set of states State;, initial state o7 € State; and final state aiﬁnal € State;. Intuitively, these

states store the values of the local registers and the program counter. Transitions are

labeled: the label R(x, v) corresponds to a transition that reads the value v from location

35

x, and W(x,v) denotes a write of the value v to x, while local transitions that do not
access the memory are labeled with “Silent”. We assume receptiveness of the transition

systems—whenever an R(x, v)-transition is possible from a state 0;, so is an R(x,v")-
final

transition for every value v'—and that they only get stuck in the o;"™* states.
Messages A message m is a tuple (x : v@t), where x € Loc, v € Val and ¢ € Time. We
denote by m.loc, m.val, and m.t the components of a message m. Two messages m
and m' are called disjoint, denoted m # m’, if m.loc # m’.loc or m.t # m'.t. Two sets
M and M’ of messages are called disjoint, denoted M # M', if m # m' for every m € M

and m’' e M’.

Memory A memory is a pairwise disjoint finite set of messages. A message m may be
(additively) inserted into memory M if m is disjoint from every message in M. Formally,
the additive insertion M ¢ m is given by M U {m} and is only defined if M #{m}.

Thread States and Configurations A thread state is a triple TS = (g, V, P), where
o is the thread’s local state, V' is a timemap representing the thread’s view of memory;,
and P is a memory that keeps track of the thread’s outstanding promises. We denote
by TS.st, TS.view, and TS.prm the components of a thread state TS. In turn, a thread
configuration is a pair TC = (TS, M), where TS is a thread state and M is a memory,
called the global memory. Note that we will always have TS.prm ¢ M.

Figure II.1 shows the five reduction rules for thread configurations. The SILENT rule
handles the case when the program performs some local computation that does not
affect memory. The READ rule handles the case when the program reads from a loca-
tion x. The rule nondeterministically selects some message m in the memory, whose
timestamp is greater than or equal to the timestamp recorded for x in the thread’s view,
and returns its value; it also updates the thread’s view of x to the timestamp of m. The
WRITE rule handles the case when the program writes to location x. It extends the mem-
ory with a new message for x, whose timestamp ¢ is greater than the one recorded for
x in the thread’s view, and it updates the thread’s view of x to match t. The PROMISE
rule extends the memory and the thread’s promise set with an arbitrary new message
m, whose timestamp is not already present in the memory. (The promise certification is
handled separately, as described below.) Finally, the FULFILL rule is similar to the wRITE
rule, except that instead of adding a message to the memory, it removes an appropriate
message from the thread’s promise set P.

36

We note that the wrITE rule is redundant; we merely included it to improve read-
ability. Any application of WRITE can be simulated by first promising the appropriate
message with the PROMISE rule and then immediately fulfilling the promise with the
FULFILL rule.

As we have already mentioned, we have to restrict thread executions so that all
promises a thread makes are fulfillable. Thread configurations satisfying this property
are called consistent. Formally, a thread configuration (TS, M) is consistent if (TS, M) —*
(TS', M") for some TS and M’ such that TS .prm = @. Notice that in the certification of
a promise, it is formally possible to make further promises. Since, however, in the end
all such promises must be fulfilled, it is useless to make such promises. (A proof of this
property is included in our formal development.)

Machine States A machine state MS = (TS, M) consists of a function 7S assigning a
thread state to every thread, and a (global) memory M. The initial state MS° (for a given
program) consists of the function 75° mapping each thread i to its initial state 07, a
current timestamp of o for every location, and an empty set of promises; and the initial
memory M° that has one initial message (x : o@o) for each location x. A machine takes
a step (see the last rule in Figure I1.1) whenever a thread can take several steps to some
consistent configuration. Note that we allow multiple thread steps in one machine step.
This is convenient in our proofs, and can reduce the number of certifications during an
execution of a program.

Finally, we can easily show that a machine never gets stuck unless each thread i
has reached <aiﬁ“al, V, @) for some view V. For non-final states, progress follows from
the receptiveness and progress assumptions about the programming language, together
with the invariant that no thread has a higher view of any x than the highest times-
tamp for x in memory. Another crucial invariant is consistency: the MACHINE STEP
rule demands that each machine step taken by a thread must preserve consistency of the
thread’s own configuration, and it implicitly preserves the consistency of other threads’
configurations as well, since they are free to ignore any new messages the thread has
added. When all threads reach their final states, consistency implies they must have no
promises left to fulfill.

5 Supporting Atomic Updates

In this section, we extend our basic model for relaxed accesses to also handle (relaxed)
atomic update—aka read-modify-write (RMW)—instructions, such as fetch-and-add

37

and compare-and-swap. Updates are essential as a means to implement synchroniza-
tion (e.g., mutual exclusion) between threads, but this also makes them tricky to model
semantically. In particular, a successful update operation performed by one thread will
often have the effect of “winning a race” and hence blocking (previously possible) update
operations performed by other “losing” threads. This stands in contrast to the updates-
free fragment in Section 4, in which threads are free to ignore the messages of other
threads. Thus, to extend our model to support updates, we must ensure that threads
performing updates cannot invalidate the already-certified promises of other threads.
An update is an atomic composition of a read and a write to the same location
x. However, unlike under SC, atomicity requires more than just avoiding interference
of other threads between the two operations. Consider the following example (taking
FAA(x,1) to be an atomic fetch-and-add of 1 to x, which returns the value of x before
the increment):
a:=FAA(x,1);

b := FAA(x,1); (Par-Inc)

Atomicity ensures that it is not possible for both threads to increment x from o to 1
(we must either get a = 1 or b = 1). To obtain this, we require that the read timestamp
of the update (i.e., the timestamp of the write message that the update reads from) im-
mediately precede its write timestamp (i.e., the timestamp of the write message that the
update generates) in x’s modification order, and that future writes to x may not be as-
signed timestamps in between them. In the example above, if both of the updates were
to increment x from o to 1, the write timestamp for one of the updates would have to
come between the read and write timestamps for the other update.

To enforce this restriction, we extend messages to store a continuous range of times-
tamps rather than a single timestamp. Thus, messages are now tuples of the form (x : v@(f, t])
where x € Loc, v € Val, and f,t € Time satisfying f <t or f = t = o. We write
m.fromand m.to to denote the f and t components of a message m. Intuitively, m can
be thought of as reserving the timestamps in the range (m.from, m.to]; among these,
m.to is the “real” timestamp of m, but the remaining timestamps in the range are re-
served so that other messages cannot use them. Timestamp reservation is reflected in
the following revised definition of message disjointness, which enforces that disjoint
messages for the same location must have disjoint ranges:

(x:ve(f, t)#(x'Ve(f t']) 2 x+x v t<f <t v ' <f<t

With timestamp reservation, we can easily ensure that the write timestamp of an update
is adjacent to its read timestamp in the modification order. Formally, we will say two
messages m and m’ are adjacent, denoted Adj(m, m"), if m.loc = m’.loc and m.to =

38

m’.from. In defining the semantics of updates, we will then insist that the message that
the update inserts into memory must appear adjacently after the message that it reads
from. This suffices to guarantee the correct outcome in the Par-Inc program above.

Although the introduction of timestamp reservation enables us to easily model up-
dates, it creates a complication for promises, namely that timestamp reservations may
invalidate the promise certifications already performed by other threads. Consider, for
example, the following program:

a=x;//1
b:=FAA(z,1); /o || x:=y; || FAA(z,1); (Upd-Stuck)
yi=b+y

This behavior ought to be allowed, since hardware could reorder the read of x after the
independent accesses to z and y. To produce this behavior, following our semantics
from the previous section, T, could promise to write y := 1 because it can thread-locally
certify that the promise can be fulfilled (the certification will involve updating z from
o to 1). If, however, T; then updates z from o to 1, that will mean that T, can no longer
perform the update it needs to fulfill its promise, and its execution will eventually get
stuck.

To avoid such stuck executions, we strengthen the check performed by promise cer-
tification, i.e., the consistency requirement on thread configurations. We require that
each thread’s promises are locally fulfillable not only in the current memory, but also
in any future memory, i.e., any extension of the memory with additional messages. This
quantification over future memories ensures that thread configurations remain consis-
tent whenever another thread performs an execution step, and thus the machine cannot
get stuck.

Returning to the above example, T; will not be permitted to promise to write y := 1in
the initial state, precisely because that promise could not be fulfilled under an arbitrary
future memory (e.g., one containing the update of Tj, as we showed). T, may, however,
first promise (z:1@(o,1]), reserving the time range from the initialization of z up to
its increment. T can fulfill that promise, because no future extension of the memory
will be able to add any messages in between. After making that promise, T, may then
promise, e.g., (¥ : 1@(3, 4]), which it can now fulfill under any extension of the memory.
With these promises in place, T; will be prevented from updating z from o to 1; it will
be forced to update z from 1 to 2, which will not block the future execution of T;.

Our quantification here over all future memories may seem rather restrictive in that
it completely ignores what can or cannot happen in a particular program. That said, we
find it a simple and natural way of ensuring “thread locality”. The latter is a guiding

39

(THREAD: FULFILL UPDATE)
U(x,ve,vw) ,
s

o (x:vne@(fi,t:])eM
My = (x :vy@(t;, ty]) myeP P =P~ {my}
V(x)<t, V' =V[xety]

({0, V,P), M) — (o', V', P'), M)

Figure I1.2 Additional rule for updates

principle in our semantics, according to which the set of actions a thread can take is
determined only by the current memory and its own state.

Formally, we say that Mg, re is a future memory of M if Mgypyre = M & my & ... & my,
for some n > o and messages m,, ..., m,. And we now say a thread configuration
(TS, M) is consistent if, for every future memory Mgy of M, there exist TS’ and M’
such that (TS, Mgyure) = (TS, M) and TS .prm = @.

Finally, we extend the operational semantics for thread configurations with one ad-
ditional rule for update fulfillment shown in Figure II.2. (All other rules are as before
except all messages (x : v@t) are replaced by (x : v@(f, t]).) This rule forces its write to
be adjacent in modification order to its read. As with ordinary writes, a normal (non-
promised) update step can be simulated by a promise step immediately followed by
fulfillment. Note that the other rules remain exactly the same; they simply ignore the
m.from component of messages .

6 Full Model

In this section, we extend the basic model of Section 4-5 to handle all the features of the
C/C++ concurrency model except SC accesses and consume reads.

6.1 Release/Acquire Synchronization

Release/Acquire Fences A crucial feature of the C/C++ model is the ability for threads
to synchronize using memory fences or stronger kinds of atomic accesses. Consider the
message-passing test case:

Xi=1 a=y //1
fence-rel; || fence-acq; (MP-+fences)
yi=1 b:=x; //#o0

40

The release fence between the writes, together with the acquire fence between the reads,
prevents the weak behavior of the example (i.e., that of returning a = 1and b = o).
Roughly speaking, the C/C++ model forbids this behavior by requiring that whenever
a read before an acquire fence reads from a write after a release fence, the two fences
synchronize, which in turn means that any write that happens-before the release fence
must be visible to any read that happens-after the acquire fence. So, if T, reads y = 1,
then after the acquire fence it must read x = 1.

To implement this semantics, we extend our model in two ways.

First, we refine each thread’s view. Rather than having a single view of which mes-
sages it has observed, a thread now has three views: V = (cur, acq, rel). We denote by
V.cur,V.acqand V.rel the components of a thread view V. A thread’s current view,
cur, is as before: it records which messages the thread has observed and restricts which
messages a read may return and a write may create. Its release view, rel, records what
the thread’s cur view was at the point of its last release fence. Dually, its acquire view,
acq, records what the thread’s cur view will become if it performs an acquire fence.
Consequently, the views are related as follows: rel < cur < acq.

Second, we extend write messages to record a message view R, which records the
release view of the writing thread at the time the write occurred (updated to include the
write itself). Thus, a message now takes the form m = (x : v@(f, t], R), where R(x) = t.
We write m.view for the message view of m.

During execution of relaxed accesses, a thread’s views drift apart. When a thread
reads a message, it incorporates the message’s view into the thread’s acq view, but not
into its cur or rel views. When a thread writes a message, it uses the thread’s rel
view as the basis for the message’s view, but only incorporates the message itself into
the thread’s cur and acq views, not its rel view.

Fence commands bring these diverging views closer to one another. Specifically, an
acquire fence increases the thread’s cur view to match its acq view, thereby ensuring
that the thread is up to date with respect to views of all the messages read before the
fence. Symmetrically, a release fence increases the thread’s rel view to match its cur
view, thereby ensuring that the views of all messages the thread writes after the release
fence will contain the messages observed before the fence.

Returning to the MP+fences program, suppose that T, emitted messages (x : 1@(_, t |, _)
and (y:1@(_, t,],R,). Then, T;’s cur view before the release fence maps x to t,. The
fence then updates T;’s rel view to match its cur view, so that the message view accom-
panying the subsequent write to y will map x to ¢, as well. (Without the release fence,
this message view would map x to o0.) On T.’s side, the read of y = 1 updates T,’s cur

41

view to [x@o, y@t,], and its acq view to [x@t,, y@t,]. The acquire fence then updates
T,’s cur view to match its acq view, and hence the subsequent read of x must see the
x := 1 write. If either the release or the acquire fence were missing, then T,’s cur view
at the read of x would have been [x@o, y@t,], allowing it to read x = o.

Interaction with Promises Promises (like every other message) now carry a view, and
threads reading a promise are subject to the same constraints as if they were reading
a normal message. In particular, after reading a promise and performing an acquire
fence, a thread can only read messages with timestamp greater than or equal to the view
carried in the promise message. In order to avoid cases where execution gets stuck, we
must ensure that sorme message can be read for every location. Thus we require that the
view attached to a promise message includes only timestamps of messages that exist in
memory at the time the promise is made.

Going back to MP+fences, note that T, cannot promise y := 1 before performing
x := 1. Indeed, because of the release fence, the view in the y := 1 message must include
the message that will be produced for the x := 1 assignment, but at the beginning the
only message for x in memory is the initial one (at timestamp o). Hence, release fences
effectively serve also as barriers for promises. We find it convenient to explicitly require
this in our semantics: whenever a release fence is performed, the set of promises of the
executing thread must be empty. This may seem restrictive, but note that the main rea-
son for introducing promises was to allow read-write reorderings, as in the LB example
of Section 3.2. If there is a release fence in between the read and write, then the reorder-
ing is no longer possible, and thus our motivation for promising the write is void.

Release/Acquire Accesses In addition to release and acquire fences, C/C++ offers
a more fine-grained way of achieving synchronization, via acquire reads and release
writes. Intuitively speaking, an acquire read is a relaxed read followed by an acquire
fence, whereas a release write is a release fence followed by a relaxed write, with the
restriction that these fences induce synchronization only on the location of the access.
For example, in the following program,' only the second thread synchronizes with the

first one.
xX=1
1 a = Yacqs N1 c:= Zacqs A
R b= e | di=xi g0

'In this and in following code snippets, we annotate non-relaxed accesses with their access mode; all
non-annotated accesses are relaxed.

42

Hence, b must get the value 1, while d may get o.

To model these accesses, we treat the rel view of each thread not as a single view,
but rather as one separate view per location, recording the thread’s current view at the
latest release fence or release write to that location. Thus, when a thread performs a
release write to location x, we update its release view of x to match its cur view, while a
release fence effects this update on the release views of all locations. Then, a write to x
(either release or relaxed) will use the release view of x (newly updated, if it is a release
write) to form the view of the write message, and an acquire read will incorporate the
message’s view into the reading thread’s current view.

In the example above, at the end of T;’s execution, its thread view has rel(y) =
[x@ty, y@t,, z@o], whereas rel(z) = [x@o, y@o, z@t,]. As a result, the y,q read in-
creases T,’s cur view to [x@t,, y@t,, z@o], which forces it to then read x = 1, whereas
the z,cq read increases Ty’s cur view to [x@o, y@o, z@t; |, which allows it to later read
X =o.

Release Sequences Using the per-location release views, we can straightforwardly
handle C/C++-style release sequences (following the definition of release sequences given
in [78]). In C/C++, an acquire read synchronizes with a release write w to x not only
if it reads from w but also if it reads from a write in w’s release sequence. The release
sequence of w is inductively defined to include all the same-thread writes/updates to x
after w, as well as all updates reading from an event in the release sequence of w. For
example, in the following program, the yacq synchronizes with the yrq := 1 because it
reads from the FAA(y,1), which in turn reads from the y := 2.

X:=1;
a:= Yacgs /'3
=1 || FAA(y,1);
)’rel 1 (y 1) b = x’ //?:O
yi=2

Our operational semantics already handles the case of reading from a later write of the
same thread, because the thread’s release view for y is included in the message’s view. To
handle the updates that read from elements of the release sequence, we insist that the
view of the write message of an update must incorporate the view of the read message
of the update. Thus, in this example, the views of all the y messages contain x@t,, and
hence T, must read x = 1.

Promises Over Release/Acquire Accesses We finally point out another delicate issue

related to the interaction between promises and release/acquire accesses. Consider the
following variants of the LB example:

43

a:=x; //+1

Vrel = 15

a = Xaeqs // 1

X:i=y; (LBr) .

X =y (LBa)

In the first variant (LBr), the promise of y. := 1 should be forbidden for the same
reason that a promise over a release fence is forbidden, and hence the specified behavior
is disallowed. We note that this behavior is possible under the C/C++ model, but is
not possible under the usual compilation of release writes to Power and ARM (using a
lwsync/dmb_sy fence in the first thread).> More generally, our model forbids promises
over release writes to the same location.

In the second variant (LBa), we allow the promise of y := 1 and thus the a = 1 out-
come. The reason is that we want to enable optimizations that result in the elimination
of an acquire read and thus remove the reordering constraints of the acquire. Consider,
for example, the following program transformation:

a:==x; //2 yi=1

yi=1 b:=1 ,
X:i=y;, ~ X = (LBa")

b= Yacgs J y =2 4

yi=2 a=x;//2

which may in effect reorder the y := 2 write before the a := x read even though there is
an acquire read in between (by first replacing yacq with 1and then reordering a := x past
both writes to y). Thus, our semantics has to allow promises over acquire actions. Note
that there is no need to do so for release writes, because release writes cannot simply be
eliminated in this way.

6.2 Sequentially Consistent (SC) Fences

We now extend the model with sequentially consistent (SC) fences, whose purpose is to
allow the programmer to enforce strong ordering guarantees among memory accesses.
In particular, full sequential consistency is restored if an SC fence is placed between
every two shared memory accesses of a program.?

To handle SC fences, we extend our machine state with a global timemap S, which
records the latest messages written by any thread before an SC fence. When a thread T
executes an SC fence, in addition to the effect of both an acquire and a release fence,

*Moreover, we observe that even the C/C++ model forbids this outcome, if we additionally make the
read of y in the second thread into a consume read (which is supposed to be compiled exactly as a relaxed
read, but preserving syntactic dependencies).

3In this regard, our semantics is stronger than the C/C++ model [13], which fails to validate this basic
property, and follows Lahav et. al. [s1, 53] instead.

44

T increases both its cur view and the global timemap to the maximum of the two.
Consider the following variant of the SB example:

X:=1 yi=1
fence-sc; fence-sc; (SB-+fences)
a:=y; /ol b:=x; //#0

Here, the current views of the two threads just before their SC fences are [x@ty, y@o]
and [x@o, y@t,], respectively, while the global view is [x@o, y@o]. If the fence of T,
is executed first, it will update S to [x@t,, y@o]. So, when the fence of T, is executed,
both its cur view and S become [x@t,, y@t,], from which point onwards T, must read
X=1

6.3 “Plain” Non-Synchronizing Accesses

Both C/C++ and Java provide some form of non-synchronizing accesses, i.e., accesses
that are meant to be used only for non-racy data accesses (C++’s non-atomic accesses
and Javas normal accesses). Such accesses can never achieve synchronization, even
together with fences. Consequently, compilers are free to reorder non-synchronizing
reads across acquire fences, and to reorder release fences across non-synchronizing
writes. These non-synchronizing accesses, which we refer to as plain accesses, are easily
supported in our model. The difference from relaxed accesses is simple: a plain read
from a message m should not incorporate m.view into the thread’s acq view; and a
message m produced by a plain write should only carry the o-view (i.e., L in the lat-
tice of views). Moreover, plain writes can be promised even beyond a release fence or a
release write to the same location.

Besides the reordering mentioned above, compilers can (and do) utilize further the
assumption that some accesses are intended to be non-racy. Indeed, assuming two non-
racy reads, a compiler may reorder them even if they are reading the same location. In
a broader context, it may pave the way to further optimizations (e.g., a compiler may
prefer to unconditionally optimize a := x;b := *p; ¢ := x to b := *p;a = x;¢ = a,
without the burden of analyzing whether the pointer p points to x or not). Since we
followed C/C++’s assumption of full per-location coherence for our relaxed accesses,
the reordering of two reads from the same location is unsound for them. Concretely,
consider the following example:

S
i

=x; /1
=x; /]2

X

Il
brd
INY
|
Il
-
&

=x; /2 X

=x; /1

S
i

X

i
N
x
ii
N
S
"

45

The target program obviously allows the specified behavior, while the source does not.
Fortunately, it is not hard to adapt our plain accesses to provide only partial per-location
coherence (in C18/C++17 terms, dropping “coherence-RR” for plain accesses), conse-
quently allowing this reordering. The idea is to extend the notion of a view V—both
message views R and the three component views of a thread (cur,acq, rel)—from
being a single timemap to a pair of timemaps: a “normal” one (V.rlx) as before, and
one for plain accesses (V.pln). The V.pln timemap is generally smaller than the nor-
mal timemap (V.pln < V.rlx), and restricts the possible timestamps available to plain
reads. A plain read from a message m with location x and time ¢ only consults this new
timemap, checking that cur.pln(x) < t, and only updates cur.rix(x) to include .
A plain write, on the other hand, cannot pick a timestamp smaller than cur.rix(x)
(since we do maintain the other coherence properties besides “coherence-RR”).

Importantly, we do not exploit “catch-fire” semantics (a la C/C++) to accommodate
our plain accesses, but rather give a well-defined semantics to arbitrary racy programs.
In addition, we note that it is easy to decouple the two weaknesses of plain accesses com-
pared to relaxed ones, by introducing a middle access mode that allows synchronization
(together with release and acquire fences) but supports only partial per-location coher-
ence.

Remark 1. Our model handles only hardware-atomic memory accesses. To handle non-
atomic reads/writes, such as Java double and C struct accesses, our semantics could be
extended by introducing “garbage values” (LLVM-style undefined values [3]) as in [21].

6.4 System Calls

For the purpose of defining the behaviors of programs (as needed to prove sound-
ness of transformations), we augment our language and semantics with system calls
labeled with “SysCall(v)”. These are operations that are visible to an external observer
(e.g., printing statements). For simplicity, we assume that these take one value (input or
output), and more importantly, that they do not access the memory, and serve as the
strongest barrier for reordering. Thus, we simply model system calls as SC fences.

6.5 Modifying Existing Promises

So far, our model does not allow promises, once made, to be changed. However, our full
model does allow two forms of promise adjustment, both of which are defined in such
a way that threads that have already read from the promised message are unaffected.

46

Split The first form of promise adjustment is splitting. Consider the following exam-
ple:
a=x;//2

if a = 2then FAA(y,1); FAA(y,1); else FAA(y,2); XY

We find it natural to allow the specified behavior, as it can be obtained by benign com-
piler optimizations: first FAA(y,1); FAA(y,1) can be merged to FAA(y,2), and then
the whole if-then-else statement can be replaced by FAA(y, 2). Nevertheless, the model
described so far forbids this behavior. Indeed, clearly, an execution obtaining this be-
havior must start with T, promising (y:2@(f, t]). Since this promise must be certi-
fied under an arbitrary future memory, T, must pick f = o (or else, it cannot fulfill its
promise for a memory that includes, say, (y : 42@(o0,5])). Then, T, can read the promise
and add a message of the form (x : 2@(_, t]) to the memory. Now, T, would like to read
this message. However, if it does so, it will not be able to fulfill its promise (y : 2@(o, t]),
simply because there is no available timestamp interval in which it can put the first y = 1
message. To solve this, we allow threads to split their own promises in two pieces, keep-
ing the original promise with the same m.to value. For the example above, T; could
proceed by splitting its promise (y : 2@(o, t]) into (y :1@(o, t/2]) and (y : 2@(¢/2, t]),
reading the message (x : 2@(_, t,]) and fulfilling both promises.

Lower The second form of promise adjustment is lowering of the promised message’s
view. Note that by promising a message carrying a high view, a thread places more re-
strictions on the readers of that promise. Thus, changing the view of a promise m to a
view R’ < m.view can never cause any harm. Technically, including this option sim-
plifies our simulation arguments used to prove the soundness of program transforma-
tions, by allowing us to have a simpler simulation relation between the source and target
memories. More generally speaking, it allows us to prove and use the following natural
property: if all the views included in some machine state MS (in its memory’s messages
and its threads’ views) are less than or equal to all views in another machine state MS/,
then every behavior of MS' is also a behavior of MS.

6.6 Formal Model

Finally, we formally present our full model, combining and making precise all the ideas
outlined above. The model employs three modes for memory accesses, naturally or-
dered as follows:

pln c rlx c ra

47

We use o as a metavariable for access mode. The programming language is modeled
by a transition system whose transition labels (see Section 4.2) are: “Silent” for local
transitions; R(o, x,v) for reads; W(o, x,v) for writes; U(or, 0w, X, vy, vy) for updates;
Facq> Fret Fsc for fences; and SysCall(v) for system calls. Note that updates have two
access modes, one for the read and one for the write; and that only fences may have the
sc mode.

View AviewisapairV = (Tpln, Tr1x) of timemaps (see Section 4.2) satisfying Town <
Trix.- We denote by V.pln and V.rlx the components of V. View denotes the set of all
views.

Messages A message misatuple (x :v@(f,t], R), wherex € Loc,v € Val, f, t € Time,
and R € View, such that f < tor f =t = 0,and R.rlx(x) = t or R = 1. We denote by
m.loc, m.val, m.from, m.to, and m.view the components of m.

Memory A memory is a (nonempty) pairwise disjoint finite set of messages (see Sec-
tion 5 for def. of disjointness). A memory M supports the following insertions of a mes-
sage m = (x:v@(f,t],R):
o The additive insertion, denoted by M < m, is only defined if {m} # M, in which
case it is given by {m} u M.

o The splitting insertion, denoted by M < m, is only defined if there exists m’ =
(x:v'@(f,t'],R") with t < t' in M, in which case it is given by M~{m'}
{m,(x:v'@(t,t'],R")}.

C

o The lowering insertion, denoted by M < m, is only defined if there exists m’ =
(x:ve@(f,t],R") with R < R"in M, in which case it is given by M~{m'} u {m}.

We write M (x) for the sub-memory { m ¢ M | m.loc = x }.

Closed Memory Given a timemap T and a memory M, we write T € M if, for every
x € Loc, we have T(x) = m.to for some m € M with m.loc = x. For a view V, we
write V e M if T € M for each component timemap T of V. A memory M is closed if
m.view € M for every m € M.

Future Memory For memories M, M', we write M — M" it M ¢ {M & m,M &

m, M & m} for some message m, and M’ is closed. We say that M’ is a future memory
of M w.r.t. amemory P, if Pc M' and M —* M’

48

A:E.:WA: L < 1]SL) e (WssL)
W*,S,SL)

JUI)SISUOD ST A\ ,

sonjuewsas [euonjerdado [ng €11 2131y

(WS, dAo))—

(WS (d A9))

(W e(d A ,0)) — (W'S(d A)

JNSMOTA UL U > N =
w—d=,d Aﬂvmlmvﬂ.ﬂvww.lv

0«—— 0
N /7 uaps

(NS SL) < (WS SL) (1NaTIS)
(We,88L) = (g ()sL) (4SINO¥d)
(d4LS ANITHOVIN)

CodTi A D

tw \%AM,WAW\.FAM.WWSVV (W<,9(d*,a,0)) ((w<s A (124 bav uma)) < 0)) (WS (d (194 “bov < 4na)) < 0))
(a)11eDs4s — AEAWAE&#SVV — (WS (d ‘(124 bov “una) ‘o)) —(Wsd CE,wuuQ:uv ‘0))
T =MITA W " 5 WA T=MITA W "d > WA T =MOTA WL "d > WA bov = AN P =0
]) (o —y - P2y
A% \C > A% \C A\.mu \C 555 A% \C 4naTy = 194 0 11 0 AmUme|OU<v
7 owosts ST (2ONEd-T9Y)
(TTVO WHLSAS) (20NE4-0S)

(W S(d A0))
a

(WS, d 0 0) —
A

é.gé.}.g%:i;
(W d) o (W ed)
(g ?.S@f.xvu M

W3 (N [HT)D *a:x)
T=MITA W (X)d 3 WA <= Bd ="M

0 0
/ A3>.._>.xn3e~5v:

(WS, d A 0) <

(WS (d o))

(W od ,a,0) — (W ‘S(d ‘A9))

A Y TIX oM a >§>
(W d) < (W d) Wa [T)da:x)
Aww ._HqN A\v®> : Rv = \b (ax<0)y o

T=MITA w "(X)d 3 WA <= BI=0

O «—— 0

T (axco)m

(aLvadn)
(,8(,194<,bov < una)) (,194<,bov < und) — T (124 bav “and)
<— (9 (124 bov una)) ATATXOM
3 [{1@x) : x1d {3@x} : u1d] = A asoym

(.S 8)71= 124
(,9,9)= b= no

snxybw= g
(494 TIH-TONHEI-OS)

(% (x),124) 514 E0) = Y

[(4n23eaE0) M A M (X)]24 <1 x]j04 = jou
Ananbov = bov

ANans = uns
1> (x)x)474n2
(dEdTIH-TLIEM)

(AW}~ d) < (Wd)

SlEH\E

Slmﬂ\m Aﬂv“del
(TTI41Nd :XIOWHEI)

(avay)

(4LTAM)

(194, bov < und) Siwew (124 bov uno)
[(1@x} - x4 ({1@*} ¢ x14 £ 0) 1 u1d] = A 240ym
(gexwag0)nAnbw= bow
(J¢ BaEO)NAMINI = und
15 (%)X 4n2 <= {ed X1d} 50
1S5 (x)udunr«—= uyd=o
(dad1aH-avay)

(w5 Wd) < (W*d)

(MEN :XIOWHN)

49

Threads A thread view is a triple V = (cur, acq,rel), where cur,acq € View and
rel € Loc — View satisfying rel(x) < cur < acq for all x € Loc. We denote by V.cur,
V.acq, and V.rel the components of V. A thread state is a triple TS = (0, V, P) defined
just as in Section 4.2 except with a thread view V instead of a single timemap (o is a local
state and P is a memory). We denote by TS.st, TS.view, and TS.prm the components
of TS.

Thread Configuration Steps A thread configuration is a triple (TS, S, M), where TS
is a thread state, S is a timemap (the global SC timemap), and M is a memory:.

Figure I1.3 presents the full list of thread configuration steps. To avoid repetition, we
use the additional rules READ-HELPER, WRITE-HELPER, and SC-FENCE-HELPER. These
employ several helpful notations: L and U denote the natural bottom elements and join
operations for timemaps and for views (pointwise extensions of the initial timestamp o
and the U—i.e., max—operation on timestamps); { x@t } denotes the timemap assigning
t to x and o to other locations; and (cond ? X) is defined to be X if cond holds, and 1
otherwise.

The write and the update steps cover two cases: a fresh write (MEMORY:NEW) and a
fulfillment of an outstanding promise (MEMORY:FULFILL). The latter allows to split the
promise or lower its view before its fulfillment (note that when m € P ¢ M, we have
P=P& mand M = M & m by def. of &).

Consistency A thread configuration (TS, S, M) is called consistent if for every future
memory Mgyre of M w.r.t. TS.prmand every timemap Sgyryre With S < Stuture € Mfutures
there exist TS, S’, M’ such that:

(TS, Stuture> Miuture) - (TS,) S', Ml) A TS .prm=g

Machine and Behaviors A machine state is a triple MS = (7S, S, M) consisting of a
function 7S assigning a thread state to every thread, an SC timemap S, and a memory
M. The initial state MS® (for a given program) consists of the function 7S° mapping
each thread i to its initial state o7, the zero thread view (all timestamps in all timemaps
are o), and an empty set of promises; the zero timemap S°; and the initial memory
M? consisting of one message (x : 0@(o, 0], L) for each location x. The machine step is
defined by the last rule in Figure II.3. The variable e in the final thread configuration
step can either be a usual step (e is empty), or denote a system call (e = SysCall(v)).
To define the set of behaviors of a program P (namely, what is externally observ-
able during P’s executions), we use the system calls that P’s executions perform. More

50

precisely, every execution induces a sequence of system calls (each includes a specific
value for input/output), and the set of behaviors of P is taken to be the set of all system
call sequences induced by executions of P.

Promise-Free Machine In several of our results below, we make use of the fragment of
our model obtained by revoking the ability to make promises (i.e., omitting the PROMISE
rule). We call this the promise-free machine.

7 Results

In this section, we outline a number of important results we have proven to hold of
our “promising” model. All the results of this section are fully validated in Coq except
for Theorems 2 and 3, for which we provide hand-written proofs in Section 8. The Coq
development is available at [1].

7.1 Compiler Transformations

A transformation Pgc ~ Py is sound if it does not introduce new behaviors under any
(parallel and sequential) context, that is, for every context C, every behavior of C[Pig]
is a behavior of C[Py].

Next, we list the program transformations proven to be sound in our model. To
streamline the presentation, we refer to transformations on the semantic level, as if they
are applied to actions, namely fences and (valueless) memory accesses. Thus, we pre-
suppose adequate syntactic manipulations on the program level that implement these
semantic transformations. For example, a syntactic transformation implementing

R ~ RV s RY,, is a reordering a := x;b:= y ~ b := y;a:= x on the program
code (assuming a # b); while a merge of a write and an update correspond, e.g., to
a transformation of the form x := a; FAA(x,1) ~ x := a + 1. Nevertheless, our formal
development proves soundness of transformations on the purely syntactic level, assum-
ing a simple programming language with memory operations, conditionals, and loops.

Trace-Preserving Transformations Transformations that do not change the set of
traces of actions in a given thread are clearly sound. For example, y:=a+1-a ~ y:=1
is a sound transformation (recall that a denotes a local register; see Section 3:LBfd).
Indeed, this is the crucial property that distinguishes a memory model for a higher-
level language from a hardware memory model.

51

Strengthening A simple transformation that is sound in our model is strengthening
of access modes. A read/write action X, can be transformed to X,/ provided that o = 0'.
Similarly, it is sound to replace U,, o, by U, o provided that o; € o; and oy, E o, or to
strengthen Fe1 or Facq to Fsc.

Reordering Next we consider transformations of the form X;Y ~ Y;X, and specify
the set of reorderable pairs, that is the set of pairs X; Y for which we proved this reorder-
ing transformation to be sound in our model. First, the following pairs are reorderable
(where x and y denote distinct locations):

o WY RY o WY; Wirlx * W; Facq

Y .
* REr R and Rpln’ pln * Erlx’wcrlx * Rerixi Facq
* FretsWarix * FretsR * Frel;Facq

In addition, for the purpose of specifying reorderable pairs, an update is just a com-
bination of a read and a write. Thus, X;U,, ,, is reorderable if both X; R, and X; W, are
reorderable, and symmetrically U, ,,; X is reorderable if both R, ; X and W, ;X are re-

orderable. In particular, a pair U*, .;U’ o7l is reorderable if x # y, 0¥ € rlx, oy C rlx.

O oX)
The set of reorderable pairs in our model contains all pairs that are intended to be
reorderable in the C/C++ and Java memory models, including in particular all “roach-

motel reorderings” [78, 72].

Merging These are transformations that completely eliminate an action. Clearly, the
two actions in mergeable pairs (pairs for which we proved the merge to be sound in our
model) should access the same location. The following three kinds of pairs are merge-
able:

R-after-RR,; R, W-after-Wi,; W, R-after-W: W;R

Using the strengthening transformation, the access modes here can be read as upper
bounds (e.g., Rra; Rrix can be first strengthened to Ry3; Rra and then merged). Note that
the R-after-W merge allows even to eliminate a redundant acquire read after a plain/relaxed
write (as in Example LBa’ in Section 6.1).

In addition, the following pairs involving updates are mergeable:

R-after-U:Upix,0; Rrix> and Urg o5 Rra U-after-W:Wy5 U,
U-after-U:U,, o; Uy, 0, provided that U,, ,;R,, is mergeable

52

Note that read-after-update does not allow the read to be an acquire read unless the
update includes an acquire read (unlike read-after-write elimination). This is due to
release sequences: eliminating an acquire read after a relaxed update may remove the
synchronization due to a release sequence ending in this update.

Finally, two fences of the same type can obviously be merged.

The set of mergeable pairs in our model contains all pairs intended to be mergeable
in the C/C++ and Java models [78, 72]. In particular, we support R-after-W merging,
which is the effect of local satisfaction of reads in hardware like TSO, Power, and ARM.

Introducing and Eliminating Unused Reads Introduction of irrelevant read accesses
is sound in our model, unlike in the Java memory model [72]. Eliminating plain read
accesses whose read values are never used in the program is also sound in our model.
In contrast, eliminating relaxed or acquire reads is not generally sound because it may
remove synchronization.

Proof Technique Our proof of these results employs the well-known approach of sim-
ulation relations between the target and the source programs. We prove the adequacy
of simulation up-to context, or in other words, we can prove simulations between code
fragments and compose them. Our definitions are fairly standard, except that they en-
sure thread-locality, thus allowing us to define a simulation relation on thread con-
figurations, which (as we prove) can be composed into a simulation relation on full
machine states. The thread-locality is crucially used in proving the soundness of trans-
formations because they are performed not for a full machine but for a single thread.
Our thread-local simulation relation is based on novel ideas for reasoning about the
shared resources (i.e., the SC timemap and the memory) and consistency. For more
details, we refer the reader to Section 8.1.

7.2 Compilation to TSO

Like C18/C++17, our model can be efficiently compiled to x86-TSO. Since this archi-
tecture provides relatively strong guarantees, every memory access can be compiled to
a primitive hardware instruction. Moreover, release/acquire fences are ignored during
compilation, and SC fences are mapped to an MFENCE instruction. Correctness of this
mapping follows from a recent result by Lahav and Vafeiadis [52], which shows that all
weak behaviors of TSO are explained by store-load reordering and merging. Accord-
ingly, it reduces the correctness proof of compilation to TSO to: (i) supporting write-
read reordering and write-read merge; and (ii) a correctness proof of compilation to

53

SC. Since we proved the soundness of write-read reordering and merge (regardless of
the access modes of the two events), and since clearly our model is weaker than SC, we
immediately derive the correctness of compilation to TSO.

7.3 DRF Theorems

We proceed with an explanation of our DRF theorems. These theorems provide ways of
restricting attention to better-behaved subsets of the model assuming certain conditions
on programs.

Evidently, the most complicated part of our semantics is the promises. Without
promises, our model amounts to a usual operational model, where thread steps only
arise because of program instructions. Hence, our first DRF result (and the one that is
by far the most challenging to prove) identifies a set of programs for which promises
cannot introduce additional behaviors. Specifically, we show that this holds for pro-
grams in which all racy accesses are release/acquire, assuming a promise-free seman-
tics. Crucially, as usual in DRF guarantees, the races are considered under the stronger
semantics (promise-free), not the full model, thus allowing programmers to adhere to
this programming discipline while being completely ignorant of the weak semantics
(promises).

More precisely, we say that a machine state MS is o-race-free, if whenever two dif-
ferent threads may take a (non-promise) step accessing the same location, then both
accesses are reads or both have access mode strictly stronger than o.

Theorem 1 (Promise-Free DRF). Let = denote the steps of the promise-free machine
(see end of 6.6). Suppose that every machine state that is =>-reachable from the initial
state of a program P is rlx-race-free. Then, the behaviors of P according to the full
machine coincide with those according to the =-machine.

Putting promises aside, a counter-intuitive part of weak memory models are the re-
laxed accesses, which allow threads to observe writes without observing previous writes
to other locations. Removing pln/rilx accesses, namely keeping only ra, substantially
simplifies our machine (in particular, its thread views would consist of just one view, the
cur one). Accordingly, our second DREF result strengthens Theorem 1 and states that it
suffices to show that there are only races on ra accesses under release/acquire semantics
to conclude that a program has only release/acquire behaviors.

Theorem 2 (DRF-RA). Let = be identical to => in Theorem 1, except for interpreting
rixand plnaccesses in program transitions as if they are all ra-accesses. Suppose that

54

ra
every machine state that is = -reachable from the initial state of a program P is rlx-
race-free. Then, the behaviors of P according to the full machine coincide with those

. ra .
according to the =-machine.

To state a more standard DRF theorem, we assume programs are well-locked: (1)
locations are partitioned into normal and lock locations, and (2) lock locations are ac-
cessed only by matching pairs of the following lock/unlock operations:

lock(l): while !CAS(/, 0,1,acqrel) do skip;

unlock(l): I :=0;

The theorem forbids any weak behavior in programs that, under SC semantics, race
only on lock locations. For the SC semantics, we consider “an interleaving machine’,
where reads read from the latest write to the appropriate location (regardless of the
access modes).

Theorem 3 (DRF-LOCK). Let =5 denote the steps of the interleaving machine. Sup-

sC
pose that every machine state that is = -reachable from the initial state of a well-locked
program P is race-free on normal locations. Then, the behaviors of P according to the

SC
full machine coincide with those according to the =-machine.

Necessity of Re-certification We observe that promise re-certification is necessary
for Theorems 1 and 2 to hold, as shown in the following example:

a = Wacqs
if(a==1){
a = Yacgs Zi=1:
.f == ?
! b(:a: z 4 else {

Wet =13 || if (b==1){ }y el =B

b:=x;//1
; if (b==1){

z:=1

X=1

}
}

This behavior contradicts both of Theorems 1 and 2, and yet it is allowed in the absence

of promise re-certification. Consider the following execution. First, Thread 1 writes w =
1 and Thread 3 promises to write z = 1. Now Thread 3 reads w = o, after which it can

55

no longer certify to write the promised value z = 1. Then Thread 3 writes y = 1, Thread
2reads y = 1and z = 1, Thread 2 writes x = 1, Thread 3 reads x = 1, and then Thread 3
tulfills the promise to write z = 1.

7.4 An Invariant-Based Program Logic

Besides the DRF guarantees, to demonstrate that our model does not suffer from the
disastrous consequences of OOTA, we prove soundness of a very simple program logic
for concurrent programs with respect to our model. In particular, it can be trivially
used to show that LBd must return a = o, and more generally, that programs cannot
read values they never wrote. Note that even this basic logic is unsound for C/C++’s
relaxed accesses (whereas it is sound in our model even if all accesses are plain).

We take a program proof to be a tuple (], S,, S,, ...), where] is a global invariant over
the shared variables and each S; C State; is a set of local states (intuitively describing
the reachable states of thread i) such that the following conditions hold:

o 07 €Sijand AyelocXx =0+ J.

o Ifo; Rloxn), ol

!theno;eSinJAax=v o] €S,
W(o,x,v)

o Ifo; ——> o] theno; € S; AJ o] €S; AJ[v/x].

U(0r,0wX;VrsVw)

_—

o IfO','
oi €Sin]Ax = 0] €8 AJ[vy/x].

o] then

o For e € {Facq, Frel, Fsc, Silent, SysCall(v) }, if o; 5 o/ theno; € S; 0] €S;.

Figure II.4 provides an illustration of a program proof showing that LBd does not exhibit
weak behaviors.

Now, given a program proof for a program P, we can show that all the reachable
states MS from the initial state MS® of P satisfy the global invariant J:

Theorem 4 (Soundness). Let(/, S,, S,, ...) be a program proof, and let MS = (TS, S, M)
such that MS® —* MS. Then, TS(i).st € S; for every thread i, and A oc x = f(x).val -
J for every function f that assigns to every location x a message m € M such that
m.loc = x.

Our Coq proof of this theorem is simple: it holds trivially for promise-free execu-
tions, and extends easily to promise steps, since every promise step has a promise-free

certification.

56

{7}

a = x; {7}

{In(a=o)} | x=p J= (x=0) A (y=0)
= a; {7}

y
{7}

Figure II.4 A simple derivation in the invariant-based program logic

8 Proofs

In this section, we present notable proofs of the results presented in Section 7. We first
present our thread-local simulation relation for proving the soundness of transforma-
tions (Section 8.1). Then we present the proofs of DRF-RA (Section 8.2) and DRF-LOCK
(Section 8.3), which are the only theorems not formalized in Coq.

8.1 Thread-Local Simulation Relation

As discussed in Section 7.1, our thread-local simulation relation is based on novel ideas
for reasoning about the shared resources and consistency. Now we discuss each point
in more details and present the simulation’s definition.

Machine Simulation Relation But before delving into the details, we first review sim-
ulation relations. Recall from Section 2.1 that a relation R over source and target ma-
chine states is a (machine) simulation if, for any source and target states MS, and MS,,
related by R, the following holds:

(SteP) For all MS!, if MS] — MS!, then there exists MS, such that MS, —* MS, and
R relates MS, and MS!; and

(TERMINAL) IfMS, is terminal, then there exists MS, such that MS, —* MS, and MS,
is terminal.

Here, we intentionally omitted events in the definition of simulation relation for presen-
tational purposes, but the discussion in this section applies also to simulation relations
with events. Also recall that if two states are simulated, then the behavior of the target
state is a subset of that of the source state.

Reasoning about Shared Resources Now we are about to “localize” the definition
of simulation relation to thread configurations. Our goal is proving compositionality

57

of thread-local simulation: if (7S, S, M) and (T7S’,S’, M') are source and target ma-
chine states, and for each i, there exists a thread-local simulation relation R; that relates
(TS(i),S, M) and (TS'(i),S’, M), then there exists a machine simulation relation R
that relates (7S, S, M) and (7S',S’, M').

A naive attempt to define thread-local simulation would be directly translating ma-
chine simulation relation to thread configurations. However, it does not satisfy compo-
sitionality because, in a thread’s point of view, the other threads may change the shared
resources at any time. For example, for machine states (7S, S, M,) and (T7S., Sh, ML),
if 7S,(1) and 7S, (1) take steps, the shared resources S,, M,, S., and M/ may be
changed, say to S,, M,, S/, and M/, and thus (7S,(2),S,, M;) and (7S, (2), S/, M])
are no longer thread-locally simulated.

Thus in the definition of thread-local simulation, we need to take into account the
effect—or the interference—of the other threads to the shared resources at any time.
Our key observation is that the interference of the other threads can be abstractly char-
acterized as follows. Suppose (TS,, Sy, M,) and (TS,, S!, M|) are the source and target
thread configurations in our concern, and the other threads changed the source and tar-
get shared resources to (S,, M) and (S;, M,). Then the following holds:

(INTRE-FUTURE) (S,, M,) is a future shared resource of (S,, M,) w.r.t. TS,.prm, or in
other words, S, 2 S, and M, is a future memory of M, w.r.t. TS,.prm. Similarly,
(8], M) is a future shared resource of (S;, M) w.r.t. TS, .prm;

(INTRE-SC) If S, c S, then S, £ S; and

(INTRE-MEMORY) If M, ~ M/, then M, ~ M,. Here, by M ~ M’ we mean (1) for
each location, the timestamps covered by the messages in M coincides with those
covered by the messages in M'; and (2) for each message (x : ve@(f’, t],R") in M’,
there exists a message (x : v@(f, t], R) in M such that Rc R'.

From now on, we write (S, M) ~ (S, M) to mean S £ S’ and M ~ M’ for simplicity.

Now in proving thread-local simulations, we assume that the interference of the
other threads are constrained by the above conditions; on the other hand, we also guar-
antee that the thread in our concern also satisfies the above conditions. Concretely, we
revise our thread-local simulation relation as follows. A relation R over source and tar-
get thread configurations is a thread-local simulation if:

58

V(TSo> So» Mo), (TS, Se, My). R (TSq, So» Mo) (TS, Se, M) =
V(S0 M), (S{, M}). (So» Mo) ~ (S5, M) A (Si, M) ~ (S, My) A
(81, M,) is a future of (S, M) w.r.t. TS, A
(8], M]) is a future of (S), M]) wrt. TS, —

(STEP) For any (TS,,S., M.), if (TS,, S/, M]) — (TS,,S,, M.), then there
exists (TS,,S,, M,) such that (TS,, S;, M) —* (TS,,S,, M,), R relates
(TS,,S,, M,) and (TS., S,, M), and (S,, M,) ~ (S,, M,); and

(TERMINAL) If (TS), S/, M]) is terminal, then there exists (TS,, S,, M,) such
that (TS,, S, M) —* (TS,,S,, M,), (TS,,S,, M,) is terminal, and
(S, M) ~ (8], M]);and ---
Notice that it differs from the machine simulation relation, except for types, in that (1)
we should prove simulation after all legit interference of the other threads (lines 2-4),
and (2) we should prove the thread’s modification to the shared resources is legit (lines
7 and 10).

It is worth noting that the above conditions on the shared resources resemble mem-
ory invariants in (sequential) compiler verification literature, e.g., memory extensions
and injections in CompCert [57]. Both are indeed introduced for the same purpose,
namely reasoning about the effect of unknown others, but they differ in what are the
“others”: it is other threads in our case, and it is other functions for e.g., CompCert.

Reasoning about Consistency The above definition still does not satisfy composi-
tionality because it fails to simulate consistency. Recall that for each machine step, the
resulting thread configuration should be consistent. The above simulation relation does
not necessarily mean the source thread configuration steps to a consistent one even if
the corresponding target thread configuration steps to a consistent one.

To address this problem, we require the following conditions, in addition to the

(STEP) and (TERMINAL) conditions above, for thread-local simulation:

(FuTure) For any shared resource (S,,M,) that is a future of (S, M,)
w.r.t. TS,.prm, there exists a shared resource (S,, M.) that is a fu-
ture of (S, M) w.r.t. TS,.prm such that R relates (TS,,S,, M,) and
(TS.,S., M); and

(No promises) If TS, .prm = @, then there exists (TS,,S,, M,) such that
(TSo,S,, M) =* (TS,,S,, M,) and TS,.prm = &.

59

Provided that the above conditions hold, consistency is also simulated as follows. Sup-
pose that a thread-local simulation R relates source and target thread configurations
(TSo, S, Mo) and (TS.,S., M/), and the target configuration is consistent. Now we
prove (TS,, S, M) is also consistent. For any future shared resources S;, M, of S,, M,
w.r.t. TSo.prm, by (FUTURE), there exist S;, M| such that they are a future of S, M/
w.r.t. TS,.prm and R relates (TS, S,, M,) and (TS.,S], M;). Since (TS.,S., M}) is
consistent, there exists (TS,,S., M) such that (TS], S/, M]) —* (TS,,S., M) and
TS, has no promises. By (STep), there exists (TS,,S,, M,) such that (TS,, S;, M;) —*
(TS,,S,, M,) and R relates (TS,,S,, M,) and (TS,,S,, M,). By (No PROMISES), there
exists (TS;, S;, M;) such that (TS,, S,, M,) =~ (TS;, S5, M;) and TS, has no promises.
Thus (TS,, So, M,) is consistent.

After taking into account the effect of the other threads to the shared resources and
consistency, we can prove thread-local simulation’s compositionality by coinduction.

8.2 Proof of DRF-RA

We first define the set of memory events « € ME as follows:

{silent }
u{read(o,x,t) | o€ AM,x € Loc,t € Time }
u{write(o,x,t) | o€ AM,x € Loc, t € Time }
U {update(or, 0w, X, ty, ty) | 01, 0w € AM, x € Loc, t, ty € Time }
U {fence(T)| T e{acq,rel,sc}}
U {syscall(v)|ve..}

where AM = {pln, rlx, ra}.
We call the following events globally synchronizing:

{fence(sc)}
U {syscall(v)|ve..}

Then we annotate promise-free and release-acquire steps with the executed thread

ra
ids and memory events, denoted =>(;) and =>(; 4).

ra
First, we prove two key lemmas for =-: one for removing an intermediate step, and
another for reordering adjacent steps.

Lemma 5 (Step removal). Suppose we have a release-acquire execution

ra ra ra
MS :>(i1,0c,) MS, :>(i2,0c2) :>(iy,,ocn) MS,

60

such that
Vk > 2. MS;.ths(iy).view # MS,.ths(i,).view.

Then we have i # i, for all k > 2 and the following execution

ra ra ra
MS =i, a,) MS; = (igott3) " = (inyatn) MS;

as)

for some machine states MS} satisfying
Vk >2.Vi#i,. MS,.ths(i).st = MS;.ths(i).st .

Proof. There are only two cases where the first step with (i,, a,) affects a subsequent
step with (ix, ay): either (i) the latter reads what the former wrote; or (ii) the former
globally synchronizes. In case (i), the view MSy.ths(ix).view becomes as high as the
view MS,.ths(i,).view because the read and write are ra-synchronized. This is im-
possible because it conflicts with the assumption. In case (ii), the effect is limited: MS},
is the same as MSj except the effect of the event a,. More specifically, MS;’s memory
may contain an extra message produced by a, and the threads other than i, in MS are
the same as those in MSj except that every view in the former may be less than the
corresponding view in the latter. By monotonicity, MS; has more behaviors than MS;
and thus we can construct such an execution. O]

Lemma 6 (Step reorder). Suppose we have a release-acquire execution
MS =,y MS, =) MS,
such that one of @, and «, is not globally synchronizing and
MS,.ths(i;).view £ MS,.ths(i,).view.
Then we have i, # i, and MS] satisfying
MS =i, 0y MS, = o) MS, .

Proof. Basically a similar argument as in the previous lemma applies here: (i) «, should
not read ay; and (i7) the earlier step with a, does not affect the later step with «, since
a, or a, is not globally synchronizing. O]

Now we prove DRF-RA. Let =2 be identical to = in Theorem 1, except that (i) rix
and pln accesses in program transitions are interpreted as if they are all ra-accesses,
and (ii) a machine step consists only of one thread step. Note that the second condi-
tion does not affect the semantics, since a machine state without promises is vacuously

consistent.

61

Proof of DRF-RA (Theorem 2). 1t suffices to show that (i) the existence of a rlx-race
in the =-machine implies that in the =2 machine, and (ii) the behavior in the =

ra
machine and that in the =-machine coincide if P is r'l1x-race-free in the =--machine.
Then Theorem 1 concludes the proof.

We prove both (i) and (ii) by a single simulation argument. We say an = -execution

ra

ra ra
MS;, = (i.0) MS; =>(i, o) = (ir00) MS;,

)le) ’
simulates a =-execution
MSo :>(i1,oc1) MS1 :>(i2,ocz) :>(in>¢xn) MSn 5

if the following conditions hold:

1. VK, j. MS;.ths(j).st = MS,.ths(j).st;

2. Yk, j. MSy.ths(j).view.cur = MS; .ths(j).view.cur;

3. Yk, j. MS;.ths(j).view.acq = MS;.ths(j).view.acq;

4. Vk.MS;.gsc = MS; .gsc ; and

5. Vk.MS).memand MS;C .mem have the same messages, except that the released view

ra
of a message in the = -execution may be higher than that of the corresponding
message in the =-execution.

This simulation proves (i), as a rlx-race in MSy, in the =-execution is also a r'lx-race
in MS; in the =2 -machine, thanks to the condition 1. It also proves (ii) by the adequacy
of the simulation relation.

Now we prove the simulation. Consider a =-step:

MS” :>(in+1>lxn+1) Msn+1 >
ra
and we will find a corresponding = -step that preserves the simulation relation:
r Fa /
MSVI :>(in+1>¢xn+1) MSTI+1 :

Thanks to the simulation relation, there exists MS), | such that MS), g(inﬂ,anﬂ) MS;, ..
If a4, is not reading (i.e., neither a read nor an update event), it is immediate from the
semantics that the simulation relation is preserved. Now suppose a,, is reading (x@t)
with the access mode o,, and let k be such an index that a is writing (x@t) with the

access mode 0, and R (and Rr,) be the released view of (x@t) in the = -execution

ra
(and =-execution, respectively).
Now we proceed by a case analysis:

62

Case 0,0, 2 ra.

Note that the current & acquire views of MS,,,,.ths(i,,) and MS/,, .ths(i,4,)

n+1
may diverge only due to the discrepancy of the (x@t)’s released views (R and

Rra), and the read’s access mode (o, for the =>-machine, and o, U ra for the
g—machine). A similar argument applies to the other machine state compo-
nents in the simulation relation. Hence it suffices to show that R = Ry5 and
0, = 0, U ra, which come clearly from the assumption: in particular we have
R = MS;.ths(ix).view.cur = MS;.ths(ix).view.cur = R, thanks to o, =2
ra.
Case MS| .ths(i;).view.cur < MS; ths(i,).view.cur.

Since the released view Rr5 = MS) .ths(ix).view.cur of (x@t) is already incor-
porated in the current view, a similar argument also applies here.

Otherwise.

. . ra . .
In this case, we construct a rlx-race in the =-execution by repeatedly applying
the step-removing Lemma 5 to the execution:

/ ra ; ra ra /
MS, ., = (i) MSk = (i) " = (i) MS >
so that iy (attempting to write to x with o,,) and i,,;, (attempting to read from x
with o,) race in a reachable machine state.
Let j € [k, n) bethelast suchan index that MS}.ths(i;).view.cur £ MS; .ths(i,).view.cur.
ra
By Lemma 5 there exists an =-execution:
r Ta 7 ra 7
MSj—] z(fj+1,06j+l) MS]+1 z(in,“n) MS}’I >
such that MS” .ths (i,).St = MS/.ths(i,.,).st. By repetition, we have an —>-
execution:

, ra ra

ra
MS}, = (ia) MS]” = (i0) = (i) M)

such that MS!".ths(i,,).5t = MS),.ths(i,.,).St and iy is not executed at all
from MS;_, to MS,,’. Hence MS,,’ ths(iy).st = MS;_ .ths(i).st, thus i; and
int, race in MS)".

O]

63

8.3 Proof of DRF-LOCK

To state a DRF theorem on properly locked programs, we classify locations into normal
locations and lock locations and suppose lock locations are accessed only by the acquire
and release operations, as defined as follows:

acquire(l) { release(/) {
while !CAS(, 0,1, acqrel) do skip; Lel := 0;

} }

Furthermore, we say a machine state MS is properly locked, if:

1. If two different threads can take a step accessing the same location, then both
accesses are reads, or the location is a lock location; and

2. If a thread can release a lock, say [, then the value of [in MS’s memory is 1.

Theorem 7 (DRF-LOCK). Let =5 denote the steps of the interleaving machine. Suppose

that every machine state that is =5 -reachable from the initial state of a program P is
properly locked. Then, the behaviors of P according to the full machine coincide with

sC
those according to the =-machine.

ra
Proof. We say that an =-execution is interleaving if any reading step reads from the
message with the greatest timestamp and any writing step writes a message with a times-

SC
tamp greater than any existing message’s timestamp. It is obvious that the =-machine

is equivalent to the interleaving = -machine (which we simply call the interleaving ma-
chine), and thus we identify them.

First of all, for any L5 _execution E (i.e., a finite or infinite sequence of g-steps),
it is easy to see that removing all failed acquire steps from the execution still yields a

., ra . . o
valid =>-execution E’ with the same behavior (i.e., the same sequence of system calls).
Furthermore, if E is a finite execution leading to a ra-racy machine state, then so is E'.

nfra ra
We will simply say ==>-executions for = -executions with no failed acquire steps.

From this observation and Theorem 2, we can easily see that it suffices to prove that

. . . nfra . . . S
(i) the existence of a ra-race in an ==--execution of P implies a violation of proper

locking in an interleaving execution of P; and (ii) the AT behaviors of P coincide
with its interleaving behaviors if P is properly locked in all interleaving executions.
We prove both (i) and (ii) by a single simulation argument. We say an interleaving
execution
MS;, = (100) MS] = (100) = = (1101 MS,

64

X nfra .
simulates an ==>-execution
ra ra ra
MSO =>(i1,0£1) MSl :(iz,az) =>(in,01n) MSn 5
if the following conditions hold:

1 (i}, a)),..., (i), al,) is a reordering of (i;, &), ..., (iy, &,) such that the order of
system calls is preserved; and

2. MS, = MS, and MS/, = MS,,.

nfra
If we prove that given any ==>-execution of length 7 there exists a simulating in-

nfra
terleaving execution, then we are done as follows. Given any (possibly infinite) ==-
execution and any number of steps 7, we can find an interleaving execution of length n

leading to the same machine state with the same sequence of observable events (i.e., sys-

. . . nfra . .
tem calls). Thus, any arbitrarily long observation on an ==-execution cannot be dis-

tinguished from that on an interleaving execution. Also, if there is any M8 execution
leading to a ra-racy machine state, we can find a simulating interleaving execution to
an improperly locked machine state by the simulation argument.

Now it suffices to prove the simulation theorem by induction on the length n. The
base case is trivial. For an induction step, let’s assume that we have a simulating execu-

tion of length #, given as in the above definition of simulation. Suppose we have a step

nfra . o . .
MS, == MS,,.,. Then we need to find a simulating interleaving execution of

In+1,0n+1
length n+1 that starts from MS,, and ending in MS,,,,. If the event «,,., is neither a read,
a write, nor an update, then the execution MS, ... MS;, g(inﬂ,) MS,, ., is interleaving,
so we are done.

Thus suppose that a4, is accessing (i.e., a read, a write, or an update event on) a
location x and does not satisfy the interleaving condition (i.e., does not read the latest
message nor writes with a greatest timestamp). By definition of the interleaving condi-
tion, we can find an event writing to x whose timestamp is bigger than that of the event
a4, Let’s write ay and ¢, for the first such event (i.e., with the smallest index k) and its
timestamp.

Now, by exactly the same argument as in Theorem 2, we can remove all steps MS;
such that k < j < nand MS;.ths(i;).view > MS;.ths(ir).view. Then we have a race
between aj and «,,4,. The resulting execution is also interleaving because removing a
step from an interleaving execution always results in an interleaving execution. Thus,
by the proper locking assumption, it follows that «; and «,, are accessing the same
lock location.

Now we will construct an interleaving execution from MS, to MS,,., that simulates
the given execution. For this, we repeatedly apply the step-reordering using Lemma 6 as

65

follows. First, we find the first event, say aj, such that k < j < n+1and MS;.ths(i;).view.cur.rix(x) <
tx. Then we can move down the event to just before o) using Lemma 6. We repeat this

process until we move «,,, down to just before a. This is possible because we have

MS, ;,.ths(iy4).view.cur.rix(x) < t;. Also note that this process does not reorder

system calls because we assume that system calls synchronize on lock locations (i.e.,

making the view on lock locations to be up-to date).

Finally we will show that such a reordering does not break the interleaving condition
for all existing events and furthermore make «,,, to satisfy the interleaving condition.
The latter holds trivially by construction because . was the first event with respect to
which a,, violates the interleaving condition. The former holds as follows. In order to
break the interleaving condition, we need to reorder two events «, 3 to 3, « such that
they are accessing the same location and at least one of them is writing. During the
reordering process, suppose we meet such a reordering for the first time. Then, the exe-
cution before the reordering is interleaving because we are about to break the condition
for the first time. Since « and f3 are racing on the same location, they both have to be
lock operations (i.e., successful acquire or release). By the proper locking assumption,
we have only two possibilities: « is a release and f3 is an acquire; or « is an acquire and 8
is a release. The former case is a contradiction because 3 reads what « writes due to the
interleaving condition, which makes f’s view as high as a’s. The latter is a contradiction
too because after reordering the execution up to f3 is still interleaving but the machine
state before f3 is not properly locked. Thus we can conclude that the reorderings do not

break the interleaving condition.
O

9 Related Work

There have been many proposals for solving the “out of thin air” problem. Several of
them have come with proofs of DRF guarantees, but ours is the first to come with formal
(and machine-checked) validation of a wide range of essential local transformations
(Section 7.1) concerning a broad spectrum of features from the C/C++ model.

The first major attempt to solve the “out of thin air” problem was by the Java memory
model (JMM) [59] (see also [58]). The JMM intended to validate all the compiler opti-
mizations that Java compilers and just-in-time compilers might perform, but its formal
definition failed to validate them [72]. Subsequent fixes were proposed to the model,
which improved the set of enabled optimizations, but still falling short of what actual
Java compilers were performing.

Interestingly, an early glimpse of our idea of promises may be seen in version 1.0
of the JMM [28], which describes a form of “prescient store actions” ($17.8). However,
their description is very brief and vague, and the feature was removed for JSR 133 [9].

66

To resolve some of the problems with the JMM definition, Jagadeesan et. al. [38]
proposed an operational model following quite closely the intended behavior of the
JMM, but employing the notion of a speculation. Speculations are similar to our no-
tion of promises, but unlike promises they are not certified thread-locally: whereas we
model interference conservatively by quantifying over all future memories during cer-
tification, they model interference from other threads more precisely by executing mul-
tiple threads together during certification. We believe our conservative approach is suf-
ficient for justifying standard compiler optimizations, which are typically thread-local,
and moreover it simplifies the presentation of the semantics and the development of the
metatheory because it avoids the need for nested certifications.

Jagadeesan et. al. ’s model satisfies the standard DRF theorem, as well as a DRF the-
orem saying that speculations are unnecessary for programs without read-write races.
They also develop a simulation proof technique, with which they verify three optimiza-
tions: write-write reordering, roach-motel reordering, and read-after-read elimination.
We have applied our simulation method to a much wider variety of optimizations, and
our proofs are machine-checked in Coq. They also do not provide any compilation cor-
rectness results, and their model omits release-acquire accesses, updates, and fences.

More recently, Jeffrey and Riely [39] presented a weak memory model based on
event structures. Their model admits a standard DRF theorem, but does not fully al-
low the reordering of independent memory accesses, and thus cannot be compiled to
Power/ARM without extra fences. The paper suggests an idea about how to fix the model
to support such reorderings, but it is not known whether the suggested fixed model
avoids OOTA behaviors. Relating to our work, their model seems to be “promising”
reads (instead of writes) and restricting the quantification over possible futures to only
those that could arise from further execution of the current program. The model only
supports relaxed accesses and locks.

Pichon-Pharabod and Sewell [67] introduced an event structure model with both a
normal reduction rule, which executes an initial event of the event structure, and special
reduction rules that mimic the effect of standard compiler optimizations on the event
structure. These optimization rules include a rather complex rule for non-thread-local
optimizations that can declare a whole branch of the event structure unreachable. The
paper does not present any formal results about the model. It is worth noting that the
model does not support the weak behavior of the ARM-weak program and thus may
not be compiled to ARM without additional fences. The model only handles relaxed
and non-atomic accesses and locks.

Podkopaev et. al. [69] proposed an operational model covering a large subset of the

67

teatures of the C/C++ model. They provide many litmus tests to demonstrate the suit-
ability of their model, but do not prove any formal results about it. Their model ensures
per-location coherence in a very similar way to our model: using timestamps. In order
to handle read-write reorderings, they allow reads to return symbolic values, which are
then evaluated at a later point in time when their value is actually needed. This approach
gives the expected behaviors to the LB and LBd programs, and may be extended with
a set of syntactic symbolic simplification rules to also give the expected result to the
LBfd program. It seems, however, very difficult to extend this approach to enable code
motion optimizations, where some common code is pulled out of two branches of a
conditional. What makes code motion more challenging is that the common code may
become apparent only after some earlier transformations, like for example the y := 1
assignment in the following code:

a=x;//1

ifa=1then y:=a; else (z:=1;y:=2;) =D

Our model allows the annotated behavior of the program above, precisely because our
promises are semantic in nature and thus avoid the brittle tracking of syntactic data
dependencies.

Zhang and Feng [82] suggested an operational model for Java accesses in which
threads may re-execute some memory events. The model admits a standard DRF theo-
rem, and its replay mechanism enables it to support local transformations. However, to
avoid OOTA, this mechanism is limited by its tracking of syntactic dependencies be-
tween instructions, and thus it fails to validate behaviors resulting from trace-preserving
transformations like the one above.

Other proposals for language-level memory models have tried not to solve the OOTA
problem, but to avoid it, by introducing stronger models where read-write reordering
is not allowed. For example, Sevtik et. al. [73] and Demange et. al. [24] proposed using
TSO as the memory model for C and Java, respectively. These proposals may be rea-
sonable compromises if the only target machines of interest also follow the TSO model,
but are prohibitively expensive on weaker architectures, such as Power and ARM, be-
cause enforcing TSO on those machines requires essentially as many fences as enforcing
SC. In a similar line of work, Lahav et. al. [51] introduced a strengthening of the re-
lease/acquire fragment of the C/C++ memory model, which they called SRA, together
with an operational semantics for SRA. Compiling SRA to Power and ARM is cheaper
than TSO, but still requires some fences before or after every shared variable access, and
may thus not be suitable for performance-critical code. Dolan et. al. [25] and Ou et. al.

68

[64] proposed C/C++, OCaml, and Java memory models that specifically forbid read-
write reordering, and proposed their compilation schemes to TSO, ARM, and Power
that insert less more fences than SRA. They reported the performance overhead of
fences is none for TSO and within 3% on average for ARM and Power architectures.
However, more comprehensive performance study is necessary to draw a solid conclu-
sion.

Boehm advocated stronger models without read-write reorderings because they
break modularity and useful reasoning principles for programmers [19]. Notwithstand-
ing his criticism, we think it is unclear whether forbidding read-write reorderings alto-
gether is adequately striking the trade-oft between simplicity and performance. To find
a sweet spot, we are developing reasoning principles and tools for programmers in the
presence of read-write reorderings. See Section 10 for more details.

Another approach is to simply allow OOTA behaviors. This was the approach taken
by Batty et. al. ’s formalization of C/C++ [13], and by the OpenCL model [44], as well
as by Crary and Sullivan [23], who introduced a more fine-grained specification of the
orders that the model is supposed to preserve. All of these models allow the weak be-
havior of the LBd example, thereby invalidating standard reasoning principles and DRF
theorems.

Finally, Norris and Demsky [62] presented a tool that exhaustively enumerates the
behaviors of concurrent C/C++ programs. To account for speculative reads, the tool
may establish “promised future values”, which a load can read from, and which must
eventually be written by a future store. Norris and Demsky’s promises look superficially
quite similar to ours, but their purpose is to support practical model checking of C/C++
programs, not to change the semantics of the language, so the paper does not present
any formal model or metatheory of promises.

10 Follow-up and Future Work

SC Accesses Lahav et. al. proposed a fix to SC accesses in C/C++11 [53]. Extending
our model with SC accesses is left for future work (see Section 3.3).

Compilation Correctness Podkopaev et. al. established the correctness of compi-
lation of our model to Power, ARMvy, and RISC-V, as well as to ARMv8 using a sub-
optimal compilation scheme for read-modify-update instructions [68]. In fact, the op-
timal one used by mainstream compilers is unsound for our semantics due to the fact
that ARMv8’s read-modify-update instructions perform “global” optimizations, which
is beyond the reach of our semantics as we will explain shortly.

69

Global Optimizations In our model, we insist that promises can always be certified
thread-locally. This decision enables thread-local reasoning about our semantics and
suffices to justify all the known thread-local program transformations that a compiler or
the hardware may perform. It does, however, render unsound some transformations of
a global nature, such as sequentialization (aka “thread inlining”), which merges threads
together. To see this, consider the following:

a=x; //1
aw=x;//1)
. if a = o then
ifa=othen||y:=x;||x:=y; ~ Xi=y;
xX:i=1
X =1
yi=x

This source program disallows the specified behavior because if T, reads 1 for x after
promising x := 1, then it will not be able to fulfill its promise. Nevertheless, the result
a = 1is allowed in the target program (obtained by sequentializing T, before T,). Here,
T, can safely promise y := 1, and later read x = 1 from T,’s write.*

Furthermore, thrad-local certification also renders unsound the optimal compila-
tion scheme to ARMv8. Consider the following example [68, Example 3.10]:

2= 1 b=z //1
o c:= FAA(x,1,rel); /o
Z:=4d
)/I:C"rl

This behavior is disallowed in our semantics, because a promise of y = 1—which is re-
quired for the behavior—cannot be certified in the presence of release fetch-and-add.
However, this behavior is allowed in ARMvS, essentially because it allows the global op-
timization which (1) analyzes that x is modified only by the fetch-and-add instruction
and c be the initial value o, and (2) transforms y : =c+1 with y : =1. After the optimiza-
tion, y =1 can be promised and the behavior is allowed.

Generalizing our semantics to support global optimizations and verifying the opti-
mal compilation scheme to ARMvS is left for future work.

Liveness It is natural to extend our operational model with liveness guarantees, and
it is useful and interesting to study their interaction with program transformations and
DRF theorems. Liveness properties are currently mostly ignored in weak memory re-
search.

*Though sequentialization is a very intuitive property that one might expect a memory model to val-
idate, we observe that TSO [65], Power [11], ARMVS [27], Java [59], and C18/C++17 [13] (without the cor-
rections proposed in [78]) all do not allow sequentialization.

70

Reasoning Principle The program logic presented in Section 7.4 only establishes the
very basic sanity of our memory model. Svendsen et. al. [77] propopsed a separation
logic for our semantics that is capable of proving the absence of out-of-thin-air behav-
iors for various litmus tests. Developing reasoning principles for our semantics that is
capable of verifying concurrent data structures and algorithms, is a direction for future
work.

Promising Semantics for Hardware Concurrency Using the main idea of our se-
mantics, namely views and promises, Pulte et. al. [70] proposed the promising seman-
tics for ARMv8/RISC-V which is a simpler and faster operational concurrency seman-
tics than the existing models for those architectures. Developing the promising seman-
tics for other architectures is left for future work.

Simulation and Model Checking The high degree of nondeterminism in relaxed-
memory concurrency makes it hard to exhaustively explore all possible behaviors of a
given program. In an ongoing work, we are developing efficient methods and tools for
this purpose by leveraging the idea of views and promises to tame the nondeterminism.
In particular, Pulte et. al. [70] developed an efficient model checker for ARMv8/RISC-
V, and using this model checker, they verified realistic concurrent data structures such
as Michael-Scott queue and Chase-Lev deque.

71

Chapter II1

Separate Compilation and Linking

11 Introduction

There was a key dimension in which the verification of CompCert, as well as that of the
other existing verified compilers, is not realistic—namely that, for simplicity, it only es-
tablishes the correctness of whole-program compilation: if CompCert is used to compile
a self-contained C program consisting of a single file, then the output of CompCert pre-
serves the semantics of that program. But clearly this does not correspond to what many
clients of a verified compiler would expect. For example, it is often essential in practice
to be able to compile a client module separately from the many standard libraries it
depends on, yet be assured that linking the resulting binaries together will result in an
executable that preserves the semantics of the linked source modules. Furthermore, it is
commonplace for different modules in a program to be compiled with different sets of
optimization passes turned on. Although the CompCert compiler does indeed support
such forms of separate compilation, its verification statement says nothing about them.

The technical reason for this limitation is that it makes it possible for the CompCert
verification to be carried out straightforwardly using closed simulations: simulations
between closed (i.e., self-contained, executable) programs. For each pass of the com-
piler, the output of the pass is shown to simulate the input of the pass, assuming and
preserving whatever invariant the verifier wishes to impose on the relation between
the states of the input and output. Working with closed simulations simplifies life in

72

two ways: (1) the simulation proof for each pass can rely on whatever state invariant it
chooses, independent of what invariants are used in other passes, and (2) these inde-
pendent simulations collectively imply the end-to-end correctness of the whole com-
piler (this is sometimes called “vertical compositionality”). However, closed simulations
are by definition simulations over whole program states, thus seemingly confining their
applicability to the verification of whole-program compilation.

There has consequently been a great deal of work in the past several years attempting
to prove compiler correctness without the whole-program restriction. Indeed, it turns
out that even specifying, let alone verifying, when separate compilation is “correct”—
often referred to as compositional compiler correctness [15]—is non-trivial, and has sparked
a variety of interesting proposals involving technically sophisticated techniques, such
as Kripke logical relations [31], multi-language semantics [66], and parametric simula-
tions [32, 61]. All these approaches aim to achieve a highly flexible form of composition-
ality, guaranteeing for instance that the results of multiple different verified compilers
can be correctly linked together, and that it is safe to link those results with hand-written
assembly code.

It seems, however, that achieving such flexibility comes at the expense of significant
complication to the proof method. For example, Perconti and Ahmed’s approach [66]
involves constructing logical relations over a multi-language semantics encompassing
all languages used in a compiler, a considerable departure from CompCert-style verifi-
cation. Neis et. al. ’s method [61] employs a novel notion of “parametric inter-language
simulations (PILS)”, whose proof of the aforementioned “vertical compositionality” is
highly involved [34], whereas for closed simulations it is trivial. In the context of Comp-
Cert, Stewart et. al. recently developed Compositional CompCert [76], a re-engineering
of CompCert to support verified separate compilation, along with the ability to link C
modules with assembly modules. Their approach, however, relies on a novel notion of
“structured simulation” on top of a multi-language “interaction semantics” [16], which
is different enough from the closed simulations employed in the CompCert verification
that it required significant changes and extensions to the original proofs.

In this paper, we ask the question: If we aim somewhat lower, can we do a lot bet-
ter? That is, if we pursue a more restricted notion of compositional correctness than
prior work has done, can we develop a much simpler, more lightweight proof method
that enables us to reuse existing verifications of whole-program compilation as much as
possible instead of rewriting them?

Indeed, we can. In particular, we restrict attention here to verifying separate com-
pilation for a single compiler. Our goal is to establish that, when different modules in

73

a program are compiled separately by the same verified compiler, the linking of the re-
sulting assembly modules preserves the semantics of the linking of the original source
modules. Within the scope of this more modest but still important goal, we develop
simple and effective techniques for verifying two levels of compositional correctness:

« Compositional Correctness Level A: Correctness of compilation is preserved
when linking modules that were compiled with the same exact compiler.

o Compositional Correctness Level B: Correctness of compilation is preserved
when linking modules that were compiled with the same compiler, but possibly
with different optimizations—i.e., different modules may be compiled with differ-
ent optimization passes turned on.

Level B correctness is stronger than Level A, and correspondingly requires somewhat
(but not much) more work to prove.

The key idea spanning both levels is to formulate a compositional correctness state-
ment about a single module M in terms of a “contextual” correctness statement about
how M behaves when linked with arbitrary other modules to form a complete program.
The latter has the advantage of being a statement about closed (whole) programs, and as
such, we can prove it using the kind of simple, closed-simulation-style proofs employed
in traditional verifications of whole-program compilation, as far as the compiler’s trans-
formations and optimizations satisty what we call monotonicity. This in turn enables us
to significantly reuse existing compiler proofs. We believe the lightweight nature of our
techniques—and the consequent ease of adapting existing verifications to use them—
will make them a highly attractive option for compiler verifiers.

We demonstrate the effectiveness of our techniques by applying them to CompCert
2.4. In less than two person-months total, we adapted the existing CompCert verifica-
tion to support both Level A and Level B compositional correctness, and much of that
time was spent trying to understand the original CompCert proof. The result of this
effort is the first verification of separate compilation for the full CompCert com-
piler. Our verification (available online [1]) is mostly the same as the original Comp-
Cert verification, and is only 2% (for Level A) or 3% (for Level B) larger than the original
verification in terms of lines of Coq. Furthermore, in the course of doing so, we uncov-
ered two bugs in CompCert: one in an invalid axiom, and one (in CompCert’s “value
analysis”) that was outside the scope of CompCert’s original verification because it only
showed up in the presence of separate compilation. These have been confirmed and
subsequently fixed in CompCert 2.5.

74

((sic Jo(suc Jo [s.c)
(muir) o ((mair) o (ms.ir)

(tiasm) o (trasm) o (ts.asm)

Figure I1L.1 Proving Level A correctness

The remainder of this chapter is structured as follows. In Section 12, we give the
overview of our new techniques, which are presented in detail in the subsequent sec-
tions in the context of our CompCert adaptation. In Section 16, we conclude with a
comparison to related work and discussion on the generality and the impact of our
techniques.

12 Overview

We begin by explaining our Level A and Level B notions of compositional correctness
and our techniques for establishing them (Section 12.1 and Section 12.2). We also briefly
give some intuition as to why it is easy to adapt CompCert’s verification to employ our
new techniques, but we leave a more thorough explanation of this adaptation to sub-
sequent sections. Throughout the section, we keep the presentation semi-formal, ab-
stracting away unnecessary detail to get across the main ideas.

12.1 Compositional Correctness Level A

End-to-End Correctness For Level A, we aim to show that if we separately compile n
different C modules (s,.c, ..., s,.c) using the same exact verified compiler C, producing
n assembly modules (t,.asm, ..., t,,.asm), then the assembly-level linking of the t;’s will
refine the C-level linking of the s;’s. Formally:

Vie{1..n}.C(s;.c) =t;.asm
s =load(s;.co...08,.c) t =load(t,.asmo...ot,.asm)
Behav(s) 2 Behav(t)

75

Here, o represents simple syntactic linking, i.e., essentially concatenation of files (plus
checks to make sure that externally declared variables/functions have the expected types).
See Section 13 for further details about syntactic linking.

It is worth noting that the end-to-end correctness of whole-program copmilation
defined in Section 2.1 is just a degenerate case of the Level A correctness in which there
is only one source code, i.e., i = 1.

Per-Pass Correctness To prove that compiler C satisfies Level A compositional cor-
rectness, we want to reduce the problem to one of verifying the individual passes of C,
as we did for the end-to-end correctness of whole-program compilation. The key idea
here, as illustrated in Figure III.1 where three separately-compiled modules go through
two compiler passes 7, and 7,, is that since we know that the source modules are all
compiled via the exact same sequence of passes, we can verify their compilations in lock
step as if each pass is applied to all modules simultaneously. In other words, it suffices
to verify that, for each pass 7 from L, to L,, the following holds:

Vie{i..n}.T(s;.11)=t;.12
s =load(s;.110...05,.11) t =load(t,.120...0t,.12)
Behav(s) 2 Behav(t)

As before, these per-pass correctness results can be transitively composed to immedi-
ately conclude end-to-end correctness of C.

So how do we prove this Level A per-pass correctness condition? Assuming that
we have already proven whole-program per-pass correctness and are trying to port the
proof over, there are two cases.

Verifying Per-Pass Correctness for Trivial Case Many compiler passes are inher-
ently compositional, transforming the code of each module independently, i.e., in a way
that is agnostic to the presence of other modules. Put another way, such compiler passes
commute with linking:

T(sp.11)0...0T(8,.11) =T (s,.110...08,.11)

If this commutativity property holds for a pass 7, then Level A per-pass correctness
becomes a trivial corollary of whole-program per-pass correctness, where we instantiate
the s. 11 from Section 2.1 with s,.11 o ... 0 s,,.11. In verifying Level A correctness for
CompCert 2.4, we found that 13 of its 19 passes fell into this trivial case.

76

Verifying Per-Pass Correctness for Non-trivial Case If the trivial commutativity ar-
gument does not apply, then there is some new work to do to port a proof of whole-
program per-pass correctness to Level A per-pass correctness.

However, at least for CompCert, we found it very easy to perform this adaptation.
Why? First of all, since Level A correctness assumes that all modules in the program
are transformed in the same way, we can essentially reuse the simulation relation R for
pass 7 that was used in the original CompCert verification.

We do, however, have to worry about the soundness of the program analyses that
the compiler performs, because the correctness of the compiler rests to a large extent
on the correctness of these analyses. To prove Level A correctness of these analyses,
we must prove that they remain sound even when they only have access to a single
module in the program rather than the whole program. Intuitively, this should follow
easily if: (1) the analyses have been proven sound under the assumption that they are
fed the whole program (CompCert has done that already), and (2) the analyses are
monotone, meaning that they only become more conservative when given access to a
smaller fragment of the program (as happens with separate compilation).

In adapting CompCert to Level A correctness, the main work was therefore in veri-
fying that its program analyses were indeed monotone. This was largely straightforward,
with one exception: the “value analysis” employed by several optimizations was not
monotone. It made an assumption about variables declared as extern const, which
was valid for whole-program compilation, but not in the presence of separate compi-
lation. As we explain in detail in Section 13, this manifested itself as a bug in constant
propagation when linking separately-compiled files. After we fixed this bug in value
analysis, monotonicity became straightforward to show, and thus so did Level A cor-
rectness (for the remaining 6 passes that did not fall into the trivial case).

12.2 Compositional Correctness Level B

End-to-End Correctness The CompCert compiler performs several key optimiza-
tions at the level of its RTL intermediate language (i.e., they are transformations from
RTL to RTL). For Level B, we would like to strengthen Level A correctness by allowing
each source module s; to be compiled by a different compiler C;. However, the differ-
ences we permit between the C;’s are restricted: they may differ only in which optimiza-
tion passes they apply at the RTL level. Given this restriction on the C;’s, the Level B
correctness statement is the same as the Level A correctness statement except for the

77

(surtl) o ((sartl) o (sartl)

[l [l
((tirtl) o ((sartl Jo (sartl)

I I

(trtl) o (martl) o (ssrtl)

I I

(tirtl) o ((tartl J o ((ssrtl)

I I

(trtl o (turtl) o (tartl)

Figure IIL.2 Proving Level B correctness for RTL passes

replacement of C with C;:

Vie{1..n}.Ci(s;.c) =t;.asm
s =load(s;.co...08,.c) t =load(t,.asmo...ot,.asm)
Behav(s) 2 Behav(t)

Per-Pass Correctness To verify the above correctness statement, we yet again want
to reduce it to verifying the individual passes of C. For all passes besides the RTL-level
optimizations, we can verify per-pass correctness exactly as in Level A, since all the C;’s
must perform these same passes in the same order. However, for the RTL optimizations,
we must do something different because at the RTL level the various C;’s do not all march
in lock step.

The key idea for handling the RTL optimizations, as illustrated in Figure III.2 where
each module is compiled with different optimization passes, is to pad the C;’s with extra
dummy identity passes (which do not affect their end-to-end functionality) so that,
whenever one compiler is performing an RTL optimization pass, the other compilers
will for that step perform an identity transformation. Thus, we first verify the RTL passes
of C, in parallel with identity passes for the other compilers, then verify the RTL passes
of C, in parallel with identity passes for the other compilers, and so on. For this to work,

78

the Level B per-pass correctness statement (for optimization passes 7 from RTL to RTL)
must be updated as follows:

T(s.rtl) =t.rtl
s =load(u,.rtlo..ouy,.rtlosrtlov,.rtlo..ov,.rtl)

t =load(u;.rtlo...ouy,.rtlot.rtlov,.rtlo...ov,.rtl)
Behav(s) 2 Behav(t)

One can view this notion of per-pass correctness as being essentially a form of con-
textual refinement: the output of 7 must refine its input when linked with a context
consisting of some arbitrary other RTL modules (the u;’s and v;s). If we can prove this,
it should be clear from Figure III.2 how the per-pass proofs link up transitively.

Verifying Per-Pass Correctness So how do we prove this contextual refinement? Un-
like for Level A, we cannot simply reuse the existing simulation R from the whole-
program per-pass correctness proof for 7, because R is not necessarily reflexive and
thus does not necessarily relate the execution of code from u;.rtl (or v;.rtl) with
itself. Instead, we must use an amended simulation R, which accounts for two possibil-
ities: either we are executing code from s on one side of the simulation and code from
t on the other, in which case the proof that R’ is indeed a simulation proceeds essen-
tially as did the proof that R was a simulation; or we are executing code from u;.rt1 (or
vj.rtl), in which case both sides of the simulation are executing exactly the same RTL
instructions.

In principle, the latter case could involve serious new proof effort. However, at least
for CompCert, we found that in fact the substance of this new part of the proof was
hiding in plain sight within the original CompCert verification! The reason, intuitively,
is that RTL-to-RTL optimization passes are rarely unconditional transformations: their
output typically only differs from their input when certain conditions (e.g. determined
by a static analysis) hold, and since these conditions do not always hold, these passes
may end up leaving any given input instruction unchanged. To account for this pos-
sibility, the original CompCert verification must therefore already prove that arbitrary
RTL instructions simulate themselves. Consequently, in porting CompCert 2.4 to Level
B compositional correctness, we were able to simply extract and compose (essentially,
copy-and-paste) these micro-simulation proofs into the simulation proof for the latter
part of R'.

Note: it is important to note that our idea works at porting CompCert’s verification
using forward simulations (when convenient), as well as that using backward simula-

79

tions, to Level A and B compositional correctness.

13 Adapting Constant Propagation to Separate Compilation

In this section, we explain how to adapt the CompCert proof of constant propagation
to support separate compilation. Before doing so, let us briefly explain syntactic linking
in some more detail since it is central to the compositional correctness results we prove.

Syntactic linking merges global declarations for each identifier. The linker must
check if the declarations meet the following conditions:

o The declarations have the same type. They should be either (1) function declara-
tions or definitions of the same signature, or (2) variable declarations or defini-
tions of the same type.

« At most one of the declarations is a definition. If there is a single definition, then
that is the result of the linking; otherwise, everything is necessarily the same dec-
laration, and that is the result of the linking.

We have generically defined syntactic linking for all the languages used in CompCert,
as it does not depend on specific language features.

13.1 Verifying Compositional Correctness Level A

Adapting the Simulation Relation Definition To verify compositional correctness
Level A, we will—as in the original CompCert proof—construct a simulation relation
R that relates the initial states of the source and target programs. The difference is that
the source program consists of multiple files, each of which is separately compiled.

prg=s,0...08, prg’ =Tep(sn) 0.0 Tep(sn)
3R. simulation R A (load(prg),load(prg’)) € R

Therefore, for each function definition (fd) in the source program (prg), the corre-
sponding function definition (fd’) in the target program (prg’) is no longer obtained
by transfun(prg, fd), but rather by transfun(s;, fd) for some subprogram s; of prg.
Moreover, the value analysis run as part of transfun also gets a subprogram of prg as its
first argument.

Consequently, the simulation relation we use for the proof of soundness has to
change. The main change is, naturally, in the definition of ~¢.f. Two function defini-
tions are now related if the second can be obtained by transforming the first in the

8o

context of a subprogram of prg.

prg v fd ~ger fd' &f Asprg C prg. fd' = transfun(sprg, fd)

where sprg € prg iff 3sprg’. sprg o sprg’ = prg!

The second change is to decouple the two uses of prg in sound-state, changing its
signature so that it takes three arguments: two programs prg and sprg, and a state s. The
first program, prg, corresponds to the full program and is used to calculate the global
environment, whereas the second program, sprg, is a subprogram of the first one and
is used to perform the global analysis (i.e., to detect which variables are constant).

We then define a wrapper predicate sound-state’ as follows:

sound-state’ (prg, s) def Vsprg C prg. sound-state(prg, sprg, s)

and change R to use sound-state’ instead of sound-state.

Adapting the Proof of Value Analysis There are multiple proofs that require adap-
tation. First, we have to prove that value analysis is correct with respect to our stronger
invariant. That is, we have to show that sound-state’ holds of the initial state of a loaded
program and that it is preserved by execution steps.

The latter requirement is actually trivial to show and requires only very minor changes
to the CompCert proof script. The reason for this, informally, is that the uses of the prg
and sprg parameters in the revised sound-state invariant are really decoupled and that
the preservation proof never depends on them being the same.

The former requirement, however, requires some more work: not only should
sound-state(prg, prg, load(prg)) hold for all programs prg, but rather
sound-state(prg, sprg, load(prg)) should hold for all programs prg and all subpro-
grams sprg C prg. In essence, to satisfy this stronger statement, the additional require-
ment that we have to show is that value analysis is monotone with respect to linking.
That is, for each global variable x, we prove

sprg € prg = abs-val(sprg, x) 2 abs-val(prg, X)

where abs-val(prg, x) is the abstract value of x computed by the global analysis on prg.
In other words, running the analysis on a larger program may only give results that are
at least as precise.

'In the Coq development, we define sprg C prg in an equivalent but more direct, semantic way, rather
than relying on syntactic linking (o). This enables us to avoid having to prove associativity and commuta-
tivity of linking.

81

// a.c // b.c

#include <stdio. h> #include <stdio.h>
int x; extern int x;
extern intx const xptr; intx const xptr = &x;
int main() {

X = 1;

*xptr = 0;

// expected: 0, actual: 2
printf("sd\n",x+x);
return 0;

Figure III.3 A bug due to CompCert 2.4 value analysis

Somewhat surprisingly, (the global part of) the value analysis in CompCert 2.4 does
not satisfy this monotonicity requirement because of its treatment of variables declared
as both extern and const. Figure III.3 presents two C files that, when compiled sep-
arately and linked together, expose the bug. Since the global variable xptr is declared
using the const qualifier, the global part of CompCert 2.4’s value analysis assumes that
it is uninitialized and therefore assigns it the abstract value 1. As a result, the value anal-
ysis deems that Xxptr cannot possibly alias with x. At the printf statement, it hence
deduces that x = 1, and constant propagation “optimizes” away the summation X+x to
the constant 2, which gets printed. This analysis, however, is unsound. In particular, the
assumption that Xptr is uninitialized is invalid in the context of multiple separately
compiled files: since xptr is also declared as extern, another file (b. ¢) can provide a
definition that initializes it. And indeed, since the definition of Xptr in b. c causes x
and xptr to alias, the correct result is o, not 2.

Restoring soundness of the value analysis is straightforward: one simple if rather
crude fix (which has been adopted by CompCert 2.5 since we reported the bug) is just to
ignore the const modifier on extern declarations. Having done that, it is easy to show
that the analysis is monotone with respect to program linking and that therefore the ini-
tial state of loading a program satisfies the stronger invariant sound-state’ (prg, load(prg)).

Adapting the Proof of Constant Propagation Showing that constant propagation is
sound requires only very little additional work.

The only important difference is in the treatment of global environments that index
the — relation. Generally, these environments are obtained by the respective programs

82

(ge = get-genv(prg) and ge' = get-genv(prg’)).

The original CompCert 2.4 proof used the fact that prg" = T¢,(prg) to establish a
relationship between ge and ge'. It proved two basic properties relating the two global
environments: (1) that they map each global variable name to the same block identi-
fier, and (2) that if ge maps a block identifier to a function signature or definition fds,
then ge’ maps it to transfun(prg, fds), where transfun applied to a function signature
returns the same signature. These lemmas were then used in the proof that R is a sim-
ulation relation.

Since, now, the relationship between prg and prg’ is more involved, we have to up-
date the proof of the first lemma, which is rather straightforward, as well as the state-
ment and proofs of the second lemma. For the second lemma, we now assert that if ge
maps a block identifier to a function signature or definition fds, then ge’ maps it to
transfun(sprg, fds) for some subprogram sprg C prg. Besides this change, the proof
that now (the new definition of) R is a simulation relation is basically unchanged. The
few lines of the proof script that required editing were those invoking the lemmas about
the relationship between the global environments.

13.2 Verifying Compositional Correctness Level B

Adapting the Simulation Relation Definition We move on to verifying the second
level of compositional correctness, that of composition with the same compiler modulo
optimization flags. As we have explained in Section 12.2, for every optional optimiza-
tion pass, we need to show that linking it against the identity compiler is sound. Since
constant propagation is one of the optional optimization passes, we have to prove the
following:

Prg=1,0..0U,, 0S0V,0...0V,

prg' =u,0...ou, 0 Tp(s)ovy0.. 0,

3R. simulation R A (load(prg),load(prg’)) € R

In the scenario above, the corresponding target function definition fd’ of a source func-
tion definition fd is either syntactically identical to fd if it belongs to one of the u;/v;
files, or has been obtained by optimizing fd if it belongs to the s file. To account for the
change, we should therefore redefine the ~¢4s relation as follows:

prg - fd ~e fd <
fd' = fdv (Isprg c prg. fd' = transfun(sprg, fd))

This is the only change needed in the simulation relation.

83

{ CompCert C Y {C#minor Y RIL (LIL

Cstrategy :

Tailcall

Cminorgen J

{ Cminor ' i '
H v H ! 1 A
Selection E ; . : ! %

Stacking

/ CminorSelJ
H y

Cshmgen

[RTLgen

\ Trivial passes of Level A

Non-trivial passes of Level A

RTL-to-RTL passes of Level B

Figure III.4 Classification of optimization passes in CompCert

Adapting the Proof of Constant Propagation To avoid changing the proof script
of the main lemma showing that R is in fact a simulation, we prove a helper lemma
(transf_step_correct_identical) saying that, given two matching instruction states with
fd' = fd, when the source state takes a step, the target state can also take a step and
reach a matching state. As explained in Section 12.2, the content of the proof of this
helper lemma is already present in the existing simulation proof, just not in one place,
so it simply needs to be extracted and consolidated. We then adapt the proof of the main
lemma (showing R is a simulation) so that it performs a case split on whether fd = fd’
or not, and correspondingly either invokes our helper lemma or uses the same proof
script as for Level A.

14 Adapting the Other Passes to Separate Compilation

In the previous section, we looked at the specific example of constant propagation in
detail and explained how we adapted CompCert’s proof of that pass to Level A and B
notions of compositional correctness. In this section, we discuss some details of other
CompCert passes for which adapting to Level A and B correctness required some in-
teresting (but still not much) work.

Figure III.4 shows which verification technique we apply to each optimization pass

84

of CompCert. For Level A, we apply the trivial technique based on commutativity with
linking to 13 passes and the non-trivial technique to 6 passes. For Level B, we apply our
technique to all 6 RTL-to-RTL passes.

14.1 RTL-Level Optimizations that Rely on Value Analysis

Three RTL-level optimizations rely on the value analysis: constant propagation, com-
mon subexpression elimination (CSE), and deadcode elimination (DCE). These passes
are inter-procedural solely because they rely on the value analysis. Thus, the porting
of the proofs of CSE and DCE to support compositional correctness proceeded analo-
gously to the porting of the constant propagation pass.

14.2 Selection

The selection pass “recognizes opportunities for using combined arithmetic and logi-
cal operations and addressing modes offered by the target processor.” [22]. The pass is
mostly intra-procedural, except for the following two transformations on function calls:

Recognizing Immediate Calls The selection pass transforms an indirect call via a
function pointer expression, say ep, into an immediate call, if it can determine that the
expression e, always evaluates to the pointer to an internal function. The pass uses a
simple analysis classify_call(prg,e,) for determining this. For separate compila-
tion, we proved the monotonicity of the analysis: the result classify_call(sprg,e;)
for a subprogram sprg C prg is sound w.r.t. the whole program prg.

64-bit Integer Operations into Library Calls The selection pass transforms some 64-
bit integer operations into calls to library helper functions. For example, (long long)
f, a cast from float to Long long, is transformed into a call __int64_dtos(f) to
the corresponding helper function. For this transformation to be valid, the pass should
ensure that the helper function (e.g., __int64_dtos) is declared as an external func-
tion in the source program’s global environment. CompCert has a designated checker
check_helpers(prg) to ensure this property.

For separate compilation, we proved that the checker for helper functions is mono-
tone w.r.t. linking: check_helpers(prg1) and check_helpers(prg2) implies
check_helpers(prgio prg2) for all programs prg1 and prg2. The proof is a little bit
involved, as linking reorders global declarations, and the corresponding logical blocks
for the helper functions in the global environments may vary.

85

Compiler Bug We Found The original CompCert 2.4 used a function get_helpers
instead of check_helpers. We found and reported a compiler bug related to get_helpers,
which was subsequently confirmed.

We found the bug in the course of proving monotonicity regarding get_helpers.
This function is directly implemented in OCaml and its property is axiomatized in Coq
as follows:

Axiom get_helpers_correct:
forall ge hf, get_helpers ge = OK hf ->
i64_helpers_correct ge hf.

The problem was that this axiom is not strong enough to prove monotonicity, and even
worse, not true for the OCaml implementation of get_helpers. One of the properties
this axiom postulates is that helper functions like __int64_dtos are only declared
but not defined in the source program. However, get_helpers does not check it at
compile time!

Here is an example that exposes the bug:

#include <stdio. h>
long long __i64_dtos(float t) {
return 3;

}

int main() {
printf(“i1ld\n", (long long) 5.0f); // expected: 5, actual: 3
return 0O;

}

Here the cast (Long long) 5.0f is converted to a call to the library helper function
__164_dtos(5.0f) by the selection pass. However, we successfully hijack the func-
tion call by overwriting the function __164_dtos, which results in printing 3 instead of
the correct result 5. Now, strictly speaking, due to the hijacking of a reserved identifier,
this example has undefined semantics according to the C99 standard, so CompCert’s
behavior here is technically legal. But the dependence on an invalid axiom is clearly a
bug.

After we reported this bug, it was fixed in the development branch of CompCert
(and subsequently CompCert 2.5). In this fix, which we backported to CompCert 2.4
using git-cherry-pick,the OCamlget_helpers function is replaced by the afore-
mentioned check_helpers, which is implemented and verified directly in Coq, thereby
avoiding the need for an invalid axiom.

86

14.3 Inlining

The inlining pass is inherently inter-procedural, as it replaces a call to a simple func-
tion with the body of the function. In the pass, the selector funenv_program(prg)
chooses internal function definitions of prg that are worth inlining in other functions.
For the inlining pass to be valid, the pass should ensure that function definitions in
funenv_program(prg) are indeed defined in the global environment get-genv(prg).

For separate compilation, we proved that the global environment initialization is
monotone for function definitions: if a function definition, say fd, is defined in get-genv(sprg)
and sprg C prg, then fd isalso defined in get-genv(prg). The proof is a little bit involved
for the same reason as for check_helpers in the selection pass: linking reorders global
declarations and the corresponding logical blocks in the global environments.

14.4 SimplExpr

The SimplExpr pass is essentially intra-procedural since just “side effects are pulled out
of CompCert C expressions” [22]. However, it does not commute with linking because
a single counter is used globally to generate temporary variable names for all function
definitions.

Updating the existing proof was easy because the original simulation relation R does
not bake in the specific way temporary variable names are generated. Thus, we did not
need to change the simulation relation R and the simulation proof at all. We just needed
to update the proof that the initial states after loading satisfy the relation R even in the
presence of separate compilation, which was straightforward.

15 Results

We applied our Level A and B techniques to CompCert 2.4 with three patches applied
(two bug fixes and RTL-level optimization flags). In the former, we prove the behav-
ioral refinement result between the source C program obtained by syntactically linking
several C files and the target assembly program obtained by syntactically linking the
results of compiling source files with the same optimization flag. In the latter, we prove
the same behavioral refinement result even when each source file is compiled with a
different optimization flag.

87

$S9UJOILI0D [OAT PUB Y]2AT I0J SIPOD Jo saur| 03 saduey)) S [T 23]

sadueyp Jurysarojur : [[90 papeys 1) dwo) Jo HDOT Y3 0) O1IeT 1%
Pappe A[Mau DOT NPPV oD dwo) woij paALiap ng pappe DOT :APPY HoDdwo) woij pasowal DT :ury

[(%9%) 6uf | [[[(%61) 6z | [[tSegmt [K10oq1e9W |
(%€7) o1 | (%E0) gt (%ET) 6bS gsch 2dJomod ZERT ‘W.e JIATIP
pua)deq ‘pua U0 4D UI SIYI0
TI6€ A*xJ004dx/2duasmod
€89¢€ A*xJ0o0ddx/zEeT
ovot A*xj004dx/wie
£98 A Jooudpiooaduabusy/ "
(%€0) ot (%€0) ot ¥68t A+ Jooadbutyoeys/
(749 A jooudsyageqdnuesl)/ -
(%r1) 8 (%rT) 8 (0] 74 A*jooudazTaesut)/
18 A jooadbutauuny/ -
(%90) 1 (%90) 1 61ee A®Joouaddo)y/ "
(%¥t) S¥ (%Z91) TL1 (%ES) S (%€€) ¢ (%SL) LL (%LS) 8S ¥cot A*joouadapodpesq/
(%9°€) S¥ (%8'1r) 9PL (%¥c) of (%LT) ¥E (%S¥) 9S (%<) 6¢ geer A*}004d3S)/ "
(%9°S) 9¢ (%0°87) 08T (%T'8) <S$ (%0¥) 9t (%9°01) 89 (%8Z) oS ¥¥9 A" jooaddoadisuo)d/ -
(%rer) S€ (%TLy) 9ct (%c1r) o€ L9t A*jooadaaqunuay/ -
(%e€) 9 (%€-91) €€ (%0°€) 09 (%ST) oS (%0°S) 86 (%0°€) 65 6/61 A" (oads|jooud)buTuTIuI/ "
(%6°S) L€ (%Z£°61) 981 (%€€) 1¢ (%c1) 8 L9 A*jooudyeoytel/
(%¥0) =t (%¥0) =t 18/T A* (29ds|yooud)usbry/ -
(%9%£) ¢ot (%¥t) L (%T€) 98 (%9%Z) ¢ot (%¥t) Lm (%T€) 98 989¢ A*1004d%129195/" "
(%S'0) TI (%S0) TI 9stT A+ Jooadusbaoutw)/ -
(%¥1) 12 (%¥1) 12T 1St A" yooadusbuys)/ - -
(%8'0) 61 (%8'0) 61 944 A®Jooadsiedoduts/ "
(%0T) 89 (%€0) o1 (%t-0) 1 (%0°T) 89 (%€0) ot (%t0) 1 (1133 A* (29ds|jooud)adx3zyduts/ -
0L0¢ A AbBajedys)y/
(%l¥) 98 (%8T) €€ (%6°0) 9t (%lY) 98 (%8T) €€ (%6°0) o1 Segt A*SsTSAjeuyaniepn/:*
(%ST) 6 (%ST) 6 (%9°1) 9 (%9°'1) 9 £9€ A*J91TdWO)/JBATIP
(%0T) 9Tt | (%9'T) 6¢th1 (%t 0) <l (%) €s1r (%S0) Sov | (%¥0) gie 15788 uonesyLdA x pduo)
(%cc) Shgy | (%l0) 6¢ht | (%T0) TlE (%9°'1) <6¢€ | (%T0) S9F | (%co) gIe 0490t eiof,
NPPV appv ury NPPV appv ury (001
$SIUIIALI0D) oA $SAUIILI0)) YA 11 dwo)

88

In the table in Figure III.5, we summarize the changes we made in number of lines
of Coq. For these statistics, we first split the development of CompCert into two cat-
egories: (1) Compiler & Verification; and (2) Metatheory (i.e., everything else). The
former includes all Coq files in the directories cfrontend, backend, driver, arm,
ia32, and powerpc; and the latter includes all other files.

We calculated the statistics fully automatically using the Unix diff command. The
column Rm shows the number oflines of code (LOC) removed from the original Comp-
Cert code reported by the diff command, and the columns AddD and AddN together
show the number of LOC added. Here, AddD counts the LOC that are derived from
the original CompCert code including copy-pasted-and-modified code and AddN the
LOC that we newly proved. We syntactically marked the newly proved code, so that we
can automatically distinguish AddD and AddN.

The shaded part in the table denotes interesting changes we made. In Level A, the
shaded part is mainly due to proving various monotonicity properties. In Level B, the
shaded part is mainly due to copy-paste-and-modifying the original proof of simula-
tion. Examples of (what we consider) uninteresting changes, which are not shaded, in-
clude (a) proving straightforward “wheel-greasing” lemmas that merely serve to stream-
line the proof effort, and (b) updating automatically generated hypothesis names appro-
priately (e.g., changing apply H1to apply H2).

Our verification supports separate compilation to all three target assembly lan-
guages of CompCert—PowerPC, ARM, and IA32—with very few changes made to the
original proofs. In the whole development, for Level A, we modified only 0.2% of the
existing code (Rm) and introduced an additional 1.6% (AddN+AddD-Rm); and for
Level B, we modified only 0.2% of the existing code (Rm) and introduced an additional
2.8% (AddN+AddD-Rm). We spent less than two person-months in total for the whole
development, much of which was spent understanding the existing CompCert devel-
opment.

16 Discussion
16.1 Related Work

Compositional CompCert The most closely related work to ours is Stewart et. al.
’s Compositional CompCert [76], which establishes compositional correctness for a
significant subset of CompCert 2.1. Their approach builds on their previous work on
interaction semantics [16], which defines linking between modules in a (somewhat)
language-independent way. (The languages in question must share a common memory

89

model, as is the case for C, assembly, and all the intermediate languages of CompCert.)
Essentially, interaction semantics enables Compositional CompCert to reduce the com-
piler verification problem to one of contextual refinement. The output of the compiler
is proven to refine the source under an arbitrary “semantic context”, which may consist
of a linking of C and assembly modules.

On the one hand, Compositional CompCert is targeting a more ambitious goal than
separate compilation. Their approach inherently supports the possibility of linking re-
sults of multiple different compilers, as well as the ability to link C modules with hand-
coded assembly modules, both of which are beyond the scope of our techniques.

On the other hand, as we explained in the introduction, the modesty of our goal is
quite deliberate—it enables our separate compilation verification to use a considerably
more lightweight approach than they do. For example, they report that their porting
of CompCert passes to verify compositional correctness took approximately 10 person-
months and led to more than a doubling in the size of each pass. In contrast, our porting
took less than 2 person-months, and even if we look at just the passes alone (ignoring
the metatheory), they are on average less than 2% (for Level A) or 4% (for Level B)
larger than the original CompCert passes. The new metatheory backing up our proof
technique is also smaller than the corresponding new metatheory of Compositional
CompCert by roughly a factor of 7.

One reason for this, we believe, is that the structured simulations employed in the
Compositional CompCert proof require all passes in the compiler to be verified using a
common “memory-injection” invariant. In contrast, in our verification, we were able to
essentially reuse the invariants from the original CompCert proof, which are different
for different passes. Another potential reason concerns the treatment of inter-module
vs. external function calls. In CompCert, external functions are assumed to satisfy a
number of axioms, which are used in the verification to establish that external func-
tion calls preserve the simulation relation in each pass. In Compositional CompCert,
inter-module function calls are treated the same as external function calls, and as a re-
sult Stewart et. al. ’s verification must additionally establish that functions compiled by
the compiler satisfy the external function axioms. In contrast, in our verification, we
reduce the problem of verifying separate compilation to that of verifying correctness
of compilation for a whole (multi-module) program. Thus, for us, inter-module func-
tion calls are not treated as external calls—they merely shift control to another part of
the program—and there is no need for us to prove that CompCert-compiled functions
satisfy the external function axioms.

There are two other points of difference worth mentioning. First, we have ported

90

over the entire CompCert 2.4 compiler, from C to assembly (including the x86, Power,
and ARM backends), whereas Compositional CompCert omitted the front-end of Comp-
Cert 2.1 (from C to Clight), along with three of its RTL-level optimizations (CSE, con-
stant propagation, and inlining). Second, due to its use of interaction semantics, Com-
positional CompCert employs a bespoke “semantic” notion of linking (even for linking
assembly files), which has not yet been related to the standard notion of syntactic link-
ing (see Section 13) that we employ in our verification. Syntactic linking corresponds
much more closely to the physical linking of machine code implemented by the gcc
linker that CompCert uses by default. Proving this is outside the scope of our verifica-
tion effort, however, since CompCert only verifies correctness of compilation down to
the assembly level, not to the machine-code level where linking is actually performed.

CompCertX Concurrently with Stewart et. al. ’s work, Ramananandro et. al. [71] de-
veloped a different approach to compositional correctness for CompCert. While sim-
ilar in many ways to the approach of Stewart et. al. , the compositional semantics of
Ramananandro et. al. defines linking so that the linking of assembly-level modules
boils down to syntactic linking (essentially, concatenation), as it does in our verifica-
tion. On the other hand, they have only used their approach to compositionally verify
a few passes of CompCert.

Also concurrently with the above work, Gu et. al. [30] have developed CompCertX,
a compositional adaptation of CompCert specifically targeted for use in the composi-
tional verification of OS kernels. CompCertX supports linking of compiled C code with
hand-written assembly code, and ports over all passes of CompCert, but the source and
target of the compiler are different from CompCert’s. In particular, the ClightX source
language of CompCertX does not generally allow functions to modify other functions’
stack frames and thus does not support stack-allocated data structures. Although this
restriction is not problematic for their particular application to OS kernel verification,
it means that, as the authors themselves note, “CompCertX can not be regarded as a full
featured separate compiler for CompCert.”

Multi-lanugage Semantics There have been several approaches proposed for com-
positional correctness of compilers other than CompCert as well, although these all
involve de novo verifications rather than ports of existing whole-program compiler ver-
ifications.

Perconti and Ahmed [66] present an approach to compositional compiler correct-
ness for ML-like languages. They use multi-language semantics to combine all the lan-

91

guages of a compiler into one joint language, with wrapping operations to coerce values
in one language to values of the appropriate type in the other languages. Like Compo-
sitional CompCert, their approach recasts the compiler verification problem as a con-
textual refinement problem, except that they model contexts syntactically rather than
semantically and use logical relations as a proof technique for establishing contextual
refinement rather than structured simulations. It is difficult to gauge how well this ap-
proach scales as a practical compiler verification method because it has not yet been
mechanized or applied to a full-blown compiler.

Cito Wanget. al. [79] develop a compositional verification framework for a compiler
for Cito, a simple C-like language [79]. Their approach is quite different from the others
in that it characterizes the compiler verification problem in terms of Hoare-style speci-
fications of assembly code. Currently, the approach is limited in its ability to talk about
preservation of termination-sensitive properties, and as its verification statement is so
different from the traditional end-to-end behavioral refinement result established by a
compiler like CompCert, it is not clear how Wang et. al. ’s method could reuse existing
CompCert-style verifications.

Parametric Inter-Language Simulation Most recently, Neis et. al. [61] present para-
metric inter-language simulations (PILS), which they use to compositionally verify Pil-
sner, a compiler for an ML-like core language, in Coq. PILS build on earlier work by
Hur et. al. on logical relations [15, 31] and parametric bisimulations (aka relation tran-
sition systems) [32, 34]. Pilsner supports a very strong compositional correctness state-
ment, but it also required a major verification effort, involving several person-years of
work and 55K lines of Cogq.

16.2 Generality of Our Techniques

In this paper, we have presented several simple techniques for establishing Level A and
Level B compositional correctness, and demonstrated the feasibility and effectiveness of
these techniques by porting a major landmark compiler verification (CompCert 2.4) to
support compositional correctness without much difficulty at all. We hope the almost
embarrassingly simple nature of these techniques will encourage future compiler veri-
fiers to consider proving at least a restricted form of compositional correctness for their
compilers from the start.

One may wonder, however, how general our techniques are. Are they dependent on
particular aspects of CompCert 2.4? Can they be applied to other verified compilers?

92

For C or for other languages? Given the landscape of compiler verification, dotted as it
is with unique and majestic mountains, it is difficult to give sweepingly general answers
to these questions. But we can say the following.

We believe our techniques should be applicable to the most recent version of Comp-
Cert (2.5), but a necessary first step is to determine the appropriate notion of syntactic
linking. CompCert 2.5 introduces support for static variables (which in C means
variables that are only locally visible within a single file). The presence of static vari-
ables means that the simple canonical definition of syntactic linking we have used no
longer works and must be revisited. Assuming a reasonable definition can be found, as
we expect, we do not foresee any problems adapting our techniques to handle it.

Regarding the application to compilers for other languages, we can only speculate,
but we also do not foresee any fundamental problems. For instance, CakeML [49] is
a verified compiler for a significant subset of Standard ML, implemented in HOL4.
CakeMLs end-to-end verification statement concerns the correctness of an x86 imple-
mentation of an interactive SML read-eval-print loop. In that sense, the verification is
not exactly “whole-program” because new code can be compiled and added to a global
database interactively. But it also does not support true separate compilation in the sense
that our verification does because modules cannot be compiled independently of the
other modules they depend on.

We believe in principle it should be possible to use our techniques to adapt CakeML
to verify correctness of separate compilation, because CakeML is not an optimizing
compiler and in particular does not perform any optimizations that depend fundamen-
tally on the whole-program assumption. The key challenge will be figuring out how to
define separate compilation and linking themselves. The latter may be especially inter-
esting since CakeML (unlike CompCert) verifies correctness of compilation all the way
down to x86-64 machine code, and thus linking will need to be defined at the machine-
code level.

16.3 Impact

We verified separate compilation for the full CompCert compiler for the first time. In
the course of doing so, we uncovered two compiler bugs—one of which is on separate
compilation and the other is orthogonal to separate compilation—and our verification
techniques are subsequently adopted in the official CompCert 2.7.

93

Chapter IV

Cast between Integers and Pointers

17 Introduction

Unrestricted manipulation of the representation of pointers via cast between pointers
and integers is crucially used in low-level code. For example, the Linux kernel and the
HotSpot Java virtual machine perform bitwise operations on pointers in maintaining
page tables and live objects, respectively. For another example, the C++ standard li-
brary’s hash function (std: :hash) uses the pointer’s bit representation as a key, e.g.,
for indexing into a hash table. This is useful since taking a pointer is a cheap way to get
a unique key.

Problem However, none of the existing proposals for C/C++ semantics fully supports
manipulation of pointers as integer values and compiler optimizations at the same time.
ISO C18 standard provides an integer type uintptr_t that may be legally cast to and
from pointer types, it does not require anything of the resulting values [37, §7.20.1.4p1].
The concrete model straightforwardly supports bit-level pointer manipulation, but as
we have seen in Section 2.2 and 3, this model invalidates many basic compiler opti-
mizations such as constant propagation and dead allocation elimination. On the other
hand, CompCert’s logical model presented in Section 2.2 and 3 supports such compiler
optimizations, but it does not support cast between pointers and integers—as well as
many other low-level features in C—because the logical model represents pointers as

94

void main() {
int x = 0;
uintptr_t xi = (uintptr_t) &x;

auto p = (int =*) xi;
*p = 1;
printf("sd\n", x); // expected: 1, actual: 0

Figure IV.1 A GCC bug in the presence of integer-pointer casts

pairs of an allocation block identifier and an offset within that block, which cannot be
easily casted into and from an integer.

Designing a satisfactory semantics of integer-pointer casts is challenging. For exam-
ple, such a semantics should point out which optimization(s)—each of which seems le-
git at first glance—is to blame in the LLVM miscompilation bug presented in Figure I.1.

Such a semantics should also guide compiler writers how to fix the GCC miscompi-
lation bug we found, which is presented in Figure IV.1." (At first, ignore the gray area.)
In the program, the pointer to the local variable x is cast to an integer, xi, and then
cast back to pointer, p. Thus p points to x, and after *p is assigned one, the value of x
should be one. Now inserting the code in the gray area should not change the program’s
behavior, because the gray area is dead code: after the for loop, i equals to xi, and the
conditional branch is not taken. But GCC miscompiles the program as follows:

1. Code motion optimization moves X1 = 1 outofthe conditional branch, because
regardless of whether the branch is taken, xi = i should hold.

2. Alias analysis thinks that p is not a valid pointer, because it originates from x1i,
which equals to i, which in turn is obtained by just incrementing by one several
times from zero.

3. Constant propagation optimization replaces X at the last line with zero, because

"We reported this miscompilation bug as a comment in https://gcc.gnu.org/bugzilla/show_
bug.cgi?id=65752, which is still open as of this writing.

95

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=65752
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=65752

X is initialized with zero and no intervening stores are writing to X. In particular,
p is not aliased with &, at least from the compiler’s point of view, because p is
not a valid pointer.

Our Solution In this chapter, we propose a C/C++ memory model that gives seman-
tics to programs that manipulate the bit-level representation of pointers, and yet permits
the same optimizations as logical models for code not using these low-level features.
The key technical ingredient for making this work is combining the strengths of the
concrete and logical memory models: now pointer values have two distinct representa-
tions, a concrete and a logical one, and they can be converted to each other. By default, a
pointer is represented logically, and only when it is cast to an integer type, is the logical
pointer value concretized to a concrete 32-bit integer (or 64-bit integer depending on
the architecture). When an integer is cast back to a pointer value, it is mapped to the
corresponding logical address.

With our hybrid model, we propose how to fix both the LLVM bug presented in
Figure 1.1 and the GCC bug presented in Figure IV.1, which is by turning off some con-
troversial, too aggressive alias analysis. Furthermore, we generalized the existing com-
piler verification techniques for the logical memory model to also account for our hy-
brid model. Our model also supports all the reasoning principles designed for the log-
ical model—i.e., any sound reasoning about programs in the logical model also holds
in our model—because our hybrid model conservatively extends the logical model: it
gives semantics to strictly more programs than those supported by the logical model
without changing their semantics.

To summarize, our contributions are:

o The first formal semantics that fully supports unrestricted manipulation of pointer
values via integer-pointer casts and yet allows the standard compiler optimiza-
tions (Section 18).

« A proposal to fix to the LLVM bug presented in Figure 1.1 and the GCC bug pre-
sented in Figure IV.1 (Section 19).

o Compiler verification techniques for proving semantic preservation under our
semantics and their application to verify a number of standard optimizations in
the presence of integer-pointer casts (Section 20).

Section 21 discusses the related work and the impact of our memory model. All the
proofs reported in this chapter have been fully formalized in Coq and is available on-
line [1].

96

18 Formal Semantics of Hybrid Model

Our model is simply a hybrid of the fully concrete model and the fully logical model.
However, there are several issues with how to combine the two models to minimize
their disadvantages. In this section, we introduce the hybrid model and discuss how we
address the design issues at a high level.

All the optimization examples presented in this section are performed by clang
-02. Furthermore, unless specified otherwise, integer variables have type uintptr_t,
and pointer variables have type intx. Recall that uintptr_t is an integer type that is
able to hold a pointer value.

18.1 Hybrid of Concrete and Logical Blocks

Our hybrid model slightly generalizes the logical model to allow both concrete blocks
(as in the concrete model) and logical blocks (as in the logical model). For this, we add
one more attribute p to alogical block presented in Section 2.2, which is either undefined
or a concrete address. The attribute p indicates whether the block is logical (when p is
undefined) or it is a concrete block starting at the address p (when p is defined).

Block d=ef{ (v,p,n,c) | peint32w {undef}
Ave{valid,freed} AneNAceVal"}

We say that an address (/, i) is concrete when the block [is a concrete block starting
at an address p. In this case, the address (I, i) can be cast to the integer p + i and vice
versa (see Section 18.8 for details).

As in the concrete model, the list of valid (i.e., allocated) blocks with concrete ad-
dresses must be consistent: they should not include zero (i.e., nullptr) or the maxi-
mum address, and their ranges should be disjoint. Logical blocks have no such require-
ment, since they are non-overlapping by construction.

In the subsequent subsections, we discuss several issues that arose during the design
of our hybrid model and justify our solutions to the issues.

18.2 Combining Logical and Concrete Blocks

Our hybrid model allows both concrete and logical blocks to coexist, suffering from the
disadvantages of both kinds of blocks: concrete ones do not provide exclusive ownership
and logical ones do not allow casting to integers. Then why do we not develop a new
notion of block that has the advantages of both concrete and logical blocks instead?

97

a=(a-b)+ (2*b-Db); .

. g = (int *) a;
q = (int *) a; > g = 123
+q = 123; 4= e

Figure IV.2 Arithmetic optimization example I

Because such a new notion of block would not justify other important optimiza-
tions such as simplification of integer operations. For instance, consider a model in
which some blocks have both concrete addresses and some extra permission informa-
tion, so that we can tell when a block is exclusively owned. In such a model, we would
like to know that we do not lose permission information when a pointer is cast to an in-
teger, even if integer operations are performed on it (e.g., base64_encoding a pointer
and then base64_decoding it). However, this prevents the optimization presented in
Figure IV.2. Suppose the variable b contains an integer with permission to access some
valid block /, and a contains an integer without any permission that is equal to the con-
crete address of the block /. Then the source program successfully stores 123 into the
block I because g has the relevant permission, whereas the target program fails because
q does not have the permission.

Notice that this optimization is sound in our model. See Section 20.5 for how to
verify it in our model.

18.3 Choosing Concrete Blocks

As discussed in Section 2.2, using concrete addresses for memory locations provides no
guarantees of ownership, and thus prevents certain optimizations. In the worst case, one
function could guess the concrete address of a supposedly-private resource of another
function, and then forge a pointer to that address and modify it.

In order to maximize the range of optimizations that can be performed, our hybrid
model assigns concrete addresses to only those blocks whose concrete addresses are re-
quested via pointer-to-integer casts. This gives a simple semantics of pointer-to-integer
casts in that (1) it clearly defines when a block should be made concrete, and (2) the
semantics of integer operations is still independent from the memory in the presence
of pointer-to-integer casts.

The reader may wonder if we can further maximize the optimization opportunity
by making concrete only those blocks whose concrete addresses are really used in some
operation. If we perform some computation with the value of a pointer that only makes
sense when that value is an integer (e.g., comparing it with an integer value) then the
target of that pointer must have a concrete address. In all other cases, even if the ad-

98

void foo(uintptr—_t a) { foo(uintptr_t a) {

a=a & 123; a =a & 123;
} }
a = (uintptr_t) p; a = (uintptr_t) p;
foo(a);
bar(); bar();

Figure IV.3 Dead code elimination example

dress of the block is taken, we could conceivably use a logical value and maintain the
ownership guarantees of the logical model.

However, this approach has a serious problem: it does not justify some important
integer optimizations, such as a dead code elimination presented in Figure IV.3. Suppose
the pointer p contains a logical block [. In the source program, since its concrete address
is used in the function foo, the block / must be given a concrete address. In the target,
the read-only call to foo is optimized away, and the block / may not be given a concrete
address. That is, the source may have more concrete blocks than the target. Thus, if
bar () accesses an arbitrary concrete memory location, then that access might succeed
in the source but fail in the target. Since a failure is possible in the target that did not
exist in the source, the optimization has introduced new behavior, and is invalid.

Notice that this optimization is sound in our hybrid model, because it makes con-
crete all the blocks whose addresses are cast to integers, even if the cast integers are
not used in any operation. See Section 20.5 for how to verify this example in our model.
Furthermore, our model allows most of the optimizations in practice that would be per-
formed in the minimally-concrete model presented above (see Section 18.7 for details).

18.4 Assigning Concrete Addresses

Once we know which blocks will need concrete addresses, we need to decide when
during a program’s execution to assign those addresses.

One approach would be to make such a decision as early as possible (i.e., at alloca-
tion time). We allocate blocks as either logical or concrete, and cause concrete opera-
tions (namely integer casts) on logical blocks to raise out-of-memory-type behavior. (For
its precise meaning, we refer the reader to Section 20.1.) Since it is difficult to determine
whether a block will need a concrete address, we would need to choose the kind of block
to allocate non-deterministically. However, this would add unintuitive failures to our
model, effectively allowing out-of-memory-type behavior when the allocator chooses
the wrong kind of block even when concrete blocks are available.

99

p = (int) malloc(4); p = (int %) malloc(4);

*p = 123; *p = 123;

bar(); - bar();

a = *p; a = *p;

hash_put(h, p, a); hash_put(h, p, 123);

Figure IV.4 Ownership transfer example

Our solution is to instead allocate all blocks as logical blocks, and assign concrete
addresses to logical blocks at casting time. This casting can result in out of memory
only when there is not enough free concrete space. By waiting to make blocks concrete
until we reach the casting point, we can remove the non-determinism about whether
the blocks are concrete or logical. That is, blocks are always logical until the first casting
point, and concrete afterward.

This also allows ownership transfer optimizations such as the constant propagation
example in Figure IV.4, in which pointers are privately owned up until some point and
then become publicly available. This optimization is performed by clang -02 and
higher. In this example, the allocated block is initially logical and becomes concrete
when cast to an integer (possibly in the call to hash_put). At this point, the ownership
of the block is transferred from private to public. Since a is treated as logical up until
the call to hash_put, we can perform constant propagation as normal before the call.
(For formal details, see Section 20.5.)

On the other hand, the above model with non-deterministic allocation does not
allow such optimizations for the following reasons. When the allocated block in the
target is concrete, the corresponding allocation in the source must be concrete; oth-
erwise, when the function hash_put casts the address of the block to an integer the
source program raises out-of-memory-type behavior, while the target succeeds. Thus,
you lose the ownership over the block and cannot justify the constant propagation due
to the presence of bar ().

18.5 Operations on Pointers

In Section 18.3, we explained that the fewer blocks we make concrete, the more we can
take advantage of the ownership guarantees provided by logical blocks. We have seen
that operations that require pointers to have integer values force a lower bound on the
number of blocks that must be made concrete. As such, we can improve our model
by reducing the number of operations that require concrete addresses. We take our
cue from CompCert’s memory model, in which several arithmetic operations, such as

100

dl =a + (b - cl); t=a+b;
2 =a+ (b - c2); > dl=t - cl
- ! d2 =t - c2;

Figure IV.5 Arithmetic optimization example II

integer-pointer addition and subtraction of pointers from pointers in the same block,
are well-defined even in the absence of a concrete address (see Section 2.2).

One disadvantage of CompCert’s approach to arithmetic operations is that it inval-
idates some important arithmetic optimizations, such as the optimization presented in
Figure IV.5, by introducing logical addresses as possible values for integer-typed vari-
ables. To see this, suppose that the integer variables a, b, c1, and c2 contain the same
logical address (I, 0). The source program shown will successfully assign (I, 0) to the
variables d1 and d2, because b-c1 and b- c2 evaluate to o. However, in the target, the
variable t gets an unspecified value, because the addition of two logical addresses is
undefined. Thus, the target has more behaviors than the source, and the optimization
is invalid.

We avoid this disadvantage through the use of type checking. As in the LLVM IR, we
use types to ensure that integer variables contain only integer values. This allows us to
justify the full range of arithmetic optimizations on integer variables (see Section 20.5
for details), while also giving semantics to the operations on logical addresses when
possible. See Section 18.8 for an example of type-dependent semantics of arithmetic
operations in our model.

18.6 Dead Cast Elimination

As a result of our design decisions thus far, casts have become important effectful oper-
ations in our model, determining the points at which logical blocks are given concrete
addresses. This leads to a potential problem with dead code elimination. Since casting a
pointer to an integer has a side effect in memory, removing dead cast operations is not
obviously justified in the hybrid model.

However, in fact, we can solve this problem and support dead cast elimination in
our framework. The solution stems from our model’s place in a broader compilation
framework. We expect the hybrid model to be used for mid-level intermediate repre-
sentations in a compiler, while the back-end low-level language will use a fully concrete
model. In the hybrid model, casting a pointer to an integer has a side effect on memory,
and we cannot eliminate cast operations. In the fully concrete model, however, a cast
from pointer to integer is a no-op, and such casts can always be eliminated. Thus, we

101

void foo(int *p, int n) { void foo(int *p, int n) {

auto q = malloc(n); auto q = malloc(n);
auto a = (uintptr_t) p; - auto a = (uintptr_t) p;
auto r = a x 123; auto r = a x 123;

} }

foo(p, n); N

bar(); bar();

Figure IV.6 Dead cast elimination example

can perform dead-cast-elimination optimizations in the backend.

However, we still have a problem when dead cast is combined with dead allocation.
In the concrete model allocations of dead blocks cannot be removed, because otherwise
an arbitrary access in the source may succeed but fail in the target.

Our solution to this problem is to remove dead casts combined with dead blocks
during the translation from the hybrid to the fully concrete model. For instance, con-
sider the dead call elimination optimization presented in Figure IV.6. This optimization
is not valid when both the source and the target use the hybrid model, due to the cast
operation in the function. It is also not valid when both the source and the target use
the concrete memory, due to the allocation in the function. However, the optimization
is valid when the source uses the hybrid model and the target uses the fully concrete
model (see Section 20.5 for formal details).

Although our solution does not justify the removal of all dead casts, it should cover
most of them in practice (see Section 18.7).

18.7 Drawbacks of the Hybrid Model

Although our hybrid model is designed to allow as many optimizations as possible, it
still disallows some reasonable optimizations. In particular, if a function newly allocates
a block and casts its address to an integer, then it loses the ownership guarantees on the
block. Even if the block is still effectively locally owned, once its address is cast to an
integer, we can no longer perform optimizations that rely on its locality, such as dead
code elimination or constant propagation.

However, we think that blocks whose addresses are cast to integers in actual pro-
grams are unlikely to be completely local. There are few reasons to cast a local pointer
to an integer unless the address will be shared with other code sections.

For instance, consider the following example of a simple program in which we might
want to perform a locality optimization even after casting a pointer to an integer. The

102

program is a variant of the example in Section 18.6, in which we cast g into an integer
instead of p, so that in our model the local block becomes concrete and cannot be elimi-
nated. Although this optimization cannot be performed in our framework, the function
foo is nothing but an unpredictable number generator, and is unlikely to occur in real

programs.

void foo(ptr p, int n) { void foo(ptr p, int n) {
auto g = malloc(n); auto g = malloc(n);
auto a = (uintptr_t) q; — auto a = (uintptr_t) q;
auto r = a x 123; auto r = a *x 123;

} }

foo(p, n); -

bar(); bar();

Another, more reasonable limitation of our model occurs when one privately uses a
local block for some time, then casts its address to an integer and releases it to the public
(e.g., by using the integer as a key for hash table). Consider the following example, which
is a variant of the example in Section 18.4, where we cast the address of a newly allocated
block into an integer and use the integer as a key for hash table:

p = (int) malloc(4); p = (int *) malloc(4);

*p = 123; xp = 123;

b = (uintptr_t) p; b = (uintptr_t) p;
bar(); - bar();

a = *p; a = *p;

hash_put(h, b, a); hash_put(h, b, 123);

This constant propagation optimization is invalid in the hybrid model because the
newly allocated block is cast to an integer before the call to bar. (It becomes valid if
the cast is moved after the call to bar, though.) However, while ownership transfer
optimizations of this sort are indeed performed by clang -02, they are not performed
by gcc -02 or higher, and can be viewed as minor optimizations that are not often
used.

18.8 Language Semantics

This section describes how to use the ideas of the hybrid memory model to give se-
mantics to C-like languages, including CompCert’s RTL language presented in Section
2.3.

103

NULL pointer We represent the NULL pointer as the logical address (0, 0) and ini-
tialize the block o as follows:

m(o) = (v,p,n,c)withv=true,p=o,n=1.

The only special treatment of the block o is that we (1) raise undefined behavior when
accessing it via a load or a store; and (2) do nothing when freeing it (because free(0)
is allowed in C).

Casting between Integers and Pointers We first define casting between integers and
logical addresses via reification and validity checking. The reification function |,, under
memory m converts a logical address to a corresponding integer if its block in memory
has a concrete address. The validity predicate valid,, checks if a logical address is inside
the range of a valid block.

(L) % p+i if m(1) = (v, p,n,c) A pis defined
valid,, (1,i) iff m(l) = (v,p,n,c)Av=trueA (o <i<n)

Casting a logical address (1, i) into an integer first concretizes the block I and then
reifies the address (I, i) if it is valid; otherwise, raises undefined behavior. Casting an
integer i yields a valid logical address (I, j) that is reified to i if there is such an address;
otherwise, raises undefined behavior. Note that an integer is cast to a unique address if
it succeeds.

cast2int,,(I,i) d:ef(l,i)im if valid,,(1,7) {after concretizing I}

cast2ptr, (i) % (1,7) if validy (I,)) A (L, j)im = i

Computing with Logical Values We now give semantics to the binary operations
based on the static types of their operands. When both operands are of type int, we
perform ordinary integer addition, subtraction, etc. When one or more arguments are
of type ptr, we give the operations special semantics for the well-defined cases and
raise undefined behavior otherwise:

(p +am)| (Liy+i,) if p=(l,i)) Aa=1i,

(@a+pm)|(Li+i,) ifa=iAap=(li,)

(p - am)|(Li-i)ifp=(Li)ra=1i,

(p1 - p2>m) | iy~ 1, if p1=(li)Ap2=(l1,)

(pr=pam) liv=i, if p1= (i) Apa=(l,i,)

(p1=pa2-m) | false if pi=(l, i) Apa=(L, i) AL#1,
Avalid,, (1, i,) A valid,, (L, i,)

104

This definition of equality is a refinement of the pointer equality given in the ISO C18
standard [37, §6.5.9p6]; for instance, it allows us to conclude that p = p even when p is
not a pointer to an allocated block, while in the C standard the result of this comparison
is undefined.

Hybrid and Concrete Semantics Using these definitions, we can give the usual opera-
tional semantic definitions to our language constructs, and perform memory operations
(loads, stores, allocations, and casts) in the hybrid memory model. Static type checking
allows us to split variables into pointer-typed variables (whose values are always logical
addresses and treated as described above) and integer-typed variables (whose values are
always ordinary integers and require no special handling).

We also give the language a purely concrete semantics and use it as a low-level in-
termediate language with the concrete memory. In this semantics, all memory blocks
are concretized and all values are just integers, interpreted as either integer values or
physical addresses of memory cells.

19 Fix to the LLVM and GCC miscompilation Bugs

According to our model, the LLVM bug presented in Figure L1 is due to the first and
the fourth optimizations:*

1. The compiler should not replace the integer comparison pi != yi atline 4 with
the pointer comparison & != y+1, because comparing integers is always safe
but comparing pointers with different origins invokes undefined behavior.

4. The compiler should not replace (intx)pi at line 13 with y+1, because y+1 is
out of range.

On the other hand, the GCC bug presented in Figure IV.1is due to the too aggressive
alias analysis:

2. The compiler should not conclude that p is an invalid pointer. In the presence of
casts between pointers and integers, casting a pure integer to a pointer may results
in a valid pointer to a concrete block. Actually, p is alised with &x and thus the
constant propagation optimization should not kick in.

*Qur proposal coincides with the consensus in the bug tracker: https://bugs.llvm.org/show_
bug.cgi?id=34548.

105

https://bugs.llvm.org/show_bug.cgi?id=34548
https://bugs.llvm.org/show_bug.cgi?id=34548

20 Compiler Verification Techniques and Examples

In this section, we present a compiler verification technique for proving semantic preser-
vation under our semantics, and apply the technique to verify a number of standard
optimizations.

20.1 Specification of Out of Memory

Before actually proving semantic preservation, we first generalize the notion of behav-
iors and observations to make compiler verification more faithful in the presence of
out of memory. Recall that out of memory may be raised by pointer-to-integer cast, as
we discussed in Section 18.4. It is worth noting that out of memory does not occur in
CompCert because it uses a purely logical memory model that has infinite memory.

First, we regard out of memory as the empty set of behaviors (i.e., no behaviors), fol-
lowing CompCertTSO [74]. This is because we should allow the target program to run
out of memory even if the source program does not, because register allocation—one
of the most important compiler optimizations—may increase the program’s memory
requirements. Furthermore, since running out of memory is not that serious a problem
for programmers as is genuine undefined behavior (e.g., accessing freed memory), the
target behavior of a source program running out of memory should not be arbitrary.

Second, we allow programmers to observe partial behaviors, possibly before dis-
carding behavior due to running out of memory, in addition to (whole) behaviors pre-
sented in Section 2.1:

o A partial execution of the program that has produced a finite sequence of I/O
events, e,, -+, e,, partial.

Partial behaviors allow programmers to observe I/O events prior to an out-of-memory
error, which is more faithful to the real world because it is absurd to discard I/O events
before running out of memory. As before, refinement is defined as inclusion of the set
of (possibly partial) behaviors of the target program into that of the source program. As
a consequence, compilers should guarantee that the target program always performs a
prefix of the events the source program could have performed.

We have to admit that our treatment of out of memory—as well as that of all the
other existing formal semantics—is not entirely satisfactory. Firstly, our semantics may
not justify those optimizations that reduce (concrete) memory consumption instead of
increasing it, such as dead cast elimination.’ Furthermore, the ISO C18 standard says

*Notice that register promotion and dead allocation elimination does not reduce concrete memory
consumption in our hybrid model because they remove purely logical memory blocks.

106

that malloc returns zero in case of out of memory [37, §7.22.3p1], instead of allowing
no behaviors.* We leave defining a more proper semantics of out of memory as a future
work.

20.2 Running Example & Informal Verification

Now we actually prove semantic preservation for the following example transformation,
which is indeed performed by clang -02. This transformation involves four differ-
ent optimizations: constant propagation (CP), dead load elimination (DLE), dead store
elimination (DSE), and dead allocation elimination (DAE).

foo(int #*p) { foo(int =*p) {
1: auto q = (int =) malloc(4); // DAE
2: xq = 123; // DSE
3: bar(p); - bar(p);
4: auto a = xq; // DLE
5: #p = a; xp = 123; // CP
} }

We will argue that at each line in the two versions of foo (source and target), the
effects of the instruction executed (if any) are equivalent. To do so, we will assume an
initial relationship between the memory of the source and target programs, and show
that some variant of that relationship persists throughout the function, relying on any
call to other functions to maintain a similar relationship.

This relationship will designate one section of each memory as public, and require
that related locations in the source and target public memories have equivalent values;
it will also designate a private section of each memory, such that the source program
can make changes to its private memory when the target does not make correspond-
ing changes and vice versa. For the technical details of this relation and our notion of
equivalence, see Section 20.3.

We begin at line 1 by assuming the following conditions on the memory of the source
and target programs (see Figure IV.7 (a)):

assume (equivalent arguments) the parameter p contains equivalent arguments vy in
the source and vy in the target;

*The ISO C18 standard semantics, however, is also unsatisfactory in that it does not justify dead alloca-
tion eliminations, e.g., if a dead malloc is eliminated, then the source may have more allocated blocks than
the target has and thus a subsequent allocation may return zero in the source but return a valid pointer in
the target.

107

Mpub:sre | Mprv:src TMpub:src | Mprvisre [Ez}: m pubssrc | Mprvisre | |_12_3: m" pubssrc | Mprvisre
(@ 1 (b)) (9 1 @
Mpub:tgt | TNprv:tgt MMpub:tgt | TNprv:tgt ™ pub:tgt | TTlprvitgt M’ pubstgt | TTlprvitgt

Figure IV.7 Memory invariants for the running example

assume (equivalent public memories) there are a set of memory blocks mpyp.sc in the
source and Myp.e in the target that are equivalent and publicly accessible by
arbitrary functions;

assume (source private memory) there is a disjoint set of blocks #1pry.sc in the source,
each of which is exclusively owned by a single function;

assume (target private memory) there is a disjoint set of blocks #1ppy.tgt in the target,
each of which is exclusively owned by a single function.

After executing line 1, we add the newly allocated block (call it /) to the private source
MEMmOry Mpry:src. It is important to note that we can add the block [to the private source
memory because it is a fresh logical block and thus exclusively owned by foo. After
executing line 2, the block / contains 123 (see Figure IV.7 (b)).

At line 3, we guarantee that the function calls to bar are equivalent as follows:

guarantee (equivalent arguments) the arguments v and vig to bar are equivalent;

guarantee (equivalent public memories) Mpyp.src and Mpyp.tgr, Which are equivalent
and publicly accessible;

guarantee (source private memory) each location in mpry.grc @ [— 123], is exclusively
owned by a single function;

guarantee (target private memory) each location in #1,py.gt is exclusively owned by a
single function.

When the calls to bar return, we can assume that the new public memories are equiva-
lent to each other (though they may not be the same as the previous public memories),
and the private memories are untouched (see Figure IV.7 (c)):

I /
pub:src pub:tgt?

which are evolved from mpyp.src and mpup.ige (see Section 20.4 for the definition

assume (equivalent public memories) we have new public memories m and m

of memory evolution), and are equivalent and publicly accessible;

108

assume (source private memory) Mpry:sre @ [= 123] is unchanged;
assume (target private memory) #ppy.igt is unchanged.

At line 4, we load the value 123 from the source’s private memory and store it in the
variable a. At line 5, in the source, we store the value of a, which is 123, in the memory
cell located at the address vsc. In the target, we store the constant 123 in the cell at vig¢.

Since we stored equivalent values at equivalent locations vsr¢ and vigt, we will have

1 1

pub:src and m pub:tg

equivalent public memories m » while leaving the private memories

unchanged.
Finally, we return to the callers of foo with (see Figure IV.7 (d))

Iz "
pub:src pub:tgt

Mpubssre A0d Mpypgr, and are equivalent and publicly accessible;

guarantee (equivalent public memories) m and m that are evolved from

guarantee (source private memory) Mpry.src;
guarantee (target private memory) Mpry.tgt»

where we can ignore the block / because it is not going to be used any more. Note that
we here guarantee foo returns with the same private memories it was given initially, as
we assumed the same property for the function bar after line 3.

20.3 Memory Invariants

As informally discussed above, we prove behavior refinement using a memory invariant
that places conditions on public memories (which must be equivalent in the source
and target programs) and private memories (which can differ between them). We now
formally define the notion of memory equivalence used in our informal example, and
the conditions on the private memories.

If you are familiar with CompCert’s verification, you may regard the memory in-
variant is a generalization of CompCert’s memory injection [57] to account for private
memories, function-modular reasoning, and finite memory.> Furthermore, our condi-
tions for concrete blocks are inspired from CompCertTSO’s support for finite memory
[74]. See Section 21 for more comparisons.

*In fact, the memory invariant is also a simplification of CompCert's memory injection in the treatment
of public memories: the public memories in the source and the target should coincide in the invariant, while
they may differ in CompCert’s memory injection. Though it is straightforward to generalize the invariant
in this dimension.

109

public private
__ - - [] concrete block

source ! ! : P
T |]X[_ _ oo

- - " logical block
target o[J/VW[] |] opical bloc

Figure IV.8 Memory invariants for hybrid model

Memory Equivalence We define a more relaxed notion of equivalence than simple
equality, which would be too strong in the presence of (unrelated) private memories.
We say that a set of blocks mg. in the source is equivalent to a set of blocks mg in
the target when they satisfy the following conditions. First, there should be a bijection,
say &, between the block identifiers in mg. and those in mg. Second, corresponding
blocks (i.e., those related by «) should have the same size and validity, and the values
they hold at each offset should be equivalent. Values are equivalent (w.r.t. «) when either
both are the same integer, or they are logical addresses that are at the same offset in
corresponding blocks (w.r.t. a). When mg. and m;g are equivalent in this sense, we
write Mgre ~y Mgt

The condition on the concrete addresses of corresponding blocks merits further
explanation. We have four possible cases regarding whether two corresponding blocks
are concrete or logical (see the public side of Figure IV.8). The first case in the figure
(i.e., source: logical, target: logical) obviously should be allowed. The second case (i.e.,
source: concrete, target: concrete) should also be allowed but only when the concrete
addresses coincide.

The third case (i.e., source: concrete, target: logical) should not be allowed. To allow
this case would be to allow the source memory to contain more concrete blocks than
the target, which leads to two problems: (1) an arbitrary concrete memory access may
succeed in the source but fail in the target; and (2) a pointer-to-integer cast may raise
out-of-memory in the source but succeed in the target. In both cases, the target may
have more behaviors than the source, which is disallowed. On the other hand, the final
case (i.e., source: logical, target: concrete) is allowed because the situation is exactly the
opposite: the source may have more behaviors than the target, which is allowed.

Private Memory For blocks in private memories, we have four possible cases regard-
ing whether the block is in the source or the target, and whether the block is concrete
or logical (see private side of Figure IV.8). All the cases are allowed except for source
private memory blocks that are concrete, for the same reason that blocks that are con-

110

crete in the source and logical in the target are not allowed in memory equivalence: the
source memory should not contain more concrete blocks than the target memory.

Memory Invariants A memory invariant 3 consists of (1) a bijection « between their
block identifiers, (2) the source’s private memory #pry.src, and (3) the target’s private
MEMOry Mypry.tgr. An invariant ff = (a, Mpry:sres mPrV;tgt) holds on a pair of memories
msre and myg when they contain the private sections #7pry.src and mpry.igr and some
public sections M ub:src and Mpyp.ge such that:

(msrc 2 Mpub:src W mprv:src) A (mtgt 2 Mpub:tgt W mprv:tgt) A
Mpub:src “a Mpub:tgt

where w and ¢ are the disjoint union and the subset relation.

20.4 Proving Simulation

We are now ready to present our reasoning principle formally. Our basic approach is to
verify programs via local simulation in the style of [33].

A function, say f00, in the source and target is locally simulated if it satisfies the fol-
lowing conditions. First, consider a typical lifecycle of the source and target functions:

foo(..) { foo(..) { /B

Il B BsEPe
bar(..); bar(); //‘ﬁr ﬁcgﬁr/\ﬁc:prvﬁr
d //ﬁé ﬁrgﬂé
gee(..); gee(--)i /B BL=PL A Bl=pr B

o /1 Be BrEPe A PBs=prvPe
} }
Here boxed conditions are assumed and the others are guaranteed.

First, in foo, unknown functional calls such as bar(..) and gee(..) should be
synchronized (i.e., when the target calls bar, the source should call bar as well). Note
that when a known function is called, the verifier can either step into the called function
and reason about its code, or treat it as an unknown function call.

Next, at the entry point of f00, we assume that we are given memories satisfying a
given invariant f3;, and equivalent arguments w.r.t. the bijection in f;. Then, we execute
the code of foo in the source and the target until the first unknown function call to
bar(..).Here we have to show that there is some invariant . that holds on the current
memories and that the arguments to the function bar are equivalent w.r.t. the bijection

in ..

111

Here, we also have to show that the current memories are evolved from the memo-
ries given initially by showing that the current invariant f. is a future invariant of the
initial one f; (denoted fs & f.). We say that f3. is a future invariant of 3, when satis-
fying the following conditions, which rule out changes to the memory that cannot be
caused by the language’s operational semantics. First, the bijection in f. should include
the bijection of f; because logical blocks cannot be removed during execution (a block
becomes invalid rather than removed when it is freed). Second, the other conditions
on the public memories in s and . are that (1) the size of a block does not change
between s and f¢, (2) an invalid block in fs cannot become valid in f3., and (3) a
concrete block in f; cannot become logical in .. However, it is important to note that
the contents of public memories can change between f3; and 8. because the operational
semantics allows to update values in memory.

Then, we consider the case when the unknown function successfully returns. We
can assume that the memories at return time also satisfy some future invariant .. We
can also assume that the function bar does not change the private memories in f3.
(denoted B =pry Br) because there is no way for bar to access them in our hybrid
model.

We continue through the function, evolving our invariant at non-call steps and per-
forming similar reasoning at other call sites such as gee (. .). Finally, when foo returns
to its caller, we have to show that there is some future invariant . that holds on the
current memories. Furthermore, we have to show that we did not change the private
memories given in the initial invariant Bs (i.e., Bs =prv Be). This condition is neces-
sary because, as seen above, we assume that this property holds at the end of any other
function call. In this way, we construct a local simulation proof for the foo.

20.5 Examples

In this section, we show how to verify the examples shown in Section 18. All results here
are fully formalized in Coq.

Arithmetic OptimizationI Consider the transformation in Figure IV.2. If we assume
that integer variables only contain integer values, not logical addresses, the instruction
a=(a-Db)+ (2 * b - b)hasno effect on the value of a and is equivalent to
no operation, so the optimization is trivially correct.

How do we know that integer variables only contain integer values? The straightfor-
ward answer is that our language is statically type-checked, as in the LLVM IR. However,
the key reason why this is possible is that in the hybrid model we actually turn logical

112

addresses into integers when they are cast to int, rather than placing logical addresses
in integer variables. Also, when we load a value from memory to an integer variable
(resp. a pointer variable), if the loaded value is a logical address (resp. an integer value),
we raise undefined behavior (i.e., error). In other words, the hybrid model induces a
form of dynamic type checking in languages that use it. This allows us to verify integer
arithmetic optimizations as in this example.

Dead Code Elimination Consider the transformation in Figure IV.3. This example is
similar to the previous one. Since we can assume that integer-typed variables contain
only integers, the execution of the call foo(a) does not have any side effects. Further-
more, because we know the code of the function foo, we do not need to treat it as
an unknown function call. Rather, we just step into the code of the function foo and
execute it in the source.

Ownership Transfer Consider the transformation in Figure IV.4. This example is
similar to the running example in Section 20.2.

Assume that the first invariant below holds before the malloc. After allocating
blocks I in the source and [; in the target, and storing 123 in both blocks, we can move
the blocks /s and I; into the private sections of the invariant because they are logical and
disjoint from the public sections, yielding the second invariant below. Next we call the
function bar. When it returns, we can assume that the third invariant holds (i.e., the
private sections are untouched). After loading, the variable a will contain 123, since p
contains the logical address (I, 0) in the source and (I, 0) in the target.

Next, when we call hash_put, we have to make sure that the arguments are equiva-
lent. The first arguments are equivalent because we assume that we start with equivalent
values in variables, and the third arguments are equivalent because a contains 123. To
show that the second arguments, (I5, 0) and (I, 0), are equivalent, we move the blocks
from the private sections to the public section and extend the bijection &' to relate I
and I;) (the fourth invariant below). Such ownership transfer from the private sections
to the public section is allowed because the future invariant relation () requires only
the bijection to be non-decreasing, not the private sections.

me || |melid) | [meBiB) || 0B | ms
o — o — o -
m \mt o123, \mt benasy || feizs, |

113

Arithmetic Optimization II We can easily verify the transformation in Figure IV.5
for the same reason as in Figure IV.2: because we can assume that all integer variables
contain integer values.

Dead Cast Elimination Consider the transformation in Figure IV.6, in the case in
which the source uses the hybrid model and the target uses the concrete model.

We begin by assuming that the first invariant below holds before the call to foo,
where the variable p contains equivalent addresses (I, i) in the source and (I, i), in
the target. Note that the block /; is concrete, since the target is using the fully concrete
model. After the allocation of a block, say I/, in foo in the source, we move it to the
source’s private memory, yielding the second invariant below. Here it is important to
note that if the source was using the concrete model, we could not move the block I/
into the private section because I! would be concrete, which would invalidate our proof.

After the cast, the block [; becomes concrete, yielding the third invariant below.
Here it is important to note that if the target language was using the hybrid model and
It were logical, then we would produce an invariant in which I is concrete and /; is
logical, which would be an invalid invariant. After foo returns, we simply drop the
block I/ from the source private section because we do not use it, yielding the fourth
invariant below. Then we can proceed to verify the rest of the code.

lSC] ms ls[:|| msl’sC::: lsl:‘ |msl’s[::: ZSEI ms
o | o | o | o |
]| me AN | me i[] | me W[]| me

Identity Compilers As a sanity check for our reasoning principles, we wrote an iden-

tity compiler from our language with the hybrid model to itself, and a simple compiler
from our language with the hybrid model to the same language with the concrete model.
The latter compiler just eliminates dead casts of the form _ = (int) p. We success-
fully verified these two compilers in Coq using our reasoning principles.

21 Discussion

21.1 Implementation and Experiment Details

Coq Formalization All the proofs reported in this paper have been fully formalized
in Coq and can be found in the project webpage. Our Coq formalization is about 10,000
lines of code, excluding empty lines and library code. The formalization took about 2
person-months to complete.

114

Optimization Examples All optimization examples presented in the paper are per-
formed by Clang 3.4.2 and/or GCC 4.8.3. Examples in C and their compilation results
can be found in the project webpage.

21.2 Related Work

Formal Memory Models There have been numerous efforts to formalize C semantics,
both from the perspective of clarifying the specification and defining implementations
with formal semantics [63, 56, 26, 48, 29]. These invariably use variations of the logical
memory model, where each allocation is associated with some abstract identifier and
pointers consist of an identifier and some path representing an offset into the memory
block, except for the work of Norrish [63] which uses the concrete model.

Comparison with CompCert CompCert [56, 57] and its various extensions currently
allow casting pointers to and from integers, but the semantics preserves the logical rep-
resentation of pointers after the cast. As a result, integer variables can contain not only
normal 32-bit integers, but also logical pointer representations. In the higher-level lan-
guages (CompCert C and Clight), performing arithmetic on cast pointer is treated as
a program error, whereas in the low-level languages (from Cminor down to assembly),
adding and subtracting integer values from converted pointers is defined and affects
only the offset into the pointer’s logical block. There has also been work on extending
the semantics to support pointer fragments to allow, for example, memcpy to work on
memory containing pointers [47], but these extensions still cannot fully support arith-
metic operations on pointer values that have been cast to an integer type.

Comparison with CompCertTSO The CompCertTSO compiler [74] extends Comp-
Cert’s Clight language with threading and atomic memory primitives following the x86-
TSO relaxed memory model. Similar to us, CompCertTSO’s memory model also sup-
ports finite memory, but uses a different mechanism to do so. It has a distinguished
logical block, where the offset serves as essentially a concrete memory address. Dur-
ing compilation, all memory operations are lowered to act only on a single finite log-
ical block. This allows the source and target languages, with infinite and finite mem-
ory respectively, to share a single memory model, and simplifies the correctness state-
ments by removing the need for CompCert’s memory injections. CompCertTSO han-
dles pointer-integer casts in the same way as CompCert, with the same limitations.

115

Comparison with the Symbolic Value Approach Most recently, Besson et al. have
proposed an extension to CompCert’s memory model that gives semantics to bit-masking
operations on pointers and uninitialized values [18]. Their approach involves adding
lazily-evaluated symbolic expressions, including arbitrary operations on the represen-
tation of pointers, to the class of semantic values. Symbolic values are forced whenever a
concrete value is needed to take a step, for example to access memory through a pointer
or in the guard of a conditional. The mapping is performed by a normalization function
given as a parameter of the semantics. The normalization function is partial, and is only
defined precisely when the symbolic value evaluates to a unique result under every as-
signment from logical block identifiers to concrete addresses (subject to some validity
conditions).

The semantics of Besson et al. is necessarily deterministic: non-determinism is in-
terpreted as undefined behavior, while our model captures the non-deterministic al-
location of concrete addresses. Furthermore, their semantics is complex and indeed
intractable: their normalization is implemented with an SMT solver, and the semantics
in general is too complex to serve as a mental model for ordinary C programmers. Nor-
malization in our semantics, on the other hand, is a straightforward translation from
pointers to concrete blocks and integers.

Most importantly, while their approach gives semantics to non-strictly-conforming
C programs involving bit-masking of pointers and uninitialized values, it fails to define
useful programs that use integer-pointer casts. Consider the hash_put example dis-
cussed in Section 18.4, where a pointer is hashed and then presumably used to index
into an array. Since the resulting memory location will depend on the concrete layout
of memory, the resulting program will have undefined behavior in their semantics. In
general, any program that displays non-determinism due to the concretization of point-
ers in our model is necessarily undefined in Besson et al’s model.

21.3 Compatibility

Compatibility with Other C Language Features There are numerous other C lan-
guage features that have some interaction with the memory model. Some of them,
such as indeterminate values (37, $3.19.2p1], dangling pointers [37, §6.2.4p2], and infinite
loops with no side-effects [37, $6.8.5p6], have semantics that are largely orthogonal to the
pointer concretization used in our hybrid model. Similarly, our model explicitly allows
unsafely-derived pointers, which are permitted in C18 and implementation-defined in
C++17 [36, §6.6.4.4.3]. We allow them in order to support low-level programming id-
ioms such as XOR linked lists and compressed oops in HotSpot JVM.

116

Our paper does not directly address threads, so we cannot claim with certainty that
the model extends to handle them. However, we see no obstacles in this direction, and
the hybrid model is similar to CompCertTSO, which does support a weak memory
model and threads, so we are optimistic that this extension to the semantics should
follow similarly.

A few language features require some adaptation of our memory model. For in-
stance, we can adapt the hybrid model to support union types and strict aliasing, follow-
ing Krebbers’ technique [45], which works regardless of whether the model is concrete,
logical or hybrid.

As another example, in C, charx is a “universal” pointer type, which allows efficient
bulk data moves via memcpy. Krebber’s variant of CompCert [47] already supports this
semantics using a logical memory, and the hybrid model is compatible with that so-
lution. Briefly: we let char types store byte-indexed logical values (such as (1,10) : 2,
which denotes the second byte of the logical address (,10)). This strategy works be-
cause a char is implicitly cast to an integer when used in arithmetic operations, and thus
we can simply treat these casts as side-effecting (i.e., concretizing the logical addresses).
This approach lose (almost) no optimization opportunities because byte-indexed logi-
cal addresses are typically loaded from the memory and thus (mostly) already treated
as public by the compiler.

Compatibility with Alias Analyses The hybrid model is largely compatible with com-
mon alias analyses. For instance, it can be used to justify size-based alias analysis, which
considers pointers to differently-sized objects as distinct. For example, in the code be-
low, there is no alias between p and q: even if q points to the block pointed to by p,
loading or storing a double value in the block will fail since the block is not big enough
to contain double values.

int *p = malloc(sizeof(int));
double *q = foo(p); // no alias between p and q

It also justifies freshness-based alias analysis, which assumes that the result of malloc
is distinct from all other pointers. The following example of constant propagation is
valid in the hybrid model since q points to a fresh block that is different from the block
pointed to by p. It is important to note that there is no alias between p and q even after
the fresh block is concretized. The reason is because even if p and q may be cast to the
same integer, they still point to different blocks as pointer values.

117

void foo(int *p) { void foo(int xp) {

auto q = (int *) malloc(4); auto q = (int *) malloc(4);

auto a = (uintptr_t) q; auto a = (uintptr_t) q;

auto b = *p; - auto b = *p;

*q = 123; xq = 123;

auto r = xp; auto r = b; // CP
} }

21.4 Impact

In the course of doing this research, we discovered the GCC bug presented in Figure IV.1.
With this bug, we persuaded compiler writers that (1) it is subtle to define the semantics
of casts between pointers and integers, and (2) it is safe to turn off some alias analyses
that are too aggressive to peacefully coexist with other optimizations.

Our idea to give semantics to more programs involving pointer operations—namely,
using concrete and logical blocks at the same time—has subsequently been refined by
follow-up papers by other researchers [54, 60], which are accompanied with promising
revision proposals to the LLVM compiler and ISO C standard.

We intend to use this model for compiler verification tasks, extending the range
of common optimizations that can be verified. Ultimately, we would like to generalize
Crellvm [43], which is a credible compilation framework for LLVM, to support casts be-
tween pointers and integers. We would also like to integrate our model with CompCert
and use it to justify new CompCert optimizations. We believe that our ideas are read-
ily applicable to CompCert(TSO) and related projects like Vellvm [83, 84] because our
memory model and notion of memory invariant are technically very close to Comp-
Certs. (Vellvm also uses CompCert’s memory model.) Essentially, all that would have
to change in the proofs are the cases handling pointer to integer casts.

118

Chapter V

Epilogue

22 Conclusion

Genesis The genesis of this dissertation traces back to 2014, when my supervisor
Prof. Chung-Kil Hur ran a seminar on CompCert [55]. CompCert is exciting because
it demonstrated formal semantics and compiler verification research scale up to real-
world applications. One day, he asked what are the concrete addresses of global variables
in CompCert C, and I answered “I don’t know” So we read CompCert code together,
and realized that CompCert C does not assign concrete addresses to global variables be-
cause it does not support cast between integers and pointers. Then we started to develop
a formal semantics of the feature, which ended up being my first first-author paper [41].

It was exciting to advance the state-of-the-art of C formal semantics, and it naturally
became my dissertation topic. I focused on low-level features because they are difficult
to capture in a formal semantics due to the conflict among many “stakeholders.” To
understand them, I began to read C/C++ standards, Linux kernel and LLVM mailing
lists, and even architecture ISA manuals which I didn’t expect to do so at the beginning
of my graduate school life.

Contributions As a result, we developed formal semantics of three low-level features

of C crucially used in systems programming, namely relaxed-memory concurrency,
separate compilation, and cast between integers and pointers. Our semantics adequately

119

balances the conflicting desiderata of programmers, compilers, and hardware in that it
(1) supports the features’ common usage patterns and reasoning principles for pro-
grammers, and (2) provably validates major compiler optimizations at the same time.
To establish confidence in our formal semantics, we have formalized most of our key
results in Cogq.

Impact Our formal semantics had concrete impacts on both academia and industry.
In academia, we and others published follow-up papers that (1) refine our semantics
to account for more usage patterns and compiler optimizations, (2) provide more evi-
dences that show our semantics serves programmers, compilers, and hardware well, or
(3) apply the key idea of our semantics to other languages. In industry, (1) we discov-
ered bugs and proposed fixes to bugs in GCC, LLVM, and CompCert, (2) we provided
informed opinions to the discussion on C/C++ and LLVM IR language standards, and
(3) our verification technique was adopted in CompCert.

Future Work However, by Meyer’s standard, where real success is “changing the way

> <

the IT industry develops software”, “the story told in this article is one of glaring, un-
remitted and probably definitive failure” [17]. CompCert is changing the way safety-
critical software is developed [14, 50]. In the similar spirit, we would like our semantics
to help system programmers, thereby changing the way systems are developed in gen-

eral. To this end, we would like to pursue the following directions for future work:

o Refining Semantics: Our semantics, as well as all the other C formal semantics,
does not capture all the real-world practices of low-level features and compiler
optimizations. While it is impossible to do so, it is crucial to capture at least widely
used patterns and performance-critical optimizations. Otherwise, industrial de-
velopers will not approve our semantics and consider it a “toy” language. In order
to do so, we need to clearly understand each low-level feature’s motivation and
use cases.

o Standardizing Semantics: Developing a semantics should take into account a lot
of stakeholders, and thus discussion on the semantics can easily diverge to too
many proposals. For mainstream languages like C, C++, and LLVM IR, standard-
ization process is introduced to help the discussion to converge to a consensus.
We should also propose our semantics to the standardization process, thereby
exchanging informed opinions on the semantics.

120

o Developing Tools: It is unlikely that semantics alone improves the life of indus-
trial developers, because semantics is a theoretical artifact while developers need
practical tools that help them to design and implement programs, and catch and
prevent bugs. Thus it is crucial to develop such tools—including model checkers,
static analyzers, and program logics—based on semantics and metatheory.

121

Bibliography

(1]

[10]

Coq development and supplementary material for this thesis. https://sf.snu.
ac.kr/jeehoon.kang/thesis.

GCC, the GNU compiler collection. https://gcc.gnu.org/.
The LLVM compiler infrastructure project. https://1lvm.org/.

A promising semantics for relaxed-memory concurrency. https://github.
com/nikomatsakis/rust-memory-model/issues/32.

Promote memory to register. https://llvm.org/docs/Passes.html#
mem2reg-promote-memory-to-register.

Register allocation. https://en.wikipedia.org/wiki/Register_
allocation
Relaxed-memory concurrency synchronization patterns. https://

jeehoonkang.github.io/2017/08/23/synchronization-patterns.
html.

Why is this legal? https://groups.google.com/forum/?hl=en#!msg/
comp.std.c/ycpVKxTZkgw/S2hHdTbv4d8J.

JSR 133. Java memory model and thread specification revision, 2004. http://
jcp.org/jsr/detail/133.jsp

S. V. Adve and M. D. Hill. Weak ordering—A new definition. In Proc. 17th Annual
International Symposium on Computer Architecture, ISCA 1990, pages 2-14. ACM,

1990.

122

https://sf.snu.ac.kr/jeehoon.kang/thesis
https://sf.snu.ac.kr/jeehoon.kang/thesis
https://gcc.gnu.org/
https://llvm.org/
https://github.com/nikomatsakis/rust-memory-model/issues/32
https://github.com/nikomatsakis/rust-memory-model/issues/32
https://llvm.org/docs/Passes.html#mem2reg-promote-memory-to-register
https://llvm.org/docs/Passes.html#mem2reg-promote-memory-to-register
https://en.wikipedia.org/wiki/Register_allocation
https://en.wikipedia.org/wiki/Register_allocation
https://jeehoonkang.github.io/2017/08/23/synchronization-patterns.html
https://jeehoonkang.github.io/2017/08/23/synchronization-patterns.html
https://jeehoonkang.github.io/2017/08/23/synchronization-patterns.html
https://groups.google.com/forum/?hl=en#!msg/comp.std.c/ycpVKxTZkgw/S2hHdTbv4d8J
https://groups.google.com/forum/?hl=en#!msg/comp.std.c/ycpVKxTZkgw/S2hHdTbv4d8J
http://jcp.org/jsr/detail/133.jsp
http://jcp.org/jsr/detail/133.jsp

[11]

[14]

[20]

[22]

J. Alglave, L. Maranget, and M. Tautschnig. Herding cats: Modelling, simulation,
testing, and data mining for weak memory. ACM Trans. Program. Lang. Syst.,

36(2):7:1-7:74, July 2014.

A. W. Appel. Program Logics for Certified Compilers. Cambridge University Press,
2014.

M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber. Mathematizing C++ con-
currency. In Proc. 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2011, pages 55-66. ACM, 2011.

R. Bedin Franga, D. Favre-Felix, X. Leroy, M. Pantel, and J. Souyris. Towards opti-
mizing certified compilation in flight control software. In Workshop on Predictabil-
ity and Performance in Embedded Systems (PPES 2011), volume 18 of OpenAccess
Series in Informatics, pages 59-68. Dagstuhl Publishing, 2011.

N. Benton and C.-K. Hur. Biorthogonality, step-indexing and compiler correct-
ness. In ICFP, 2009.

L. Beringer, G. Stewart, R. Dockins, and A. W. Appel. Verified compilation for
shared-memory C. In ESOP, 2014.

Bertrand Meyer. Fourteen years of software engineering at eth zurich. 2016.

E. Besson, S. Blazy, and P. Wilke. A precise and abstract memory model for C using
symbolic values. In APLAS, 2014.

H.-J. Boehm. P1217Ro: Out-of-thin-air, revisited, again. http://www.
open-std.org/jtcl/sc22/wg21l/docs/papers/2018/p1217r0.html,
2018.

H.-J. Boehm and B. Demsky. Outlawing ghosts: Avoiding out-of-thin-air results.
In Proc. Workshop on Memory Systems Performance and Correctness, MSPC 2014,
pages 7:1-7:6. ACM, 2014.

S. Chakraborty and V. Vafeiadis. Formalizing the concurrency semantics of an
LLVM fragment. In Proc. 15th IEEE/ACM International Symposium on Code Gen-
eration and Optimization, CGO 2017, 2017.

The CompCert C compiler. http://compcert.inria.fr/.

123

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1217r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1217r0.html
http://compcert.inria.fr/

[23] K. Crary and M.]. Sullivan. A calculus for relaxed memory. In Proc. 42nd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2015, pages 623-636. ACM, 2015.

[24] D.Demange, V. Laporte, L. Zhao, S. Jagannathan, D. Pichardie, and J. Vitek. Plan B:
A buffered memory model for Java. In Proc. 40th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2013, pages 329-342.
ACM, 2013.

[25] S.Dolan, K. C. Sivaramakrishnan, and A. Madhavapeddy. Bounding data races in
space and time. In PLDI, 2018.

[26] C. Ellison and G. Rosu. An executable formal semantics of C with applications.
In POPL, 2012.

[27] S. Flur, K. E. Gray, C. Pulte, S. Sarkar, A. Sezgin, L. Maranget, W. Deacon, and
P. Sewell. Modelling the ARMv8 architecture, operationally: Concurrency and
ISA. In Proc. 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2016, pages 608-621. ACM, 2016.

[28] J. Gosling, B. Joy, and G. Steele. The Java language specification, Edition 1.0, Aug.
1996. http://titanium.cs.berkeley.edu/doc/java-langspec-1.0/.

[29] D. Greenaway, J. Lim, J. Andronick, and G. Klein. Don’t sweat the small stuff:
Formal verification of C code without the pain. In PLDI, 2014.

[30] R. Gu, J. Koenig, T. Ramananandro, Z. Shao, X. N. Wu, S. Weng, H. Zhang, and
Y. Guo. Deep specifications and certified abstraction layers. In POPL, 2015.

[31] C.-K. Hur and D. Dreyer. A Kripke logical relation between ML and assembly. In
POPL, 2011.

[32] C.-K.Hur, D. Dreyer, G. Neis, and V. Vafeiadis. The marriage of bisimulations and
Kripke logical relations. In POPL, 2012.

[33] C.-K.Hur, D. Dreyer, G. Neis, and V. Vafeiadis. The marriage of bisimulations and
Kripke logical relations. In POPL, 2012.

[34] C.-K.Hur, G. Neis, D. Dreyer, and V. Vafeiadis. The transitive composability of re-
lation transition systems. Technical Report MPI-SWS-2012-002, MPI-SWS, 2012.

[35] INRIA. The Coq proof assistant. http://coq.inria.fr/.

124

http://titanium.cs.berkeley.edu/doc/java-langspec-1.0/
http://coq.inria.fr/

(36]

[44]
[45]

[46]

(47]

(48]

[49]

ISO. ISO/IEC 14882:2017: Programming languages — C++. https://www.1iso.
org/standard/68564.html

ISO. ISO/IEC 9899:2018: Programming languages — C. https://www.iso.
org/standard/74528.html

R.Jagadeesan, C. Pitcher, and J. Riely. Generative operational semantics for relaxed
memory models. In ESOP, pages 307-326, 2010.

A. Jeffrey and J. Riely. On thin air reads: Towards an event structures model of
relaxed memory. In Proc. IEEE Logic in Computer Science, LICS 2016, 2016.

J. Kang, C.-K. Hur, O. Lahav, V. Vafeiadis, and D. Dreyer. A promising semantics
for relaxed-memory concurrency. In POPL, 2017.

J. Kang, C.-K. Hur, W. Mansky, D. Garbuzov, S. Zdancewic, and V. Vafeiadis. A
formal c memory model supporting integer-pointer casts. In PLDI, 2015.

J. Kang, Y. Kim, C.-K. Hur, D. Dreyer, and V. Vafeiadis. Lightweight verification
of separate compilation. In POPL, 2016.

J. Kang, Y. Kim, Y. Song, J. Lee, S. Park, M. D. Shin, Y. Kim, S. Cho,]. Choi, C. Hur,
and K. Yi. Crellvm: verified credible compilation for LLVM. In PLDI, 2018.

Khronos Group. The OpenCL specification, Version 2.1, 2015.
R. Krebbers. Aliasing restrictions of C11 formalized in Coq. In CPP, 2013.

R. Krebbers. The C standard formalized in Coq. PhD thesis, Radboud University
Nijmegen, 2015.

R. Krebbers, X. Leroy, and F. Wiedijk. Formal C semantics: CompCert and the C
standard. In ITP, 2014.

R. Krebbers and E Wiedijk. A formalization of the Cgg standard in HOL, Isabelle
and Cogq. In CICM, 2011.

R. Kumar, M. Myreen, M. Norrish, and S. Owens. CakeML: A verified implemen-
tation of ML. In POPL, 2014.

125

https://www.iso.org/standard/68564.html
https://www.iso.org/standard/68564.html
https://www.iso.org/standard/74528.html
https://www.iso.org/standard/74528.html

[50]

[51]

[52]

[56]

[57]

(58]

[60]

[61]

D. Kastner, U. Wiinsche, J. Barrho, M. Schlickling, B. Schommer, M. Schmidt,
C. Ferdinand, X. Leroy, and S. Blazy. CompCert: Practical experience on inte-
grating and qualifying a formally verified optimizing compiler. In ERTS 2018: Em-
bedded Real Time Software and Systems, 2018.

O. Lahav, N. Giannarakis, and V. Vafeiadis. Taming release-acquire consistency. In
Proc. 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2016, pages 649-662. ACM, 2016.

O. Lahav and V. Vafeiadis. Explaining relaxed memory models with program
transformations. In Proc. 21st International Symposium on Formal Methods, FM
2016, 2016.

O. Lahav, V. Vafeiadis,]J. Kang, C.-K. Hur, and D. Dreyer. Repairing sequential
consistency in ¢/c++11. PLDI 2017, 2017.

J. Lee, C. Hur, R. Jung, Z. Liu, J. Regehr, and N. P. Lopes. Reconciling high-level
optimizations and low-level code in LLVM. PACMPL, 2(OOPSLA), 2018.

X. Leroy. Formal verification of a realistic compiler. Commun. ACM, 52(7):107-115,
2009.

X. Leroy. A formally verified compiler back-end. Journal of Automated Reasoning,
43(4):363-446, 2009.

X. Leroy, A. W. Appel, S. Blazy, and G. Stewart. The CompCert memory model,
version 2. Research report RR-7987, INRIA, June 2012.

A. Lochbihler. Making the Java memory model safe. ACM Trans. Program. Lang.
Syst., 35(4):12:1-12:65, 2014.

J. Manson, W. Pugh, and S. V. Adve. The Java memory model. In Proc. 32nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2005, pages 378-391. ACM, 2005.

K. Memarian, V. B. E Gomes, B. Davis, S. Kell, A. Richardson, R. N. M. Watson,
and P. Sewell. Exploring ¢ semantics and pointer provenance. PACMPL, 3(POPL),
2019.

G. Neis, C.-K. Hur, J.-O. Kaiser, C. McLaughlin, D. Dreyer, and V. Vafeiadis. Pil-
sner: A compositionally verified compiler for a higher-order imperative language.
In ICFP, 2015.

126

[62] B.Norris and B. Demsky. CDSchecker: Checking concurrent data structures writ-
ten with C/C++ atomics. In Proc. 2013 ACM SIGPLAN International Conference on
Object Oriented Programming Systems Languages & Applications, OOPSLA 2013,
pages 131-150. ACM, 2013.

[63] M. Norrish. C formalised in HOL. Computer Laboratory Technical Report 453,
University of Cambridge, Nov. 1998.

[64] P.Ouand B. Demsky. Towards understanding the costs of avoiding out-of-thin-air
results. PACMPL, 2(OOPSLA), 2018.

[65] S. Owens, S. Sarkar, and P. Sewell. A better x86 memory model: x86-TSO. In
Proc. 22nd International Conference on Theorem Proving in Higher Order Logics,
TPHOLs 2009, pages 391-407. Springer, 2009.

[66] J. T. Perconti and A. Ahmed. Verifying an open compiler using multi-language
semantics. In ESOP, 2014.

[67] J. Pichon-Pharabod and P. Sewell. A concurrency semantics for relaxed atomics
that permits optimisation and avoids thin-air executions. In Proc. 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2016, pages 622-633. ACM, 2016.

[68] A.Podkopaev, O. Lahav, and V. Vafeiadis. Bridging the gap between programming
languages and hardware weak memory models. In POPL.

[69] A.Podkopaev, I. Sergey, and A. Nanevski. Operational aspects of C/C++ concur-
rency. CoRR, abs/1606.01400, 2016.

[70] C. Pulte, J. Pichon-Pharabod, J. Kang, S.-H. Lee, and C.-K. Hur. Promising-
ARM/RISC-V: a simpler and faster operational concurrency model. In PLDI, 2019
(conditionally accepted).

[71] T. Ramananandro, Z. Shao, S. Weng, J. Koenig, and Y. Fu. A compositional se-
mantics for verified separate compilation and linking. In CPP, 2015.

[72] J.Sevéik and D. Aspinall. On validity of program transformations in the Java mem-
ory model. In Proc. 22nd European Conference on Object-Oriented Programming,
ECOOP 2008, volume 5142 of LNCS, pages 27-51. Springer, 2008.

127

(73]

[76]

[77]

[81]

[82]

J. Seveik, V. Vafeiadis, F. Zappa Nardelli, S. Jagannathan, and P. Sewell. Com-
pCertTSO: A verified compiler for relaxed-memory concurrency. J. ACM,
60(3):22, 2013.

J. Sev¢ik, V. Vafeiadis, E Zappa Nardelli, S. Jagannathan, and P. Sewell. Com-
pCertTSO: A verified compiler for relaxed-memory concurrency. Journal of the
ACM, 60(3):22, 2013.

J. Souyris. Industrial use of CompCert on a safety-critical software product, Feb.
2014. Talk slides available at: http://projects.laas.fr/IFSE/FMF/J3/
slides/P05_Jean_Souyiris.pdf.

G. Stewart, L. Beringer, S. Cuellar, and A. W. Appel. Compositional CompCert.
In POPL, 2015.

K. Svendsen, J. Pichon-Pharabod, M. Doko, O. Lahav, and V. Vafeiadis. A separa-
tion logic for a promising semantics. In ESOP, 2018.

V. Vafeiadis, T. Balabonski, S. Chakraborty, R. Morisset, and F. Zappa Nardelli.
Common compiler optimisations are invalid in the C11 memory model and what
we can do about it. In Proc. 42nd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2015, pages 209-220. ACM, 2015.

P. Wang, S. Cuellar, and A. Chlipala. Compiler verification meets cross-language
linking via data abstraction. In OOPSLA, 2014.

X. Wang, N. Zeldovich, M. E Kaashoek, and A. Solar-Lezama. Towards
optimization-safe systems: Analyzing the impact of undefined behavior. In SOSP,
2013.

X. Yang, Y. Chen, E. Eide, and]. Regehr. Finding and understanding bugs in C
compilers. In PLDI, 2011.

Y. Zhang and X. Feng. An operational happens-before memory model. Frontiers
of Computer Science, 10(1):54—81, 2016.

J. Zhao, S. Nagarakatte, M. M. Martin, and S. Zdancewic. Formalizing the LLVM
intermediate representation for verified program transformations. In POPL, 2012.

J. Zhao, S. Nagarakatte, M. M. Martin, and S. Zdancewic. Formal verification of
SSA-based optimizations for LLVM. In PLDI, 2013.

128

http://projects.laas.fr/IFSE/FMF/J3/slides/P05_Jean_Souyiris.pdf
http://projects.laas.fr/IFSE/FMF/J3/slides/P05_Jean_Souyiris.pdf

FFCHARAYEL T2 4SS Rol7] o) FHH AH5E S5t
o, 291 HASE A5E 752 Aok L2 19 .

S C Qlol & tARIT o) 442 7153t Astale H2ske st 2op7]7)
Y3 ol Pk Aol sAlet YA Y] FRolth A4E TS SlshH, Tedt 7|
5o] Al2g) e Td o] AT TES 2 X Uafof gk Putalel HHote
SBIALE, F57 Aukdest 2ste Bakstae aukael H4ste 2 A Ashol
gk Tt A4E Z15 7 Astede A0S A0 & AUsks Aol o
S27kA) Aok H e

Pt B A 28] 22 g IS AG EE AR 7
% AT H e 2 TAH O R, S he A DL WIS Lo
A, B A0k, P4 LN Wake] Aol Z 202 Akt 24, 7%
of Nzwl L2 A A e e e ME S =T 4 g 7 Ee
A gt B4, Fae Antde HASHES A AG) $-el7k Ao A ojnlo
AL 7] 18] $ei iR 0] 5.2 ATHE TE Coq 587] $6l A S5t
1%%E 71 A A o)1 JstA Sgc

F00]: C, A oln], Ant e A%, Lagh S A4 e, Ba Gupel, F4-nel

B 3t
S}H: 2013-20737

129

	Abstract
	Acknowledgements
	I Prologue
	1 Introduction
	1.1 Conflict between Low-Level Features and Compiler Optimizations
	1.2 Reconciling Low-Level Features with Compiler Optimizations

	2 Background: A Brief Tour of CompCert
	2.1 Compiler Correctness
	2.2 Memory Model
	2.3 The RTL Language
	2.4 Constant Propagation

	II Relaxed-Memory Concurrency
	3 Introduction
	3.1 Criteria for a Programming Language Memory Model
	3.2 The ``Out of Thin Air'' Problem
	3.3 A ``Promising'' Semantics for Relaxed Memory

	4 Basic Model for Handling Relaxed Accesses
	4.1 Main Ideas
	4.2 Formal Definition

	5 Supporting Atomic Updates
	6 Full Model
	6.1 Release/Acquire Synchronization
	6.2 Sequentially Consistent (SC) Fences
	6.3 ``Plain'' Non-Synchronizing Accesses
	6.4 System Calls
	6.5 Modifying Existing Promises
	6.6 Formal Model

	7 Results
	7.1 Compiler Transformations
	7.2 Compilation to TSO
	7.3 DRF Theorems
	7.4 An Invariant-Based Program Logic

	8 Proofs
	8.1 Thread-Local Simulation Relation
	8.2 Proof of DRF-RA
	8.3 Proof of DRF-LOCK

	9 Related Work
	10 Follow-up and Future Work

	III Separate Compilation and Linking
	11 Introduction
	12 Overview
	12.1 Compositional Correctness Level A
	12.2 Compositional Correctness Level B

	13 Adapting Constant Propagation to Separate Compilation
	13.1 Verifying Compositional Correctness Level A
	13.2 Verifying Compositional Correctness Level B

	14 Adapting the Other Passes to Separate Compilation
	14.1 RTL-Level Optimizations that Rely on Value Analysis
	14.2 Selection
	14.3 Inlining
	14.4 SimplExpr

	15 Results
	16 Discussion
	16.1 Related Work
	16.2 Generality of Our Techniques
	16.3 Impact

	IV Cast between Integers and Pointers
	17 Introduction
	18 Formal Semantics of Hybrid Model
	18.1 Hybrid of Concrete and Logical Blocks
	18.2 Combining Logical and Concrete Blocks
	18.3 Choosing Concrete Blocks
	18.4 Assigning Concrete Addresses
	18.5 Operations on Pointers
	18.6 Dead Cast Elimination
	18.7 Drawbacks of the Hybrid Model
	18.8 Language Semantics

	19 Fix to the LLVM and GCC miscompilation Bugs
	20 Compiler Verification Techniques and Examples
	20.1 Specification of Out of Memory
	20.2 Running Example & Informal Verification
	20.3 Memory Invariants
	20.4 Proving Simulation
	20.5 Examples

	21 Discussion
	21.1 Implementation and Experiment Details
	21.2 Related Work
	21.3 Compatibility
	21.4 Impact

	V Epilogue
	22 Conclusion

	초록

