
An SMT Encoding of 
LLVM’s Memory Model for

Bounded Translation Validation

Nuno P. Lopes

Seoul National Univ.
Juneyoung Lee
Dongjoo Kim

Chung-Kil Hur

Microsoft Research
1



Verifying Compiler using Translation Validation

• Compiler correctness is the foundation of software’s correctness

• Translation validation (TV): verify compilation of a specific program

2

a.c

a.s

clang, gcc, ... 🧐
This compilation

is correct!

validator



Alive2: SMT-based Bounded TV for LLVM

1. SMT-based: Automatically check correctness using an SMT solver

2. Bounded TV (BTV): Bounded verification to keep run time reasonable

3

LLVM IR

LLVM IR
(opt.) Alive2

• Used by >100 LLVM patches
• Found & reported 50 bugs

https://alive2.llvm.org

https://alive2.llvm.org/


An SMT encoding of LLVM’s Memory Model

• This paper: Alive2’s SMT encoding for LLVM’s memory model

• PLDI’21[1]: LLVM’s special values (undef, poison), function calls, loops, etc

• Contributions:

1. An efficient SMT encoding of memory for BTV

2. Discovery of ambiguous parts in LLVM IR’s semantics

3. Finding & fixing bugs in LLVM

for BTV!

4[1] Alive2: Bounded Translation Validation for LLVM, PLDI’21



A Simple Optimization Example

5

<fsrc> <ftgt>



A Simple Optimization Example

5

<fsrc> <ftgt>

🤔
Why is this compiler optimization correct?

What if r = q?



😎This optimization is correct because...
<ftgt>

6

<fsrc>

Why Is This Optimization Correct?



😎This optimization is correct because...
<ftgt>

6

<fsrc>

0x100

0x100

Why Is This Optimization Correct?



😎This optimization is correct because...
<ftgt>

6

<fsrc>

0x100

0x100

Cannot
update *q!

According to LLVM Language Reference,
0x100 can be accessed via q only!

Why Is This Optimization Correct?

Cannot update 
*q as well!



😎This optimization is correct because...
<ftgt>

6

1. fsrc and ftgt both returns 42.
2. fsrc and ftgt both updates *r to 37

(It has more details, but omitted for brevity)

<fsrc>

0x100

0x100

Cannot
update *q!

According to LLVM Language Reference,
0x100 can be accessed via q only!

Why Is This Optimization Correct?

Cannot update 
*q as well!



<ftgt>

7

<fsrc>

Explaining Opt. Using Formal Memory Model

LLVM’s formal memory model (OOSPLA’18)



<ftgt>

7

<fsrc>

Explaining Opt. Using Formal Memory Model

LLVM’s formal memory model (OOSPLA’18)
1. A memory is a set of memory blocks



<ftgt>

7

<fsrc>

Explaining Opt. Using Formal Memory Model

LLVM’s formal memory model (OOSPLA’18)
1. A memory is a set of memory blocks
2. An allocation creates a fresh memory block



<ftgt>

7

<fsrc>

Explaining Opt. Using Formal Memory Model

LLVM’s formal memory model (OOSPLA’18)
1. A memory is a set of memory blocks
2. An allocation creates a fresh memory block

Creates a new memory block b1.



<ftgt>

7

<fsrc>

Explaining Opt. Using Formal Memory Model

LLVM’s formal memory model (OOSPLA’18)
1. A memory is a set of memory blocks
2. An allocation creates a fresh memory block
3. A pointer tracks which memory block it can access (provenance)

Creates a new memory block b1.



<ftgt>

7

<fsrc>

Explaining Opt. Using Formal Memory Model

LLVM’s formal memory model (OOSPLA’18)
1. A memory is a set of memory blocks
2. An allocation creates a fresh memory block
3. A pointer tracks which memory block it can access (provenance)

Creates a new memory block b1.(b1, 0x100)

(br, offr)



<ftgt>

7

<fsrc>

Explaining Opt. Using Formal Memory Model

LLVM’s formal memory model (OOSPLA’18)
1. A memory is a set of memory blocks
2. An allocation creates a fresh memory block
3. A pointer tracks which memory block it can access (provenance)
4. Dereferencing a pointer is successful if the block is alive &

the offset is within the block’s bounds

Creates a new memory block b1.(b1, 0x100)

(br, offr)



<ftgt>

7

<fsrc>

Explaining Opt. Using Formal Memory Model

LLVM’s formal memory model (OOSPLA’18)
1. A memory is a set of memory blocks
2. An allocation creates a fresh memory block
3. A pointer tracks which memory block it can access (provenance)
4. Dereferencing a pointer is successful if the block is alive &

the offset is within the block’s bounds

Creates a new memory block b1.(b1, 0x100)

(br, offr)

Since b1 != br,
*r fails if offr is 0x100!



<ftgt>

8

<fsrc>

Encoding The Memory Model In SMT

(br, offr)

How to encode m0, bp, b1, br, offr, ... in SMT? 🤔

Initial memory: m0

(the intermediate & final states are omitted)

(b1, 0x100)
(bp, offp) (bp, offp)



Efficient SMT Encoding of LLVM’s Memory Model

We introduce our two important techniques

• Technique I: Bounding # of memory blocks

• Technique II: Using partial-order reduction to shrink # of aliasing blocks

9



Technique I: Bounding # of Memory Blocks

• Can we bound # of blocks that is necessary to verify an optimization?

• Determines # of byte arrays and the bitwidth of block ids

• In BTV, loops are assumed to have bounded iterations

10



Technique I: Bounding # of Memory Blocks

• Can we bound # of blocks that is necessary to verify an optimization?

• Determines # of byte arrays and the bitwidth of block ids

• In BTV, loops are assumed to have bounded iterations

• We calculate the bound via two steps:

A. # of blocks that is enough to encode the behavior of each function (fsrc and ftgt)

B. # of blocks that is enough to encode the correctness of fsrcè ftgt.

10



A. Bounding # of Memory Blocks of fsrc

11

Technique I: Bounding # of Memory Blocks

1 int f(int *p) {

2 int *q = malloc(4);

3 *q = 42;

4 int *r = g(p+1);

5 *r = 37;

6 return *q;

7 }
<fsrc>

𝑁!"#$: # of blocks allocated inside f

𝑁%!"#$: # of blocks allocated outside f

(0, 0)(𝑵𝒍
𝒔𝒓𝒄, 𝑵𝒏𝒍

𝒔𝒓𝒄) =



A. Bounding # of Memory Blocks of fsrc

11

Technique I: Bounding # of Memory Blocks

1 int f(int *p) {

2 int *q = malloc(4);

3 *q = 42;

4 int *r = g(p+1);

5 *r = 37;

6 return *q;

7 }
<fsrc>

𝑁!"#$: # of blocks allocated inside f

𝑁%!"#$: # of blocks allocated outside f

Using p,
only one block (p.bid) can be touched!

(0, 0)(𝑵𝒍
𝒔𝒓𝒄, 𝑵𝒏𝒍

𝒔𝒓𝒄) =



A. Bounding # of Memory Blocks of fsrc

11

Technique I: Bounding # of Memory Blocks

1 int f(int *p) {

2 int *q = malloc(4);

3 *q = 42;

4 int *r = g(p+1);

5 *r = 37;

6 return *q;

7 }
<fsrc>

𝑁!"#$: # of blocks allocated inside f

𝑁%!"#$: # of blocks allocated outside f

Using p,
only one block (p.bid) can be touched!

(0, 0)(0, 1)(𝑵𝒍
𝒔𝒓𝒄, 𝑵𝒏𝒍

𝒔𝒓𝒄) =



A. Bounding # of Memory Blocks of fsrc

11

Technique I: Bounding # of Memory Blocks

1 int f(int *p) {

2 int *q = malloc(4);

3 *q = 42;

4 int *r = g(p+1);

5 *r = 37;

6 return *q;

7 }
<fsrc>

𝑁!"#$: # of blocks allocated inside f

𝑁%!"#$: # of blocks allocated outside f

(0, 0)(0, 1)(𝑵𝒍
𝒔𝒓𝒄, 𝑵𝒏𝒍

𝒔𝒓𝒄) =



A. Bounding # of Memory Blocks of fsrc

11

Technique I: Bounding # of Memory Blocks

1 int f(int *p) {

2 int *q = malloc(4);

3 *q = 42;

4 int *r = g(p+1);

5 *r = 37;

6 return *q;

7 }
<fsrc>

𝑁!"#$: # of blocks allocated inside f

𝑁%!"#$: # of blocks allocated outside f

(0, 0)(0, 1)(1, 1)(𝑵𝒍
𝒔𝒓𝒄, 𝑵𝒏𝒍

𝒔𝒓𝒄) =



A. Bounding # of Memory Blocks of fsrc

11

Technique I: Bounding # of Memory Blocks

1 int f(int *p) {

2 int *q = malloc(4);

3 *q = 42;

4 int *r = g(p+1);

5 *r = 37;

6 return *q;

7 }
<fsrc>

𝑁!"#$: # of blocks allocated inside f

𝑁%!"#$: # of blocks allocated outside f

(0, 0)(0, 1)(1, 1)(1, 1)(𝑵𝒍
𝒔𝒓𝒄, 𝑵𝒏𝒍

𝒔𝒓𝒄) =



A. Bounding # of Memory Blocks of fsrc

11

Technique I: Bounding # of Memory Blocks

1 int f(int *p) {

2 int *q = malloc(4);

3 *q = 42;

4 int *r = g(p+1);

5 *r = 37;

6 return *q;

7 }
<fsrc>

𝑁!"#$: # of blocks allocated inside f

𝑁%!"#$: # of blocks allocated outside f

(0, 0)(0, 1)(1, 1)
1. g(p+1) can return an unseen pointer
è +1 extra block

2. g(p+1) can access unseen blocks
è Finding one mismatched block is

enough to create a counter-example
è +1 extra block is enough 

(1, 1)(𝑵𝒍
𝒔𝒓𝒄, 𝑵𝒏𝒍

𝒔𝒓𝒄) =



A. Bounding # of Memory Blocks of fsrc

11

Technique I: Bounding # of Memory Blocks

1 int f(int *p) {

2 int *q = malloc(4);

3 *q = 42;

4 int *r = g(p+1);

5 *r = 37;

6 return *q;

7 }
<fsrc>

𝑁!"#$: # of blocks allocated inside f

𝑁%!"#$: # of blocks allocated outside f

(0, 0)(0, 1)(1, 1)
1. g(p+1) can return an unseen pointer
è +1 extra block

2. g(p+1) can access unseen blocks
è Finding one mismatched block is

enough to create a counter-example
è +1 extra block is enough 

(1, 1)(𝑵𝒍
𝒔𝒓𝒄, 𝑵𝒏𝒍

𝒔𝒓𝒄) = (1, 3)



A. Bounding # of Memory Blocks of fsrc

11

Technique I: Bounding # of Memory Blocks

1 int f(int *p) {

2 int *q = malloc(4);

3 *q = 42;

4 int *r = g(p+1);

5 *r = 37;

6 return *q;

7 }
<fsrc>

𝑁!"#$: # of blocks allocated inside f

𝑁%!"#$: # of blocks allocated outside f

(0, 0)(0, 1)(1, 1)
1. g(p+1) can return an unseen pointer
è +1 extra block

2. g(p+1) can access unseen blocks
è Finding one mismatched block is

enough to create a counter-example
è +1 extra block is enough 

(1, 1)(𝑵𝒍
𝒔𝒓𝒄, 𝑵𝒏𝒍

𝒔𝒓𝒄) = (1, 3)

Q: If there is g2(), +1 again?

A: g2() doesn’t count!



A. Bounding # of Memory Blocks of fsrc

11

Technique I: Bounding # of Memory Blocks

1 int f(int *p) {

2 int *q = malloc(4);

3 *q = 42;

4 int *r = g(p+1);

5 *r = 37;

6 return *q;

7 }
<fsrc>

𝑁!"#$: # of blocks allocated inside f

𝑁%!"#$: # of blocks allocated outside f

(0, 0)(0, 1)(1, 1)(1, 1)(𝑵𝒍
𝒔𝒓𝒄, 𝑵𝒏𝒍

𝒔𝒓𝒄) = (1, 3)(1, 3)



B. Bounding # of Memory Blocks to Verify fsrc à ftgt

12

Technique I: Bounding # of Memory Blocks

(𝑵𝒍
𝒔𝒓𝒄, 𝑵𝒏𝒍

𝒔𝒓𝒄) = (1, 3) (𝑵𝒍
𝒕𝒈𝒕, 𝑵𝒏𝒍

𝒕𝒈𝒕) = (0, 3)

Q: How to decide the total # of memory blocks?



13

Technique I: Bounding # of Memory Blocks

1. Local blocks:
𝑵𝒍 = 𝑵𝒍

𝒔𝒓𝒄 +𝑵𝒏𝒍
𝒕𝒈𝒕 = 𝟏

... because local blocks in fsrc and ftgt are independent

B. Bounding # of Memory Blocks to Verify fsrc à ftgt



Technique I: Bounding # of Memory Blocks

2. Nonlocal blocks:
𝑵𝒏𝒍 = ???

B. Bounding # of Memory Blocks to Verify fsrc à ftgt



Technique I: Bounding # of Memory Blocks

2. Nonlocal blocks:
𝑵𝒏𝒍 = ???

2. Nonlocal blocks:
𝑵𝒏𝒍 = 𝑵𝒏𝒍

𝒔𝒓𝒄 = 𝟑
... because we only need one counter-example if fsrc à ftgt is wrong!

B. Bounding # of Memory Blocks to Verify fsrc à ftgt



Technique I: Bounding # of Memory Blocks

2. Nonlocal blocks:
𝑵𝒏𝒍 = ???

2. Nonlocal blocks:
𝑵𝒏𝒍 = 𝑵𝒏𝒍

𝒔𝒓𝒄 = 𝟑
... because we only need one counter-example if fsrc à ftgt is wrong!

g(p-1);

B. Bounding # of Memory Blocks to Verify fsrc à ftgt



Technique I: Bounding # of Memory Blocks

2. Nonlocal blocks:
𝑵𝒏𝒍 = ???

2. Nonlocal blocks:
𝑵𝒏𝒍 = 𝑵𝒏𝒍

𝒔𝒓𝒄 = 𝟑
... because we only need one counter-example if fsrc à ftgt is wrong!

g(p-1);
UndefinedWell-defined

OK Fail

Does not point to any memory block!

B. Bounding # of Memory Blocks to Verify fsrc à ftgt



Encoding Memory And Pointers Using 𝑵𝒍 and 𝑵𝒏𝒍

Technique I: Bounding # of Memory Blocks

(bid, off) (bid, off)Initial memory: m0

• m0: 𝑵𝒍 +𝑵𝒏𝒍 = 𝑵𝒍
𝒔𝒓𝒄 +𝑵𝒍

𝒕𝒈𝒕 +𝑵𝒏𝒍
𝒔𝒓𝒄 byte arrays

• bid: 1 + log(max(𝑵𝒍
𝒔𝒓𝒄, 𝑵𝒍

𝒕𝒈𝒕, 𝑵𝒏𝒍
𝒔𝒓𝒄) bit-vector

a bit for local(1)/non-local bid(0)



Technique II: Partial-Order Reduction

16

(bidp, offp) (bidp, offp)Initial memory: m0



Technique II: Partial-Order Reduction

16

(bidp, offp) (bidp, offp)Initial memory: m0(000, offp) (000, offp)



Technique II: Partial-Order Reduction

16

(100(2), 0)

(bidp, offp) (bidp, offp)Initial memory: m0(000, offp) (000, offp)



Technique II: Partial-Order Reduction

16

(100(2), 0)

(bidr, offr)
000 ≤ bidr ≤ 001

(bidp, offp) (bidp, offp)Initial memory: m0(000, offp) (000, offp)



Technique II: Partial-Order Reduction

16

(100(2), 0)

(bidr, offr)
000 ≤ bidr ≤ 001

(bidp, offp) (bidp, offp)Initial memory: m0(000, offp) (000, offp)

g(p+1) can access an unseen block 010



Technique II: Partial-Order Reduction

16

(100(2), 0)

(bidr, offr)
000 ≤ bidr ≤ 001

(bidp, offp) (bidp, offp)Initial memory: m0(000, offp) (000, offp)

g(p+1) can access an unseen block 010

Benefit
Reduces the size of search space a solver needs to explore!



More Techniques Are Described In The Paper

Optimizations
• Specialize pointer/non-pointer bytes
• Omit disjointness of block addresses if they are never observed
• Shrink pointer offset variable’s bitwidth

17



More Techniques Are Described In The Paper

Optimizations
• Specialize pointer/non-pointer bytes
• Omit disjointness of block addresses if they are never observed
• Shrink pointer offset variable’s bitwidth
Approximations
• Assume that local blocks are located at the upper half of memory /

non-local blocks at the lower half
• Bound the # iterations of strlen/memcmp/bcmp to constants

17



Implementation & Evaluation

• Implemented our memory model in Alive2
• Includes escaped local block support, function attributes, etc

• Run LLVM unit tests (~36,600 IR fns): 2.5 hrs on Intel Xeon 12 cores
• Validated intraprocedural optimizations

• Found 21 bugs in memory optimizations
• Found that the semantics of LLVM’s nonnull attribute was problematic

22



• Run 5 single file benchmarks with -O3: 5.1k (bzip2) ~ 141kLOC (sqlite3)
• 71 incorrect pairs: due to mismatch between LLVM developers’ informal semantics 

and formal semantics (OOPSLA’18)

• The gap is shrinking! sqlite3: 66 (last year) à 38 

23

Implementation & Evaluation (cont.)



• Run 5 single file benchmarks with -O3: 5.1k (bzip2) ~ 141kLOC (sqlite3)
• 71 incorrect pairs: due to mismatch between LLVM developers’ informal semantics 

and formal semantics (OOPSLA’18)

• The gap is shrinking! sqlite3: 66 (last year) à 38 

• Show efficiency of memory block encoding
• 96% of the dereferenced ptrs are either local/nonlocal, but not both
• 80% of the pointers alias with at most 3 blocks (avg. blk: 7 ~ 13)

• Array-per-block vs. local/nonlocal: 10% increase in # verified pairs of oggenc

23

Implementation & Evaluation (cont.)



1. We devised an efficient SMT encoding of LLVM memory model for BTV

2. We implemented our encoding in Alive2 and found 21 bugs in LLVM

24

Conclusion

The paper has more topics that are not treated in this talk!



Thank you! :)

25


