
23

CompCertM: CompCert with C-Assembly Linking and
Lightweight Modular Verification

YOUNGJU SONG, Seoul National University, Korea

MINKI CHO, Seoul National University, Korea

DONGJOO KIM, Seoul National University, Korea

YONGHYUN KIM, Seoul National University, Korea

JEEHOON KANG, KAIST, Korea

CHUNG-KIL HUR
∗
, Seoul National University, Korea

Supporting multi-language linking such as linking C and handwritten assembly modules in the verified

compiler CompCert requires a more compositional verification technique than that used in CompCert just

supporting separate compilation. The two extensions, CompCertX and Compositional CompCert, supporting

multi-language linking take different approaches. The former simplifies the problem by imposing restrictions

that the source modules should have no mutual dependence and be verified against certain well-behaved

specifications. On the other hand, the latter develops a new verification technique that directly solves the

problem but at the expense of significantly increasing the verification cost.

In this paper, we develop a novel lightweight verification technique, called RUSC (Refinement Under

Self-related Contexts), and demonstrate how RUSC can solve the problem without any restrictions but still

with low verification overhead. For this, we develop CompCertM, a full extension of the latest version of

CompCert supporting multi-language linking. Moreover, we demonstrate the power of RUSC as a program

verification technique by modularly verifying interesting programs consisting of C and handwritten assembly

against their mathematical specifications.

CCS Concepts: • Software and its engineering→ Software verification; Compilers; • Theory of com-
putation → Program verification.

Additional Key Words and Phrases: Compositional Compiler Verification, CompCert, Multi-Language Linking

ACM Reference Format:
Youngju Song, Minki Cho, Dongjoo Kim, Yonghyun Kim, Jeehoon Kang, and Chung-Kil Hur. 2020. CompCertM:

CompCert with C-Assembly Linking and Lightweight Modular Verification. Proc. ACM Program. Lang. 4, POPL,
Article 23 (January 2020), 31 pages. https://doi.org/10.1145/3371091

1 INTRODUCTION
CompCert [Leroy 2006, 2009], the first verified optimizing compiler for the C programming language,
has served as a backend in end-to-end verified software [Appel 2014]. Specifically, CompCert

compiles programs written in (a large subset of) C down to assembly code via various translation

∗
Corresponding author.

Authors’ addresses: Youngju Song, Seoul National University, Korea, youngju.song@sf.snu.ac.kr; Minki Cho, Seoul National

University, Korea, minki.cho@sf.snu.ac.kr; Dongjoo Kim, Seoul National University, Korea, dongjoo.kim@sf.snu.ac.kr;

Yonghyun Kim, Seoul National University, Korea, yonghyun.kim@sf.snu.ac.kr; Jeehoon Kang, KAIST, Korea, jeehoon.

kang@kaist.ac.kr; Chung-Kil Hur, Seoul National University, Korea, gil.hur@sf.snu.ac.kr.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).

2475-1421/2020/1-ART23

https://doi.org/10.1145/3371091

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 23. Publication date: January 2020.

https://doi.org/10.1145/3371091
https://doi.org/10.1145/3371091

23:2 Youngju Song, Minki Cho, Dongjoo Kim, Yonghyun Kim, Jeehoon Kang, and Chung-Kil Hur

passes including a number of common optimizations. Moreover, it is formally verified in Coq that

every translation of CompCert preserves the semantics: the generated assembly code behaves as

specified by the semantics of the source program. Therefore, CompCert has been used to transform

verification results about the source C program into those about the compiled assembly code in

various projects such as CertiKOS [Gu et al. 2011, 2016] and VST [Appel 2011].

There is, however, a limitation in the original CompCert that restricts its application to a more

wide range of software verification—namely the lack of support for handwritten assembly. This

limitation can be serious in verification of real-world software because handwritten assembly is

often crucial for writing low-level system software or library code.

To overcome this limitation, two extensions of CompCert, namely CompCertX [Gu et al. 2015;

Wang et al. 2019] and Compositional CompCert (shortly, CompComp) [Beringer et al. 2014; Stewart

et al. 2015], have been developed. Interestingly, they take different approaches to two key challenges:

(1) how to modularly verify each translation of each module using a different relational memory

invariant (shortly, memory relation) and compose the proofs all together; and

(2) how to deal with illegal interference from arbitrary (handwritten) assembly modules that can

invalidate compiler translations of C modules (e.g., not preserving the callee-save register

values).

We elaborate more on the first, more fundamental, challenge. CompCert uses three different

memory relations called memory identity, extension and injection (in the order of complexity and

generality) for a proof engineering purpose: it uses a simpler relation whenever possible to simplify

the correctness proof. The challenge occurs in an open setting where a translation of an open

module is verified separately. In a closed setting as in CompCert where the whole closed program

(i.e., all the modules) is compiled by the same translation pass thereby being verified as a whole,

verification of such a closed program using a simpler relation essentially implies that using a more

general one. However, in an open setting (i.e., for verification of an open module), that implication

does not hold because such verification assumes that the unknown contexts also preserve the same

memory relation. In other words, using a simpler relation, the verification guarantees a stronger

property on its own module but assumes a stronger property on the context modules. Therefore,

verification of open modules using different memory relations cannot be compared, which makes

composition of such verifications hard.

CompCertX’s Approach. CompCertX is developed as a backend compiler for the verified OS kernel

CertiKOS [Gu et al. 2011, 2016] and thus specialized for this purpose. Specifically, CompCertX

simplifies the two challenges by making two assumptions that (i) there are no mutual dependencies

among the input modules and (ii) each input module is verified against a well-behaved specification,

called Certified Abstraction Layer (CAL).
First, these assumptions enable CompCertX to use closed simulations, the simple verification

technique used by the original CompCert. The simulations are closed in the sense that they relate

known source and target functions under the condition that all invoked unknown functions

have independent good behaviors. Specifically, the unknown functions (i) provide full end-to-end
behaviors regardless of who the caller is (i.e., whether it is the source or the target); and (ii) those
behaviors satisfy a certain good-behavior property. Note that these two requirements for closed

simulations directly follow from the two assumptions of CompCertX above, respectively. Then

proving compositionality between closed simulations using the three different types of memory

relations is straightforward as discussed above (i.e., verification using a simpler relation implies

that using a more general one). As a result, the correctness proofs of all compiler passes using

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 23. Publication date: January 2020.

CompCertM: CompCert with C-Assembly Linking and Lightweight Modular Verification 23:3

closed simulations in CompCertX are only 15.51% larger than those in the original CompCert 3.0.1

in terms of significant lines of code (SLOC)
1
, and the metatheory (i.e., all the rest) is 47.65% larger.

Second, thanks to the assumptions of CompCertX, interference from assembly modules is also

handled simply. The assumption that handwritten assembly modules are verified against CAL

specifications implies that those modules do not cause any illegal interference (i.e., well-behaved).

CompComp’s Approach. CompComp establishes a more general correctness result without the

restrictions of CompCertX but at the expense of using a more heavyweight verification technique

of its own, called structured simulations. They are in the form of open simulations in the sense

that they allow invoked unknown functions to depend on their callers (e.g., via mutual recursion).

Since this openness technically makes compositionality proofs much harder as discussed above,

to simplify them CompComp uses a single memory relation, called structured injection. For this
reason, the verification technique is less flexible. Specifically, the proofs of the whole compiler

passes using the structured injection deviate quite far from the original proofs in CompCert and

require significantly more efforts: the correctness proofs of all compiler passes are 145.77% larger

than those in the original CompCert 2.1, and the metatheory is 81.77% larger.

Also, CompComp handles interference from assembly modules more generally without assuming

the good-behavior property for input modules. Since such interference only occurs via the register

file and the function arguments area of the stack (i.e., the shared resources that exist in assembly

but not in C), the interaction semantics of CompComp, which gives a logical semantics to programs

consisting of multi-language modules, duplicates those resources for each invocation of an assembly

module and does not propagate any illegal effects outside the module.

However, the treatment comes with no adequacy proof with respect to the physical semantics.

Indeed, interaction semantics is not adequate: due to the logical isolation of illegal effects, the

interaction semantics of linked assembly modules deviates from their physical semantics (i.e., the
assembly semantics of CompCert) when one of the modules indeed causes illegal interference,

for example, by not preserving the callee-save register values. Note that this problem was also

observed and discussed in the PhD thesis of [Stewart 2015] (see §8 for comparison).

Finally, there is another difference between CompComp and CompCertX: CompComp only

supports C-style calling conventions, while CompCertX additionally supports assembly-style

calling conventions (i.e., imposing no conditions except on the return address) between assembly

modules.

Our Approach. In this paper, we develop a new framework achieving both the flexibility of

CompCertX and the generality of CompComp. We demonstrate its power as a compiler verification

framework by applying it to CompCert but also as a program verification frameworkwith interesting

examples, for which we write mathematical specifications as abstract modules in interaction

semantics and prove refinement between the examples and their specification modules. Specifically,

we develop:

• Open (Mixed) Simulations: a simpler version of structured simulations, (i) allowing arbitrary

memory relations including memory identity, extension and injection, and (ii) supporting mixed

forward-backward simulation;

• RUSC (Refinement Under Self-related Contexts): our new lightweight theory for composing

arbitrary open simulations together, which is the highlight of our theoretical contribution;

• Repaired Interaction Semantics: providing adequacy w.r.t. the physical semantics and additionally

supporting assembly-style calling conventions;

1
we counted SLOC using coqwc.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 23. Publication date: January 2020.

23:4 Youngju Song, Minki Cho, Dongjoo Kim, Yonghyun Kim, Jeehoon Kang, and Chung-Kil Hur

• CompCertM: the latest version of CompCert (v3.5) fully extended with the repaired interaction se-

mantics and open simulations to support multi-language linking (18.73% larger in the correctness

proofs of all compiler passes, and 32.59% larger in the metatheory);

• Unreadglob: a new optimization pass we added that eliminates all unread static variables and

instructions writing to them, whose verification for openmodules requires a new kind of memory

relation, memory injection with module-local invariants;
• mutual-sum: an example consisting of (i) C and handwritten assembly modules that mutually

recursively compute summation up to a given integer, performing memoization using module-

local static variables, and (ii) correctness proofs against their specification modules using open

simulations with the new memory relation, memory injection with module-local invariants;

• Verification of utod: providing a correctness proof against its specification module using an open

simulation, where utod is a handwritten assembly function casting unsigned long to double,

whose correctness against its specification is axiomatized in CompCert but not any more in

CompCertM.

The key theory enabling all these results is RUSC, which takes a set of (almost arbitrary) open

simulations R and lifts them to a larger relation≽R that is fully compositional. The idea is inspired

by the situation where the transitivity problem of logical relations is avoided by proving their

inclusion in the contextual refinement, which is trivially transitive. To increase its applicability,

RUSC simply generalizes the notion of contextual refinement (CR) by parameterizing over a set of

program relations R. Specifically, we say that p ≽R q if for any contextC that is related to itself by

every relation in R, the observable behaviors of C[p] are refined by those of C[q]. The key idea is

to give the notion of well-behaved contexts w.r.t. a set of program relations R as those that are

self-related by every relation in R. The intuition behind it is that a context self-related by a program

relation R preserves all the invariants of the relation R. The merits of RUSC are that RUSC is (i)
unlike CR, applicable even in the presence of ill-behaved contexts, which is the case in our setting,

and (ii) fully compositional like CR. By setting R as the set of open simulations with four kinds of

memory relations—the three relations used by CompCert and our new relation, memory injection

with module-local invariants—we can freely choose one of them in verification of a compiler pass,

or a program against its specification.

Also, to generally support forward simulation in the presence of nondeterminism, we implement

the notion of mixed forward-backward simulation from [Neis et al. 2015] with a slight generalization

needed for CompCert (see §2.5).

We repair the interaction semantics of CompComp by defining those behaviors causing illegal

interference as undefined behaviors (UBs)2, which, however, required a few nontrivial ideas. First,

we identify the sources of inadequacy of interaction semantics as those behaviors violating three

assumptions—seen as a part of the official calling convention—made by standard compilers such as

GCC and LLVM with concrete counterexamples. Second, to make those illegal behaviors UBs, we

strengthened only the interaction part of interaction semantics without changing the underlying

language semantics of CompCert, which indeed is quite nontrivial as discussed in §3. Finally, we

prove two adequacy results: (i) the interaction semantics of linked assembly modules is refined by

their physical semantics, and (ii) the physical semantics (i.e., the language semantics of CompCert)

of linked (typed-checked) C modules is refined by their interaction semantics. These results mean

that the repaired interaction semantics does not give too few behaviors to assembly programs (e.g.,
missing physically observable behaviors), nor does it give too many behaviors to well-typed C

programs (e.g., giving UB to them).

2
UBs can be understood as forbidden behaviors, so that compilers are licensed to translate them into any behaviors.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 23. Publication date: January 2020.

CompCertM: CompCert with C-Assembly Linking and Lightweight Modular Verification 23:5

CompCertM is a full extension of CompCert 3.5 without missing any translation pass and without

changing the underlying semantics, which is developed in two steps. First, we refactored the proofs

of the original CompCert to get CompCertR, where the main parts of the correctness proof of each

pass is separated out as a main lemma that can be later used for both closed and open simulation

proofs. CompCertR gives exactly the same results as CompCert with only 4.41% increase in the

correctness proofs of all passes and 2.74% increase in the metatheory. Then, on top of CompCertR,

we developed an add-on package, CompCertM pack, supporting interaction semantics and multi-

language linking. CompCertM reuses all the main lemmas of CompCertR and adds (i) additional
proofs to reason about the interaction parts of interaction semantics in the correctness proofs of all

passes, which amount to 14.32% of the original proofs in CompCert, and (ii) additional metatheory

including interaction semantics and RUSC, which amounts to 29.85% of the original metatheory in

CompCert.

The three applications, Unreadglob, mutual-sum and verification of utod, show the flexibility

of our framework: allowing arbitrary memory relations and mathematical specification modules.

In particular, to the best of our knowledge, our work is the first verification, in the context of

CompCert, that reasons about module-local static variables with private invariants that can be

modified across external function calls (due to mutual dependence between multiple modules) .

The Coq development is available at:

https://sf.snu.ac.kr/compcertm

The remainder of the paper is structured as follows. We give a high-level overview of the main

ideas in §2-§4; the main results of CompCertM and an analysis of its development in §5; its formal

details in §6-§7; and a comparison to related work in §8.

2 VERIFICATION TECHNIQUES
We review the notions of closed and open simulations (§2.1), discuss the problems with open

simulations (§2.2) and present our solution (§2.3). We also discuss the memory relations used by

CompCertM in §2.4 and present mixed simulations in §2.5.

2.1 Background
CompCert’s Verification. CompCert’s correctness establishes behavioral refinement (also called

semantics preservation) saying that the set of all observable behaviors of a source program P , denoted
Beh(P) (seen as a specification), includes that of its compiled target program Q , i.e., Beh(Q) (seen
as an implementation). Here an observable behavior of a program (either in C, assembly, or an

intermediate language) is a (finite or infinite) trace of observable events (typically, invocation of

system calls) occurring in a sequence of execution steps according to the language semantics.

The semantics of a language L is given by a loading function ↑ ∈ Prog(L) → Mem × State(L)
from programs to machine states consisting of a memory and a language state, and a step relation

↪→ ⊆ (Mem × State(L)) × Event × (Mem × State(L)) between machine states producing an event.

Specifically, ↑P denotes the initial machine state after loading the program P , and (m, s)
e
↪→ (m′, s ′)

denotes that the machine state (m, s) can transition to (m′, s ′) producing an (observable or silent)

event e in a single step of execution.

CompCert is a multi-pass compiler and the whole verification is performed modularly by com-

posing independent verification of each pass. Specifically, verification of a pass proves that the

source and target programs of every translation performed by the pass are related by a certain

relation, called (closed) simulation, to be described below. Since simulation relations are closed

under composition, every end-to-end translation, which is a composition of translations of all

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 23. Publication date: January 2020.

https://sf.snu.ac.kr/compcertm

23:6 Youngju Song, Minki Cho, Dongjoo Kim, Yonghyun Kim, Jeehoon Kang, and Chung-Kil Hur

passes, is also related by a simulation relation. Finally, CompCert’s correctness follows from the

fact that every simulation relation implies behavioral refinement between the related programs.

In fact, there are two versions of simulations, forward and backward. The former is more conve-

nient for compiler verification but implies behavioral refinement only when the target language is

deterministic
3
. Since CompCert mostly uses forward simulations, we will also focus on forward

ones throughout the paper and discuss how to mix forward and backward simulations to support

forward reasoning even when the target language is not deterministic in §2.5.

We say a translation of a program P into Q is related by a relation R between machine states if

the loaded initial states ↑P and ↑Q are related by R. Then R is called a (closed forward) simulation

if for any pair of machine states (mssrc,mstgt) related by R, the target statemstgt simulates one

step execution of the source statemssrc (up to silent steps, denoted τ) and the resulting states are

again related by R (slightly simplified for presentation purposes):

∀(mssrc,mstgt) ∈ R, ∀e,ms ′src, mssrc
e
↪→ms ′src =⇒

∃ms ′tgt, mstgt
τ
↪→

∗ e
↪→

τ
↪→

∗
ms ′tgt ∧ (ms ′src,ms ′tgt) ∈ R .

CompComp’s Verification. The interaction semantics of CompComp gives a way to execute an

open module M (i.e., invoking external functions defined outside M) in isolation by providing

a logical mechanism to reflect possible interference from external function calls. More specifi-

cally, the semantics provides two meta-level functions at external and after external. First,
at external s = Some (f , ®v) denotes that at language state s , an external function pointed to by a

function pointer f is called with arguments ®v . Second, after external r s denotes the language
state after the external function call at s , assuming the call returned a value r .

Using interaction semantics, CompComp defines structured simulations relating two open mod-

ules. Here we briefly review the key ideas behind them, which also occurred elsewhere, e.g., in [Hur

et al. 2012; Kang et al. 2015; Neis et al. 2015]. First, unlike the closed simulations above, structured

simulations explicitly specify value and memory relations (evolving over time) because values and

memory are shared with external modules. Specifically, such relations are defined using Kripke-style

possible worlds, called structured injections (see §2.4 for more details), by giving (i) a future world
relation ⊒ for which w ′ ⊒ w denotes that w ′

is a future world of w ; and (ii) value and memory

relations at each world w , denoted vrel(w) and mrel(w). Then, a structured simulation R gives

a relation between machine states at each world w , denoted R(w), and should satisfy the open
simulation property (simplified for presentation purposes) given in Fig. 1.

Here the simulation involves rely-guarantee reasoning and is split into two cases: one for

interactions with external modules and the other for internal steps (omitting two more cases for

function start and end, for presentation purposes). Specifically, given any worldw , related memories

atw and machine states related by the simulation relation R atw (line 1), we check whether the

source state is invoking an external function or taking an internal step (line 2). In the former case

(line 3), the target state should also be invoking an external function (line 4) and the invoked

functions and arguments should be related by the value relation at the worldw (line 5), which is a

guarantee condition to the external modules. Then we assume that the invoked external functions

proceed to a future world w ′
yielding related memories and related return values at w ′

(line 6),

which is a rely condition from the external modules. Under the assumption, the machine states

after the external calls should also be related by the simulation relation R at the future worldw ′

(line 7). In the latter case (line 8), for any internal step from the source state (line 9), there should be

corresponding internal steps from the target state (line 10). Then the resulting memories after the

3
CompCert uses a slightly different condition, namely that the source language is receptive and the target is determinate.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 23. Publication date: January 2020.

CompCertM: CompCert with C-Assembly Linking and Lightweight Modular Verification 23:7

1: ∀w, ∀(msrc,mtgt) ∈ mrel(w), ∀ssrc, stgt, ((msrc, ssrc), (mtgt, stgt)) ∈ R(w) =⇒

2: match at external ssrc with
3: | Some (fsrc, ®vsrc) ⇒

4: ∃ftgt, ®vtgt, at external stgt = Some (ftgt, ®vtgt) ∧

5: (fsrc, ftgt) ∈ vrel(w) ∧ (®vsrc, ®vtgt) ∈
−−−−−−−→
vrel(w) ∧

6: ∀w ′ ⊒ w, ∀(m′
src,m

′
tgt) ∈ mrel(w ′), ∀(rsrc, rtgt) ∈ vrel(w ′),

7: ((m′
src, after external rsrc ssrc), (m

′
tgt, after external rtgt stgt)) ∈ R(w ′)

8: | None ⇒

9: ∀e,m′
src, s

′
src, (msrc, ssrc)

e
↪→ (m′

src, s
′
src) =⇒

10: ∃m′
tgt, s

′
tgt, (mtgt, stgt)

τ
↪→

∗ e
↪→

τ
↪→

∗
(m′

tgt, s
′
tgt) ∧

11: ∃w ′ ⊒ w, (m′
src,m

′
tgt) ∈ mrel(w ′) ∧

12: ((m′
src, s

′
src), (m

′
tgt, s

′
tgt)) ∈ R(w ′)

13: end
Fig. 1. Structured (or, open) simulations (simplified for presentation purposes)

steps should be related at some future worldw ′
(line 11), which is a guarantee condition to the

external modules. Finally, the machine states after the steps should also be related by the simulation

relation R at the future worldw ′
(line 12).

At high level, this simulation property specifies that internal executions of the source and target

modules should be related in lockstep satisfying the guarantee conditions to the external modules,

assuming that the rely conditions from them hold after each external function call. Note that the

rely and guarantee conditions on memory (at lines 6 and 11) are matched and also those on values

(at lines 5 and 6) will be matched if we include the omitted cases for function start and end. This

matching—in addition to the fact that the same rely/guarantee conditions are used globally (i.e., for
verification of every module)—is crucial for proving preservation of the simulation property after

linking modules because otherwise what one module assumes about the other modules will not

match with what the other modules guarantee.

To use structured simulations for compiler verification, CompComp proves the following three

key properties, where we say a source module M simulates a target module M ′
if there exists a

structured simulation that relatesM andM ′
:

• (Vertical Compositionality) IfM simulatesM ′
, which simulatesM ′′

, thenM simulatesM ′′
.

• (Horizontal Compositionality) IfM1 andM2 simulateM ′
1
andM ′

2
respectively, then the linked

source moduleM1 ⊕ M2 simulates the linked target moduleM ′
1
⊕ M ′

2
.

• (Adequacy) IfM simulatesM ′
, then Beh(M) ⊇ Beh(M ′).

2.2 Problems
As discussed in the introduction, verification using structured simulations is significantly more

costly than that using closed simulations. The reasons are twofold.

First, while closed simulations freely allow arbitrary memory relations—therefore CompCert uses

three different kinds of memory relations to simply proofs—structured simulations only allow a

single type of memory relations called structured injections due to horizontal compositionality. The

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 23. Publication date: January 2020.

23:8 Youngju Song, Minki Cho, Dongjoo Kim, Yonghyun Kim, Jeehoon Kang, and Chung-Kil Hur

reason is that, as discussed above, allowing different memory relations would introduce different re-

ly/guarantee conditions thereby breaking simulation after linking (i.e., horizontal compositionality)

due to the mismatch between different rely/guarantee conditions.

Second, proving vertical compositionality for open simulations is in general very technical and

involved [Neis et al. 2015; Patterson and Ahmed 2019]. Indeed the proof for structured simulations

is about 5,000 SLOC in Coq. Moreover, vertical compositionality also introduces unnecessary

complexities in structured simulations of CompComp such as effect annotations and closedness
under restriction [Stewart et al. 2015].

To sum up, although it is quite straightforward to prove horizontal compositionality and adequacy

for a single relation (i.e., with the same rely/guarantee conditions), it is challenging to prove (i)
vertical compositionality even for a single relation and (ii) horizontal compositionality between

different relations (i.e., with different rely/guarantee conditions).

2.3 Our Solution
Our solution is twofold. First, we develop a general and abstract theory, called Refinement Under
Self-related Contexts (RUSC), which is inspired by the standard notion of contextual refinement and

the notion of self-related context from [Stewart et al. 2015] (see §8 for comparison). Specifically,

given a set of (arbitrary and independent) relations each of which is horizontally compositional

and adequate, RUSC completes the relations by giving a super-relation (i.e., including all of them)

that is horizontally and vertically compositional and also adequate. Second, we prove that our

version of structured simulations, called open simulations, with almost arbitrary memory relations

are horizontally compositional and adequate, so that we can apply RUSC to open simulations with

any chosen set of memory relations.

Theory of RUSC. RUSC can be defined abstractly for any linking algebra, which consists of a set of

modules, Module, with a notion of behavior
4
, denoted Beh(p) for p ∈ Module, a linking operation ⊕

between modules that is associative
5
, and the identity (i.e., empty) module id ∈ Module:

⊕ : Module ×Module → Module

∀p,q, r ∈ Module, p ⊕ (q ⊕ r) = (p ⊕ q) ⊕ r
∀p ∈ Module, id ⊕ p = p ⊕ id = p

Note that RUSC can be applied to interaction semantics because it allows linking between arbitrary

modules sharing the same notions of value and memory (see §3.1 and §6 for details).

To define RUSC, let R be a set of module relations each of which is horizontally compositional

and adequate: for any R ∈ R and p,p ′,q,q′ ∈ Module,

(p,p ′), (q,q′) ∈ R =⇒ (p ⊕ q,p ′ ⊕ q′) ∈ R (HorComp)
(p,p ′) ∈ R =⇒ Beh(p) ⊇ Beh(p ′) (Adequacy)

Then the RUSC relation for R, denoted ≽R , is defined as follows:

p ≽R p ′ iff ∀c1, c2 ∈ Self(R), Beh(c1 ⊕ p ⊕ c2) ⊇ Beh(c1 ⊕ p ′ ⊕ c2)

Self(R)
def

= { c ∈ Module | ∀R ∈ R, (c, c) ∈ R }

The definition is simple: p is RUSC-related to p ′ if the behaviors of p ′ refine those of p under

arbitrary contexts that are related to themselves by every relation in R.

4
Behaviors just need to be defined for closed programs. Technically, we can give undefined behavior (UB) to open modules.

5
Commutativity does not hold for linking of CompCert modules because changes in the order of global variables affect the

initial memory after loading due to CompCert’s deterministic memory allocation.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 23. Publication date: January 2020.

CompCertM: CompCert with C-Assembly Linking and Lightweight Modular Verification 23:9

Theorem 2.1 (Properties of RUSC). The RUSC relation ≽R satisfies the following key properties.
(Inclusion) ∀R ∈ R, R ⊆ ≽R

(Adequacy) ∀p,p ′ ∈ Module, p ≽R p ′ =⇒ Beh(p) ⊇ Beh(p ′)

(VerComp) ∀p,p ′,p ′′ ∈ Module, p ≽R p ′ ∧ p ′ ≽R p ′′ =⇒ p ≽R p ′′

(HorComp) ∀p,p ′,q,q′ ∈ Self(R), p ≽R p ′ ∧ q ≽R q′ =⇒ p ⊕ q ≽R p ′ ⊕ q′

(SelfComp) ∀p,q ∈ Self(R), p ⊕ q ∈ Self(R)

Note that horizontal compositionality holds only for self-related modules, which, however, is

not a big deal in practice as we will discuss below.

Proof. The proof of the theorem is simple. The inclusion R ⊆ ≽R trivially follows from the

horizontal compositionality and adequacy of R. Adequacy of≽R directly follows from the definition

of≽R by taking the empty context. Vertical compositionality (i.e., transitivity) of≽R holds trivially

by definition. Horizontal compositionality, p⊕q ≽R p ′⊕q′, is proven in two steps using transitivity:
(i) p ⊕ q ≽R p ′ ⊕ q, which follows from the definition of p ≽R p ′ since q ∈ Self(R), and (ii)
p ′ ⊕ q ≽R p ′ ⊕ q′, which follows similarly since q ≽R q′ and p ′ ∈ Self(R). Finally, self-relatedness

is closed under composition because every relation in R is horizontally compositional. □

The reason why vertical compositionality is easily proven for RUSC is that we essentially prove

it for closed programs by closing an open module with contexts. Indeed, the technical difficulties

with vertical compositionality for open simulations arise from the openness: it is difficult to set up

a setting properly with arbitrary future memories given after an external function call.

The reason why horizontal compositionality holds between different relations is interesting.

Directly composing two simulations (p,p ′) ∈ R1 and (q,q′) ∈ R2 with different relations R1 and R2

does not work in general. However, each simulation can be easily extended with identical contexts

because a pair of identical modules usually respects any sensible relational principles. Therefore,

we have (p ⊕ q,p ′ ⊕ q) ∈ R1 and (p ′ ⊕ q,p ′ ⊕ q′) ∈ R2, which can be transitively composed by

vertical compositionality just as discussed above.

To sum up, RUSC provides a general condition for composing different relational proofs: each

proof just needs to be compatible with its context modules in terms of self-relatedness, not neces-

sarily with their relational proofs.

Open Simulations. Since we can obtain vertical and horizontal compositionality using RUSC, we

can use open simulations with almost arbitrary memory relations. More specifically, we prove

that open simulations with any Kripke-style memory/value relation satisfying certain minimal

conditions (see §7.1 for details) are horizontally compositional and adequate. Since the required

conditions are so minimal, they are satisfied by the three memory relations—memory identity,

extension and injection—and also by a more powerful relation, called memory injection with
module-local invariants. This new memory relation is needed to verify a new pass we added, called

Unreadglob, which requires reasoning about module-local states enabled by static variables of C
(see §4 for details).

Note that unlike CompCert 2.1 on which CompComp is based, CompCert 3.5 implements a

static analyzer performing value analysis, which is used by several passes. In order to support

independent modular verification of such analyzers, we also parameterize open simulations with

memory predicates—representing the analysis results of such analyzers—and prove their horizontal

compositionality and adequacy (See §7 for details).

Applications. In our paper, we use RUSC in two situations: compiler and program verification.

First, we give an abstract example for compiler verification. Suppose our source program is written

in three modules, a.c, b.c and c.asm, and compiled via multiple passes: a.c → a.il1 → a.asm

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 23. Publication date: January 2020.

23:10 Youngju Song, Minki Cho, Dongjoo Kim, Yonghyun Kim, Jeehoon Kang, and Chung-Kil Hur

and b.c → b.il2 → b.il3 → b.asm, each of which is verified using a different relation as

follows:

(a.c, a.il1) ∈ R1 (a.il1, a.asm) ∈ R2

(b.c, b.il2) ∈ R3 (b.il2, b.il3) ∈ R4 (b.il3, b.asm) ∈ R5

Then as long as the end modules, a.c, b.c, a.asm, b.asm, c.asm, are self-related by the relations

R1, . . . ,R5, using RUSC we can obtain the following behavioral refinement:

Beh(a.c ⊕ b.c ⊕ c.asm) ⊇ Beh(a.asm ⊕ b.asm ⊕ c.asm)

The underlying reasoning is simple: for R = { R1, . . . ,R5 }, we get

• a.c ≽R a.asm and b.c ≽R b.asm by Inclusion and VerComp of Theorem 2.1;

• c.asm ≽R c.asm since (c.asm, c.asm) ∈ R1 ⊆≽R by Inclusion of Theorem 2.1;

• a.c ⊕ b.c ⊕ c.asm ≽R a.asm ⊕ b.asm ⊕ c.asm by HorComp of Theorem 2.1;

• Beh(a.c ⊕ b.c ⊕ c.asm) ⊇ Beh(a.asm ⊕ b.asm ⊕ c.asm) by Adequacy of Theorem 2.1.

Note that we need to prove the self-relatedness only for the end modules because we only link

those, not the intermediate ones like a.il1, b.il2, c.il3. Moreover, proving self-relatedness by a

relation is typically straightforward as long as the relation is sensibly defined. Indeed, we could

easily prove that all Clight6 and assembly programs are self-related by all the relations used by

CompCertM (i.e., open simulations with memory identity, extension, and injection with or without

module-local invariants).

Second, we demonstrate, via small but interesting examples (see §4), that our framework can

be used to verify program modules against (open) mathematical specification modules, written in

Coq’s Gallina language. In the above example, for instance, we can prove

a.spec ≽R a.c b.spec ≽R b.c c.spec ≽R c.asm
abc.spec ≽R a.spec ⊕ b.spec ⊕ c.spec

and link them together with the compiler correctness results above to get

Beh(abc.spec) ⊇ Beh(a.asm ⊕ b.asm ⊕ c.asm)

as long as themathematical specificationmodules a.spec, b.spec, c.spec, abc.spec are in Self(R),
which is usually straightforward to prove.

Comparison to Contextual Refinement. As one can easily see, RUSC refines the standard notion

of contextual refinement: instead of quantifying over all contexts, RUSC quantifies over only

self-related contexts. The main difference is that RUSC gives the notion of well-behaved context

w.r.t. a given set of program relations (i.e., reasoning principles) in terms of contexts self-related

by them. This is particularly useful when not all contexts are well behaved. For example, in the

interaction semantics allowing mathematical specification modules as above, one can easily write a

specification module that arbitrarily changes the whole memory including other modules’ private

memory. Under the presence of such ill-behaved contexts, the contextual refinement will end up

being too strong preventing any reasoning about private memory such as functions’ stack frames.

On the other hand, RUSC w.r.t. a set of sensible relations will rule out such bad contexts and give

us a sensible (better) relation.

6
Clight is taken as the source language in most verification projects using CompCert such as VST [Appel 2011], CertiKOS

and even CompComp. However, we also prove behavioral refinement w.r.t. the C source language (see §5).

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 23. Publication date: January 2020.

CompCertM: CompCert with C-Assembly Linking and Lightweight Modular Verification 23:11

2.4 Memory Relations of CompCertM
CompCertM uses the original memory identity and extension of CompCert (§2.4.1) and mildly

strengthens the original memory injection to reason about dynamically allocated local memory such

as a function’s stack frame for open modules, which can be compared to the structured injection of

CompComp (§2.4.2). Moreover, we generalize it further to reason about statically allocated local

memory such as static variables of C by allowing module-local invariants on those static variables

(§2.4.3).

2.4.1 Memory Relations of CompCert. CompCert’s memory model consists of a finite set of blocks

of finite size and a pointer value (or, an address) is a pair (b,o) of a block id b and an offset o inside it.
The memory identity imposes that the source and target memories are identical; and the extension

that the two memories contain identical block ids and each target block extends the corresponding

source block with more space and any values in it at the end.

A memory injection injects a subset of the source blocks into target blocks without overlap.

More precisely, a (selected) whole source block is injected into a single target block while allowing

multiple source blocks to be injected into the same target block without overlap. This injection map

specifies the public areas of the source and target memories and the correspondence between them.

In other words, the corresponding addresses by the injection map are treated as equivalent (public)
pointer values, so that at those corresponding addresses, only equivalent

7
values (i.e., equivalent

non-pointer values or corresponding addresses) should be stored . All the areas that are not on the

injection map are considered as private areas of the source and target memories.

2.4.2 Enriched Memory Injection. For open modules, reasoning about dynamically allocated local

memory such as a function’s stack frame requires to strengthen the original memory injection due

to the presence of unknown modules. The reason is because when reasoning about a moduleM ,

we have to assume that an unknown function invoked byM does not change the dynamic local

memory ofM and also guarantee that a function ofM invoked by an unknown module does not

change the caller’s dynamic local memory.

For this purpose, CompComp introduces structured injections that enrich the original memory

injections with ownership information (i.e., whether owned by the current module or others)

for all memory blocks including public ones. Using them, structured simulations impose fine-

grained invariants subject to the ownership information and a concrete leakage protocol based on

reachability from pointers.

Unlike CompComp, CompCertM generalizes open simulations and memory injections in a more

abstract way following [Dreyer et al. 2010; Hur et al. 2012].

First, we generalize the external call case of the open simulation in Fig. 1 by allowing private
transitions, denoted ⊒prv, as follows (in red color):

5: ∃w ′ ⊒prv w, (fsrc, ftgt) ∈ vrel(w ′) ∧ (®vsrc, ®vtgt) ∈
−−−−−−−→
vrel(w ′) ∧

6: ∀w ′′ ⊒ w ′, ∀(m′
src,m

′
tgt) ∈ mrel(w ′′), ∀(rsrc, rtgt) ∈ vrel(w ′′),

7: ∃w ′′′ ⊒prv w
′′, w ′′′ ⊒ w ∧

((m′
src, after external rsrc ssrc), (m

′
tgt, after external rtgt stgt)) ∈ R(w ′′′)

7
Technically speaking, CompCert allow more undefined values in the source because it proves refinement rather than

equivalence between the source and target programs.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 23. Publication date: January 2020.

23:12 Youngju Song, Minki Cho, Dongjoo Kim, Yonghyun Kim, Jeehoon Kang, and Chung-Kil Hur

Though private transitions are allowed before and after an external function call (i.e.,w ′ ⊒prv w
andw ′′′ ⊒prv w

′′
), the overall transition should be public (i.e.,w ′′′ ⊒ w) assuming the external call

also makes a public transition (i.e.,w ′′ ⊒ w ′
).
8

Second, we extend memory injections to specify others’ dynamic local memories in the source

and target that should be unchanged by the current module. Specifically, an (enriched) memory

injection (ι,mprv
src,m

prv
tgt) consists of an original memory injection ι mapping the source public blocks

into target blocks; and additionally a private (i.e., dynamic local) memory of the sourcemprv
src and

that of the targetmprv
tgt wherem

prv
src andm

prv
tgt should be disjoint from the public memories specified

by ι. Then, private transitions from (ι,mprv
src,m

prv
tgt) to (ι′,m′prv

src,m
′prv
tgt) only require that ι′ should

extend ι, while public transitions additionally require that private memories should be unchanged

(i.e.,mprv
src =m

′prv
src andm

prv
tgt =m

′prv
tgt). Note that all the areas of the source and target memories that

are not onmprv
src,m

prv
tgt or the injection map ι are considered as private (i.e., dynamic local) memory

of the current module.

int f() { int f() {
1: int a0; int a[2];
2: reg a1 = 0; --> a[1] = 0;
3: g(&a0); g(&a[0]);
4: return a1; return a[1];

} }

To show how it works, we give an example mim-

icking register spilling in the presence of address-

taken stack variables. Consider the transformation

on the right, where in the source a memory block

for a0 and a function-local register for a1 are allo-

cated and the address of a0 escapes to g, while in
the target a single block for both a[0] and a[1] is
allocated and the address of the block escapes to g.
Here a0 can be seen as an address-taken stack variable and a1 a spilled register. The key difference

is that, in the source, a1 cannot be accessed by g since it is a function-local register while, in the

target, a[1] can be accessed via the address of a[0].
We now show how the target f simulates the source f by logically protecting a[1] from g.

Though we give an informal description here to help understanding, the formal definition of an

open simulation R can be easily derived from the description. At line 1, any worldw0 and memories

(msrc,mtgt) related at w0 are given. We take a step to line 2 by extending w0.ι (i.e., the public

injection ofw0) to map a0 to a[0], sayw1, which is a public transition. At line 2, we take a step to

line 3 without changing the worldw1. At line 3, we first make a private transition fromw1 tow2 by

extendingw1.m
prv
tgt to include the memory chunk a[1] = 0. Then we assume that g makes a public

transition from w2 to w3 returning any memories related at w3. Thanks to w2.m
prv
tgt = w3.m

prv
tgt,

we know that the chunk a[1] = 0 remains the same. Then we make a private transition from

w3 to w4 by dropping the chunk a[1] = 0 from w3.m
prv
tgt. Since w4.m

prv
tgt = w1.m

prv
tgt, we have a

public transition from w1 to w4. Finally, at line 4, we know that both the register a1 and the

memory-allocated variable a[1] contain 0 and thus the same value 0 is returned.

It is important to note that the (others’) private memories w .mprv
src and w .mprv

tgt of a memory

injectionw are preserved as long as a function accesses (i) the memory via public addresses, or (ii)
its own private memory. In the former case, since a public block of the source is fully injected into a

block of the target, whenever a pointer offset goes beyond the public area mapped by the injection

w .ι, the source program accesses an unallocated area thereby raising UB. In the example above, if

g in the target accesses *(&a[0]+1), then in the source it accesses *(&a0+1), which raises UB. In

the latter case, since the function’s own private memory is disjoint from all the memories specified

byw , accessing it does not affectw . In the example above, at line 2 in the target, the assignment

8
We only allow private transitions just before and after external calls for simplicity. See §8 for comparison with [Dreyer

et al. 2010; Hur et al. 2012].

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 23. Publication date: January 2020.

CompCertM: CompCert with C-Assembly Linking and Lightweight Modular Verification 23:13

a[1] = 0 preservesw1.m
prv
tgt (and also the target public memory ofw1) because we know that the

current private memory a[1] is disjoint from the area specified byw1 by construction.

Also note that any part of the public memories cannot be converted to a private one since the

injection map is only extended at each step; and any part of the others’ private memories (i.e.,mprv
src

andmprv
tgt) cannot be converted to the current module’s private one since all proper steps (i.e., local

steps or steps across an external call) only allow public transitions (i.e., preservingmprv
src andm

prv
tgt).

2.4.3 Memory Injection with Module-Local Invariants. For open modules, reasoning about statically

allocated local memory such as static variables of C requires a further generalization. The problem

is that when an open module M invokes an unknown function f , one cannot assume that the

static memory of M is unchanged during the call because f may call back a function from M ,

which may change the static memory. However, since the static memory is only accessible to the

known functions inM , one can find a certain invariant on the static memory by analyzing all the

functions ofM and expect that an external call preserves the invariant although the static memory

can be changed. Enabling such reasoning is simple: CompCertM just adds another component in a

memory injectionw that globally imposes a given invariant on selected static variables disjoint

fromw .mprv
src,w .m

prv
tgt andw .ι. We give examples using module-local invariants in §4.

2.5 Mixed Simulation
While the target language of CompCert is deterministic (more precisely, the source is receptive

and the target is determinate) thereby mostly using forward simulations, the repaired interaction

semantics of CompCertM is inherently nondeterministic to handle illegal interference from assembly

modules (see §3) thus preventing the use of forward simulation.

In order to recover the ability to use forward simulation in the occasional presence of nondeter-

minism, we adopt the idea of mixed (forward-backward) simulation from [Neis et al. 2015]. The key

observation is that the requirement for using forward simulations (i.e., determinism of the target)

is a per-state property, not a per-language property: as long as a particular target machine state

is locally deterministic (i.e., its next state is unique), one can do forward simulation at that state.

Based on this observation, mixed simulations selectively allow forward simulation when the target

is locally deterministic, in addition to the default backward simulation. Specifically, we say that a

relation R is a (closed) mixed simulation if for all (mssrc,mstgt) ∈ R,

(1) ∀e,ms ′tgt, mstgt
e
↪→ms ′tgt =⇒ ∃ms ′src, mssrc

τ
↪→

∗ e
↪→

τ
↪→

∗
ms ′src ∧ (ms ′src,ms ′tgt) ∈ R; or

(2) ∀e,ms ′src, mssrc
e
↪→ms ′src =⇒ ∃ms ′tgt, mstgt

τ
↪→◦

∗ e
↪→◦

τ
↪→◦

∗
ms ′tgt ∧ (ms ′src,ms ′tgt) ∈ R

wherems
e
↪→◦ ms ′ denotes thatms is locally deterministic andms

e
↪→ms ′.

Fig. 2 visualizes this formulation of mixed simulation, where solid and dotted arrows represent

universally and existentially quantified steps, respectively, and double circles represent locally

deterministic target states. In this figure, since the first three target machine states are deterministic,

we can do forward simulation as shown in the figure; then, since the following target state is

nondeterministic, we should do backward simulation as shown in the figure.

Note that the repaired interaction semantics is nondeterministic only at the initial step of a

module invocation, so that we can do forward simulation everywhere else using mixed simulations.

In order to support CompCert’s condition for forward simulation, we also add the following to

the above formulation of mixed simulation:

(3) or,mssrc is receptive and

∀e,ms ′src, mssrc
e
↪→ms ′src =⇒ ∃ms ′tgt, mstgt

τ
↪→•

∗ e
↪→•

τ
↪→•

∗
ms ′tgt ∧ (ms ′src,ms ′tgt) ∈ R

wherems
e
↪→• ms ′ denotes thatms is locally determinate andms

e
↪→ms ′.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 23. Publication date: January 2020.

23:14 Youngju Song, Minki Cho, Dongjoo Kim, Yonghyun Kim, Jeehoon Kang, and Chung-Kil Hur

forward simulation

backward simulation

: locally deterministic target states

Fig. 2. A visualized example of mixed simulations

Fig. 3. An execution of interaction semantics

Also we apply this mechanism of mixed simulation to our open simulations.

3 REPAIRED INTERACTION SEMANTICS
We briefly review interaction semantics (§3.1), discuss the problems (§3.2) and present our solutions

(§3.3).

3.1 Background
We give a brief overview of interaction semantics of CompComp, which interactively executes

modules equipped with their own independent module semantics. Each module semantics M
provides a set of module states (also called cores) State(M) with the following operations:

• init core: given a function f with arguments ®v , gives the initial module state s ∈ State(M)

executing the invoked function f with ®v .
• at external: given s ∈ State(M), checks if an external function f is called with arguments ®v .
• after external: given s ∈ State(M) where an external function is called, and a return value r ,
gives the module state s ′ after the function call returns r .

• halted: given s ∈ State(M), checks if the module execution is halted with a return value r .
• corestep: given s ∈ State(M) and memorym, takes a local step producing an event e and the

next state s ′ with updated memorym′
.

We explain how interaction semantics works using an example in Fig. 3, where the whole

machine state consists of a memory, saym, and a stack of module states (called core stack), say
[s2; s1]. Then, interaction semantics checks whether the stack-top module s2 is invoking an external

function using at external, and if so, pushes the invoked module’s initial state, say s3, obtained
by init core. Note here that the same module M1 can have multiple module states s1 and s3 in
the stack. Then the new top module s3 takes a local step to s ′

3
with updated memorym′

according

to its corestep, and if s ′
3
is a halted state with a return value r (checked with halted), the top

module s ′
3
is popped and returned to the next module s2, which is then updated to s ′

2
given by

after external with the return value r .

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 23. Publication date: January 2020.

CompCertM: CompCert with C-Assembly Linking and Lightweight Modular Verification 23:15

(a)

int main() { main:
int* x = malloc(8); ...
x[0] = 0; *(%rbx) = 0;
x[1] = 1; *(%rbx + 4) = 1;
f(); --> f();
out(x[0]); out(*(%rbx));
... ...

}

⊕ (b)

f:
if (g(%rbx))

%rbx = %rbx + 4;
else

*(%rbx) = 1;

Fig. 4. A counterexample showing the problem with the assumptions on the registers

Finally, note that the language semantics of C, assembly and intermediate languages can be

lifted to give a module semantics by defining corestep to be the same as the execution step of the

language’s semantics, and the other module operations to reflect the calling conventions. Note

also that all language-specific resources (i.e., other than the memory) such as the register-file of

assembly reside inside the module state, and thus are duplicated at each invocation of a module.

3.2 Problems
The problems with the interaction semantics of CompComp are that it does not satisfy two adequacy

properties. First, the adequacy w.r.t. C says that for any C modulesM1, . . . ,Mn , the behaviors of the

linked program according to interaction semantics Beh(M1 ⊕ . . . ⊕ Mn) should be included in those

according to the physical semantics Beh(M1 ◦ . . . ◦Mn). The reason for failure was quite simple

and we could easily fix it: unlike CompComp, we allow passing the undef value to an external

module since the C semantics does so, while we turn ill-typed values into undef when they are

passed to an external module.

Second, the failure of the adequacy w.r.t. assembly is more serious. Adequacy says that for any as-

sembly modulesM1, . . . ,Mn , the behaviors of the linked program according to interaction semantics

Beh(M1 ⊕ . . . ⊕ Mn) should include those according to the physical semantics Beh(M1 ◦ . . . ◦Mn).

Note that the direction is opposite since assembly is the target language. As discussed before, the

reason for failure is that the interaction semantics of CompComp does not have a mechanism to

detect illegal interference and make it undefined behavior (UB).

3.3 Our Solution
We identify the sources of inadequacy w.r.t. assembly as violations of three assumptions made by

standard compilers: two on the registers and one on the stack. We discuss why they cause problems

with counterexamples and show how to semantically handle them without changing the underlying

language semantics.

3.3.1 Assumptions on the Registers. The two problematic assumptions on the registers are that

an invoked assembly function (i) should preserve the initial values of the callee-save registers,

and (ii) should not access the memory via the leftover pointer values remaining in those registers

that are not involved in passing meaningful information to the callee, which we henceforth call

non-info-passing registers.

Counterexamples. The example in Fig. 4 shows how violations of the two assumptions can invali-

date correct compiler translations. The code in the left box (a) shows a standard translation of C

code into assembly (written in pseudocode) performed by mainstream compilers like GCC and

LLVM, where the accesses to the array x are translated into accesses via the register %rbx assuming

that %rbx is set to contain the address of x. An important point here is that the compiler assumes

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 23. Publication date: January 2020.

23:16 Youngju Song, Minki Cho, Dongjoo Kim, Yonghyun Kim, Jeehoon Kang, and Chung-Kil Hur

that (i) the value of %rbx is unchanged across the function call f() since it is a callee-save register,

and also (ii) the values in the array pointed to by %rbx are unchanged across f() since the array’s

addresses do not escape except via non-info-passing registers like %rbx. Therefore, the compiler

expects that out(*(%rbx)) in the target code correctly outputs 0.
The right box (b) presents an example of handwritten assembly (written in pseudocode) for

function f that violates the above two assumptions of the compiler. The code either increments

%rbx by 4 or writes 1 to *(%rbx) depending on the result of call to g. Now if we link the assembly

code in (a) and that in (b) together, one can easily see that out(*(%rbx)) incorrectly outputs 1
instead of 0 in either case: in the former case, %rbx points to the second element of the array x,
which contains 1; in the latter case, the value of *(%rbx) is directly updated to 1. Therefore, it
makes sense to define those illegal behaviors of (b) as undefined behavior (UB).

Our Model. We present our model making the illegal behaviors UBs in stages, explaining at each

stage why naive models do not work.

First, in order to enforce the preservation of callee-save register values, we store the initial values

of the callee-save registers at the init-core step of assembly modules; and check, at the halted
step, whether the final values of those registers are equal to the stored initial values and if not,

raise UB. Here, the question is, when a new core with a fresh register file is pushed into the core

stack, what values should be set as initial values of the non-info-passing registers including all of

the callee-save registers. Since the registers may contain arbitrary values in the physical assembly

semantics, a natural choice would be to initially set them to contain the undef value, which is an

abstract value representing all possible values. Indeed, this is the choice of CompComp. However,

there is a serious problem. Since, for instance, undef + 4 results in undef, checking whether

the final values of callee-save registers are equal to the initial values, i.e., undef, is not sufficient.

Specifically, the assembly code in (b) above does not raise UB in this new semantics in case g(%rbx)
returns 1 because the initial and final values of %rbx are both undef and thus equal even though

the callee-save register %rbx is incremented by 4 in the physical semantics.

Second, another natural solution would be to initially set the non-info-passing registers to

nondeterministically contain arbitrary values including undef. Though this model is more flexible,

it still has a problem. For instance, in the above example, to simulate the physical behaviors of

the assembly function f in interaction semantics, one can set the initial value of %rbx to be either

(i) undef (i.e., a more abstract value than the physical one), or (ii) a pointer to the array x (i.e., a
value equivalent to the physical one): other values cannot be used since they are not refined by the

value of %rbx in the target, which is required since the value is passed to an unknown function g.
In the former case, if g(%rbx) returns 1, we have the same problem with callee-save checking

as shown above. In the latter case, if g(%rbx) returns 0, the function f successfully updates the

array x thereby invaliding the translation in (a) as illustrated above.

We solve this problem by further revising the second model: nondeterministically allocating an

arbitrary number of junk blocks (i.e., blocks of size zero) and then initializing the non-info-passing

registers with arbitrary non-pointer values or junk pointers (i.e., pointers to the junk blocks). Then

we can simulate the physical behaviors by initializing each register r (i) with the same non-pointer

value if the physical value of r is a non-pointer value; and (ii) otherwise with a fresh junk pointer.

The high-level idea is that, like undef, a junk pointer is more abstract (i.e., causing more UBs) than

any pointer but, unlike undef, sufficiently distinguishable. For instance, in the previous example,

if g(%rbx) returns 1, the initial and final values of %rbx (i.e., p and p + 4 for a junk pointer p) are
distinguished thereby raising UB by the callee-save checking; if g(%rbx) returns 0, the memory

access *(%rbx) = 1 raises UB because %rbx points to a junk block of size zero.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 23. Publication date: January 2020.

CompCertM: CompCert with C-Assembly Linking and Lightweight Modular Verification 23:17

(a)

main:
...
leak = %rsp;
f(..., 0);

g:
*leak = 1;

⊕ (b)

void f(..., int64_t x) f:
{ ...
out(x); out(*(%rax));
g(); --> g();
out(x); out(*(%rax));

} ...

(c)

Fig. 5. A counterexample showing the problem with the assumption on the stack

Finally, note that introducing nondeterminism as above is not a showstopper thanks to the

mixed simulation, as discussed in §2.5: we can do forward simulation everywhere except for the

init core step of assembly modules, where we should do backward simulation.

3.3.2 Assumptions on the Stack. The problematic assumption on the stack is that the outgoing
arguments area of a caller’s stack (i.e., where overflowing function arguments are stored) should be

fully owned by the callee. In other words, the callee can assume that the arguments area is never

modified by others unless its addresses are revealed to the public by the callee itself.

Counterexamples. The example in Fig. 5 shows how violations of the assumption can invalidate

correct compiler translations. The box (a) shows handwritten assembly code implementing two

functions main and g; the box (b) shows a standard translation of C code into assembly essentially

performed by gcc -O0; and the left-hand side (LHS) of the box (c) depicts the shape of the stack

during execution in the physical semantics. The function main stores the address of the outgoing
arguments area (i.e., %rsp as depicted in LHS of (c)) in the global variable leak and invokes the

function f, where the last argument 0 is stored in the arguments area of the stack. Then the function

f makes three function calls, out(x), g() and out(x), where the argument x is directly read from

the arguments area pointed to by %rax in the assembly, as depicted in LHS of (c), and out(x)
outputs the read value. Finally, the function g updates the arguments area pointed to by leak
with 1, as depicted in LHS of (c), between the two function calls out(x).

An important point here is that the compiler assumes that the arguments area (i.e., %rax) is
unchanged across the function call g() since it is fully owned by f. Therefore, the compiler expects

that both calls out(*(%rax)) in the target code correctly output 0. However, since the function g
updates the arguments area with 1 via leak, the two calls incorrectly output 0 and 1. We confirmed

this incorrectness by compiling f with gcc -O2, which eliminates the second load *(%rax) by

propagating the result of the first load across g() thereby outputting 0 twice.

Our Model. In order to solve the problem, we have to distinguish accesses to the arguments area

via the caller from those via the callee and define the former as UB. Though making such distinction

is difficult in the physical semantics, fortunately it is already made in interaction semantics due to

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 23. Publication date: January 2020.

23:18 Youngju Song, Minki Cho, Dongjoo Kim, Yonghyun Kim, Jeehoon Kang, and Chung-Kil Hur

static int x = 0; static int x = 0; | static int y = 0;
int f() { int f() { int f() { | void g() {

g(); [CP] g(); [UG] g(); | if (y == 0) {
x = 1; -----> x = 1; -----> | y = 1; f();
return x; return 1; return 1; | }

} } } | }

Fig. 6. An example of Unreadglob optimization

the language-independent design. For example, consider the interaction semantics of the above

example, depicted in the right-hand-side (RHS) of Fig. 5 (c). The difference is that when the assembly

function f is invoked, the initialization process (i.e., init core) of the module semantics newly

constructs the arguments area of the stack from the given logical arguments in order to make an

environment needed to execute the assembly function f. This is essentially needed because the

caller may not be an assembly module so that it may not have its own stack at all. Then the callee

sees the new arguments area created by init core while the caller (in assembly) sees the original

arguments area.

Although the original interaction semantics does not prevent access to the arguments area via

the caller, we can easily fix it. We simply (i) turn off the access permission of the original arguments

area in the at external step of the caller module, and (ii) turn it back on in the after external
step. Note that the notion of permission already exists in the CompCert semantics, so that we

do not need to strengthen it. In the above example again, the update by g will raise UB since the

original argument area pointed to by leak has no access permission.

4 MODULE-LOCAL INVARIANTS AND SPECIFICATION MODULES
In §2 we presented how to achieve compositional compiler correctness in our framework. In this

section we present what our framework additionally offers about compiler and program verification:

verifying more advanced compiler optimizations with module-local invariants (§4.1) and verifying

program modules against their mathematical specification modules (§4.2 and §4.3). To the best of

our knowledge, our framework is the first, in the context of CompCert, that is capable of verifying

the mutually recursive example presented in §4.2.

4.1 Advanced Optimizations with Module-Local Invariants
We developed a new optimization Unreadglob eliminating all unread static variables and in-

structions writing to them. Fig. 6 shows an example optimization, where (i) the first program is

optimized to the second one by constant propagation (CP) replacing return x by return 1; and
(ii) the second one is optimized to the third one by Unreadglob (UG) eliminating the unread static

variable x and the command x = 1. It is important to note that across the function call g(), the
static variable x may be updated from 0 to 1 because the function g can indirectly update it by

calling f as shown in the fourth program in Fig. 6.

In verification of the optimization UG above, we have to use memory injectionsw with module-

local invariants introduced in §2.4.3. The reason is that the static variable x in the source cannot

reside (i) in the injection mapw .ι since x does not exist in the target; or (ii) in the source private

w .mprv
src since x can be modified during the external call g(). To verify UG above, we can impose the

trivial invariant Top on the eliminated static variable x, meaning that x can be modified arbitrarily,

which is sufficient because x is unread.

Note that CompCertX may be able to verify Unreadglob using memory injections because it

assumes no mutual dependency among modules, so that no static variables can be accessed via

external function calls, unlike the above example with mutual recursion.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 23. Publication date: January 2020.

CompCertM: CompCert with C-Assembly Linking and Lightweight Modular Verification 23:19

a.c

static int memoized1[1000] = {0};
int f(int i) {
int sum;
if (i == 0) return 0;
sum = memoized1[i];
if (sum == 0) {
sum = g(i-1) + i;
memoized1[i] = sum;

}
return sum;

}

⊕ b.asm

// hand-optimized in assembly
static int memoized2[2] = {0,0};
int g(int i) {
int sum;
if (i == 0) return 0;
if (i == memoized2[0]) {

sum = memoized2[1];
} else {

sum = f(i-1) + i;
memoized2[0] = i;
memoized2[1] = sum;

}
return sum;

}

a.spec
with X = f,Y = g

b.spec
with X = g,Y = f

States := { Init i | 0 ≤ i } ⊎ { Ecall i | 0 ≤ i } ⊎ { Ret r | 0 ≤ r }
init core := { (X, [i], Init i) | 0 ≤ i < 1000 }

at external := { (Ecall i,Y, [i − 1]) | 0 < i < 1000 }

after external := { (Ecall i, sum(i − 1), Ret sum(i)) | 0 < i < 1000 }

halted := { (Ret r , r) | 0 ≤ r }
step :={ ((Init i,m), τ , (Ret sum(i),m)) | 0 ≤ i < 1000 } ∪

{ ((Init i,m), τ , (Ecall i,m)) | 0 < i < 1000 }

ab.spec

States := { Init i | 0 ≤ i } ⊎ { Ret r | 0 ≤ r }
init core := { (f, [i], Init i) } ∪ { (g, [i], Init i) }
at external := { }

after external := { }

halted := { (Ret r , r) | 0 ≤ r }
step :={ ((Init i,m), τ , (Ret sum(i),m)) | 0 ≤ i < 1000 }

Fig. 7. The mutual-sum example

4.2 Verification against Specification Modules
Fig. 7 shows a C module, a.c; a handwritten assembly module, b.asm (presented in C syntax

for readability); their open specification modules, a.spec and b.spec; and the combined closed

specificationmodule ab.spec. Both functions f in a.c and g in b.asmmutually recursively compute

the summation from 0 up to the given argument integer i (denoted sum(i)), performing different

memoization optimizations. The function f memoizes the result of f(i) in the static variable

memoized1[i], which is initialized with zero representing invalid value. The function call f(i)
first reads the memoized value, and returns it if it is valid; otherwise, it calculates, memoizes, and

returns g(i-1), expected to be sum(i− 1), plus i. On the other hand, the function gmemoizes only

the result of the latest call g(i) with the index i, where memoized2[0] = i and memoized2[1] =
g(i). The code of g is self-explanatory under the assumption that the call f(i-1) returns sum(i−1).
The open specification modules a.spec and b.spec are the same except that the names of the

internal and external functions are swapped. This is natural because the two functions f and g
compute the same summation. The open specification a.spec is an abstract, nondeterministic,

version of the function f in a.c including all the observable behaviors of f. It has three kinds
of states, Init i , Ecall i and Ret r , representing the initial state with argument i , the call state
executing g(i − 1), and the halt state returning r , respectively. Then init core starts with Init i

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 23. Publication date: January 2020.

23:20 Youngju Song, Minki Cho, Dongjoo Kim, Yonghyun Kim, Jeehoon Kang, and Chung-Kil Hur

when f is invoked with argument i if 0 ≤ i < 1000, otherwise UB; at external recognizes Ecall i
as the state invoking g with i − 1; after external transitions from Ecall i to Ret sum(i) only
when the return value from the external call g(i − 1) is sum(i − 1), otherwise UB, which means

that this module gives a conditional specification under the assumption that g(i) returns sum(i);
halted recognizes Ret r as the halted state returning r ; and finally step transitions from Init i
to either Ret sum(i) or Ecall i nondeterministically (without updating the memory), where the

former abstracts reading from memoization and the latter recursively computing the sum. The

same applies to b.spec. Finally, the combined specification ab.spec does not make any external

function call and simply returns the summation.

Then, we perform our verification as follows. First, we prove a.spec ≽R a.c using memory

injections with the following invariant:

∀0 ≤ i < 1000, memoized1[i] = 0 ∨ memoized1[i] = sum(i) .
Second, we prove b.spec ≽R b.asm using memory injections with the following invariant:

∃0 ≤ i < 1000, memoized2[0] = i ∧ memoized2[1] = sum(i) .
Finally, we prove ab.spec ≽R a.spec ⊕ b.spec using the memory identity. Note that R is the set

containing open simulations with the three memory relations used in the above verification (i.e.,
memory injections with the two invariants above and the memory identity).

4.3 Verification of utod
__compcert_i64_utod is one of the CompCert’s internal handwritten assembly functions, which

converts unsigned long to double by utilizing architecture-specific instructions like cvtsi2sdq.
CompCert currently axiomatizes the behaviors of such runtime libraries as the following axiom.

Axiom i64 helpers correct : ... ∧

(∀ x z, Val.floatoflongu x = Some z → external implements " compcert i64 utod" sig l f [x] z)

We demonstrate that such axioms can be essentially removed in CompCertM by proving the axiom

for __compcert_i64_utod. We first turn the axiom for __compcert_i64_utod into a specification
module and then establish an open simulation with memory injections between the assembly

module containing __compcert_i64_utod and the specification module.

5 COMPCERTM
Based on the theories we presented so far, we develop CompCertM, an extension of CompCert

with the repaired interaction semantics and open simulations to support multi-language linking.

We state CompCertM’s compositional correctness results (§5.1) and evaluate its verification efforts

(§5.2). CompCertM currently supports the x86 backend only. We do not currently see any technical

problem with supporting other architectures.

5.1 Compositional Correctness
CompCertM uses open simulations with three parameters: memory relations, symbol relations

and memory predicates (see §7.2 for details). It supports (i) the memory relations discussed in

§2.4: identity, extension and (enriched) injections with no or any given module-local invariant; (ii)
two symbol relations: one for keeping identical symbols in the source and target and the other for

allowing elimination of global variables in the target (only allowed for memory injections), needed

for Unusedglob and Unreadglob; (iii) two memory predicates: one for no analysis and the other

for the value analysis of CompCert.

Let R be the set of open simulations with all possible parameters. To apply RUSC, we prove

that the CompCertM compiler C transforms the source module with a series of passes that are

independently verified using open simulations in R.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 23. Publication date: January 2020.

CompCertM: CompCert with C-Assembly Linking and Lightweight Modular Verification 23:21

Lemma 5.1 (Pass Correctness). For any Clight module S and Asm module T , if C(S) = T , then
there exist intermediate modulesM0,M1, · · · ,Mn such that:
(1) M0 = S andMn = T ; and
(2) ∀i ∈ [0,n), ∃R ∈ R, (Mi ,Mi+1) ∈ R .

We also prove all Clight and Asm modules are self-related.

Lemma 5.2 (Self-Relatedness). For any Clight or Asm moduleM , we haveM ∈ Self(R).

Note that since we define illegal interference fromAsm (i.e., causing different behaviors in the source
and target) as undefined behaviors (UBs) as shown in §3, every Asm module can be self-related.

From Lemmas 5.1 and 5.2, the RUSC relation for the compiler follows.

Theorem 5.3 (Modular Correctness). For any Clight module S and Asm moduleT , if C(S) = T :

S ≽R T with S,T ∈ Self(R) .

This theorem provides a truly compositional correctness thanks to the compositionality of RUSC

(Theorem 2.1): the relation can be freely (i.e., vertically or horizontally) composed with any verifica-

tion using RUSC including that against mathematical specifications. As an example, the following

compositional correctness follows.

Corollary 5.4 (Compositional Correctness 1). Let (S1,T1), . . . , (Sn,Tn) be pairs of source
and target modules. If each pair is either compiled (i.e., C(Si) = Ti with Si Clight and Ti Asm), or a
self-related context (i.e., Si = Ti ∈ Self(R)), then

Beh(S1 ⊕ · · · ⊕ Sn) ⊇ Beh(T1 ⊕ · · · ⊕ Tn) .

This correctness theorem is compositional in the sense that behavior is refined in the presence of

any self-related contexts such as arbitrary Clight and Asm modules (Lemma 5.2).

Note that Clight, not CompCert C, is the source language in the above theorems. One of the

reasons is that Clight is the source language for most verification frameworks based on CompCert,

such as VST [Appel 2011], CompComp, and CompCertX.More importantly, we found that CompCert

C is incompatible with memory injections. Specifically, CompCert C imposes a strict alignment

requirement on memory blocks of size zero, which, however, is not preserved by memory injections.

In other words, CompCert C modules are not always self-related by memory injections.
9

Supporting CompCert C. However, we can still prove a compositional correctness (not modular

correctness as in Theorem 5.3) for CompCert C following SepCompCert’s Level A technique [Kang

et al. 2016], which exploits the fact that all CompCert C modules are transformed to Clight modules

by the same two passes. Specifically, the first pass is verified using an open simulation with the

memory identity and the second pass with memory injections, as done in the original Comp-

Cert. Then the following lemma follows from horizontal compositionality and adequacy of open

simulations (with memory identity and injection) and transitivity of behavioral refinement.

Lemma 5.5 (ClightGen Correctness). Let (S1,T1), . . . , (Sn,Tn) be pairs of source and target
modules. If each pair is either translated (i.e., ClightGen(Si) = Ti with Si CompCert C and Ti Clight),
or a self-related context (i.e., Si = Ti ∈ Self(R)), then

Beh(S1 ⊕ · · · ⊕ Sn) ⊇ Beh(T1 ⊕ · · · ⊕ Tn) .

By composing Corollary 5.4, Lemma 5.5 and Lemma 5.2, we have the following theorem.

9
This problem would be solved if one strengthens memory injections with more strict alignment requirements.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 23. Publication date: January 2020.

23:22 Youngju Song, Minki Cho, Dongjoo Kim, Yonghyun Kim, Jeehoon Kang, and Chung-Kil Hur

Table 1. SLOC of CompCertM and related works — compared to its baseline CompCert, respectively

Portion

CompCert

3.5 CompCertR 3.5 CompCertM pack

CompCert

2.1 CompComp

CompCert

3.0 CompCertX

Pass Proofs 34,376 35,893 (+4.41%) 4,923(+14.32%) 21,215 52,140 (+145.77%) 26,466 30,572 (+15.51%)

The Rest 85,617 87,965 (+2.74%) 25,558(+29.85%) 59,365 107,910 (+81.77%) 82,312 121,532 (+47.65%)

Total 119,993 123,858 (+3.22%) 30,481(+25.40%) 80,580 160,050 (+98.62%) 108,778 152,104 (+39.83%)

Table 2. Breakdown of CompCertM pack

Portion SLOC

Proofs about Intermodule Steps 4,923

Interaction Semantics/Properties 1,940

Language Semantics/Properties 1,701

Self Simulations 5,593

CompCert Metatheory Extension 4,688

CompCertM Metatheory 7,656

Mixed Simulation 1,090

Adequacy w.r.t. Asm 2,890

Table 3. SLOC of additional developments

Portion

Unreadglob
3.5

Unreadglob
pack mutual-sum utod

Adequacy

w.r.t. C

Pass Proofs 1,842 338 3,088 361 -

The Rest 260 1,933 2,707 424 4,044

Total 2,102 2,271 5,795 785 4,044

Theorem 5.6 (Compositional Correctness 2). Let (S1,T1), . . . , (Sn,Tn) be pairs of source and
target modules. If each pair is either compiled (i.e., C(Si) = Ti with Si CompCert C or Clight and Ti
Asm), or a self-related context (i.e., Si = Ti ∈ Self(R)), then

Beh(S1 ⊕ · · · ⊕ Sn) ⊇ Beh(T1 ⊕ · · · ⊕ Tn) .

Adequacy w.r.t. Physical Semantics. We show that the repaired interaction semantics is adequate

w.r.t. the physical semantics of CompCert, where the former uses the language-independent linking

⊕ and the latter the syntactic linking ◦ concatenating modules of the same language.

We prove that the physical semantics refines the repaired interaction semantics for Asm modules

using a closed simulation of CompCert with memory injections.

Theorem 5.7 (Adeqacy w.r.t. Assembly). LetM1, · · · ,Mn be Asm modules. We have:

Beh(M1 ⊕ . . . ⊕ Mn) ⊇ Beh(M1 ◦ . . . ◦Mn) .

This theorem allows us to carry verification results on the interaction semantics such as Theorem 5.6

down to CompCert’s Asm semantics with syntactic linking.

Conversely, we prove that the repaired interaction semantics refines the physical semantics for

CompCert C modules using a closed simulation of CompCert with memory identity.

Theorem 5.8 (Adeqacy w.r.t C). LetM1, · · · ,Mn be CompCert C modules. We have:

Beh(M1 ◦ . . . ◦Mn) ⊇ Beh(M1 ⊕ . . . ⊕ Mn) .

By composing Theorems 5.6 to 5.8, we obtain the same separate compilation correctness result

of SepCompCert [Kang et al. 2016]:

Corollary 5.9 (Separate Compilation Correctness). Let S1, . . . , Sn be CompCert C modules
and T1, . . . ,Tn be Asm modules. If C(Si) = Ti for each i , we have:

Beh(S1 ◦ · · · ◦ Sn) ⊇ Beh(T1 ◦ · · · ◦Tn) .

5.2 Evaluation of Verification Efforts
To demonstrate that CompCertM is lightweight, we compare significant lines of code (SLOC)

of CompCertM, CompComp, and CompCertX with those of their baseline CompCert versions

3.5, 2.1, and 3.0, respectively. Overall, CompCertM adds less code to CompCert than CompComp

and CompCertX do, and in particular significantly less code than CompComp for the proofs of

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 23. Publication date: January 2020.

CompCertM: CompCert with C-Assembly Linking and Lightweight Modular Verification 23:23

compiler passes.
10
Also note that CompCertR uses the enriched memory injections of §2.4.2 instead

of the original memory injections in order to give reusable main lemmas for both closed and

open simulations. Since CompCertR’s pass proofs are only 4.41% larger than CompCert’s, the

overhead due to handling the private memory components of enriched memory injections is,

roughly speaking, at most 4.41%.

Table 1 summarizes the comparison. For each compiler (i.e., each column), the rows report SLOC

for the proofs of all compiler passes (Pass Proofs), the rest of the development (The Rest), and

their summation (Total). Note that CompCertM is split into CompCertR and CompCertM pack,

for which the former is our refactoring of CompCert and the latter is an additional package to

support multi-language linking. We counted SLOC reported by coqwc.11 When counting SLOC, we

excluded the following code for fair comparison: (i) code for other architectures than x86 because

all three projects support only x86; (ii) code for the parser and type checker introduced in later

versions of CompCert; and (iii) code for ClightGen, which is not supported by both CompCertX and

CompComp. We also excluded CompComp’s legacy proofs for the original compiler correctness.

We used the latest development branches for the three projects.
12

Table 2 analyzes the 30,481 SLOC for CompCertM pack. The pass proofs consist of 4,923 SLOC

for reasoning about intermodule steps, which is sometimes nontrivial since they perform the

logical instrumentation presented in §3. Note that CompCertR provides proofs for intramodule

steps as main lemmas, which are reused in CompCertM. The rest consists of 1,940 SLOC for the

repaired interaction semantics and its properties; 1,701 SLOC for properties of each language such

as determinism and receptiveness; 5,576 SLOC for self-relatedness (Lemma 5.2); 4,687 SLOC for

extending the metatheory of CompCert; 7,569 SLOC for open simulations and other metatheory

for CompCertM; 1,090 SLOC for mixed simulation; and 2,890 SLOC for adequacy w.r.t. assembly

(Theorem 5.7).

Table 3 shows SLOC for the new optimization pass and the verification examples given in the

paper. Note that Unreadglob 3.5 adds the optimization to CompCertR proving closed simulation and

Unreadglob pack to CompCertM proving open simulation, which reuses the proof of Unreadglob
3.5 for intramodule steps. As the verification of mutual-sum and utod show, directly proving open

simulation between programs and specifications is costly. We believe that program logics like

VST [Appel 2011] can be used to prove such simulation, which could significantly reduce the

verification cost.

6 FORMAL SEMANTICS
In this section we give a few interesting details of formal semantics: the loading of interaction

semantics (§6.1) and a few tweaks we made for module semantics (§6.2).

6.1 Loading in Interaction Semantics
Loading the initial states of multiple modules requires an interesting coordination of the modules,

especially in the presence of module-local static variables. In essence, we should disallow accesses

to a static variable from other modules than the defining one. For this, the loading of modules

M1, · · · ,Mn proceeds as follows, which is illustrated for two modules in Fig. 8.

10
Note that CompComp allows horizontal compositionality between any intermediate languages (ILs) while CompCertM

only between Clight and Asm since self-relatedness is proven only for the two. Though practically unnecessary, supporting

linking between arbitrary ILs in CompCertM would increase SLOC to prove self-relatedness for the other ILs.

11
Concretely, we counted “spec” and “proof” lines reported by coqwc. Because we use a different criteria for line numbers,

they are different from those reported in prior work [Gu et al. 2015; Stewart et al. 2015; Wang et al. 2019].

12
Development as of November 8, 2019, available at: https://github.com/snu-sf/compcertr, https://github.com/snu-sf/

compcertm, https://github.com/PrincetonUniversity/compcomp, https://github.com/DeepSpec/dsss17/tree/master/CAL

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 23. Publication date: January 2020.

https://github.com/snu-sf/compcertr
https://github.com/snu-sf/compcertm
https://github.com/snu-sf/compcertm
https://github.com/PrincetonUniversity/compcomp
https://github.com/DeepSpec/dsss17/tree/master/CAL

23:24 Youngju Song, Minki Cho, Dongjoo Kim, Yonghyun Kim, Jeehoon Kang, and Chung-Kil Hur

(loading process)

Fig. 8. Loading in Interaction Semantics

First, each module has symbol code, which consists of sym-

bols (i.e., global variables and functions) and their signatures
(e.g., x: int, f: void(int)). For each i , letMi .scode be the
symbol code ofMi . Crucially, symbol codes have the same

type even if their modules are written in different languages.

Second, since symbol codes have the same type, we can

calculate the physical linking sc = M1.scode◦· · ·◦Mn .scode
of the symbol codes of modules. Now sc is the symbol code

for entire program consisting of all the symbols and signa-

tures. The physical linking is defined in [Kang et al. 2016].

Third, we load sc to get the initial memory mem (by

load mem) and the program’s global symbol environment se
(by load se), which is the run-time information of symbols

(e.g., x points to 0x700 and f points to 0x800). This loading process follows the original CompCert’s.

Fourth, we initialize module semantics for each moduleMi with the program’s global symbol

environment se . In particular, we calculateMi ’s local environment, which contains information of

only those symbols defined in the module. Crucially, this prevents the other modules from accessing

the static variables ofMi . Note that CompComp does not have local environments because it does

not support static variables.

Finally, the initial memory and module semantics form the initial state for interaction semantics.

6.2 Module Semantics
We briefly discuss the notions of module and module semantics presented in Fig. 9. To support load-

ing described in §6.1, a moduleM consists ofM.scode, which is its symbol code, andM.get sem,
which returns a module semantics given a program’s symbol environment. The local environment

senv of the module semantics should coincide with the global environment restricted onM.scode.
The module semantics of CompCertM is slightly more general than that presented in §3.1.

• A module semantics has a symbol environment senv that determines whether a symbol belongs

to the module or not.

• init core is defined as a predicate rather than a function in order to allow such nondeterminism

introduced in §3.3.

• Module operations other than corestep (denoted here ↪→) can also change the memory, which

is needed to turn on and off the access permission of the arguments area as discussed in §3.3.

• Module semantics supports not only C-style but also assembly-style calling convention in the

sense of CompCertX, where the former just passes argument and return values between the caller

and callee while the latter the whole register file. Like CompCertX, only assembly functions are

allowed to make assembly-style calls.

7 FORMALIZATION OF VERIFICATION TECHNIQUES
Now we present the formalization of our verification techniques. We parameterize the notion of

open simulation presented in §2 with three parameters: memory relations, symbol relations, and

memory predicates. We present the three parameters (§7.1), the parameterized open simulations

(§7.2), and their horizontal compositionality and adequacy theorems (§7.3).

7.1 Parameters for Open Simulations
Fig. 10 presents the sets of three parameters for open simulations: the set of memory relations MR,

the set of symbol relations SR, and the set of memory predicates MP.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 23. Publication date: January 2020.

CompCertM: CompCert with C-Assembly Linking and Lightweight Modular Verification 23:25

(module)

M ∈ Module = {(scode, get sem) ∈ (Scode × (Senv → ModSem)) | ∀se , get sem(se).senv = se |scode }

(module semantics)

sem ∈ ModSem =

{ state ∈ Set, senv ∈ Senv, ↪→ ∈ P((Mem × state) × Event × (Mem × state)),
init core ∈ CallData → P(Mem × state), at external ∈ (Mem × state) → Option CallData,

after external ∈ (state × RetData) → Option (Mem × state), halted ∈ (Mem × state) → Option RetData |

{ms | ∃e ,ms′, ms
e
↪→ms′ }, {ms | ∃c , at external(ms) = Some c }, {ms | ∃r , halted(ms) = Some r } disjoint }

CallData

def

= {(m, f, vs) ∈ (Mem × Val ×
−−→
Val)} ⊎ {(m, f, rs) ∈ (Mem × Val × (Reg → Val))}

RetData

def

= {(m, v) ∈ (Mem × Val)} ⊎ {(m, rs) ∈ (Mem × (Reg → Val))}

Fig. 9. Module and Module Semantics

(memory relation)

MR ∈ MemRel =

{ (t, ⊑, ⊑prv, mrel, vrel) ∈ (Set × P(t × t) × P(t × t) × (t → P(Mem ×Mem)) × (t → P(Val × Val))) |

(⊑ is preorder) ∧ (⊑ ⊆ ⊑prv) ∧ (∀w ,w ′, w ⊑ w ′ =⇒ vrel(w) ⊆ vrel(w ′)) ∧

(∀w , i , (Vint i , vtgt) ∈ vrel(w) =⇒ vtgt = Vint i) }

csrc ≿w ctgt
def

= (csrc .m, ctgt .m) ∈ mrel(w) ∧ (csrc .f, ctgt .f) ∈ vrel(w) ∧ (csrc .vs, ctgt .vs) ∈
−−−−−−−→
vrel(w) ∧

(csrc .rs, ctgt .rs) ∈
−−−−−−−→
vrel(w)

rsrc ≿w rtgt
def

= (rsrc .m, rtgt .m) ∈ mrel(w) ∧ (rsrc .v, rtgt .v) ∈ vrel(w) ∧ (rsrc .rs, rtgt .rs) ∈
−−−−−−−→
vrel(w)

(symbol relation)

SR ∈ SymbRel =

{(t, ⊑, screl, serel) ∈ (Set × P(t × t) × (t → P(Scode × Scode)) × (t → MR.t → P(Senv × Senv))) |

(1) ⊑ is preorder

(2) ∀scsrc, sc′src, sc
′′
src, sctgt, sc

′
tgt, sc

′′
tgt, sc

′′
src = scsrc ◦ sc

′
src ∧ sc′′tgt = sctgt ◦ sc

′
tgt =⇒

∀d , d ′, (scsrc, sctgt) ∈ screl(d) ∧ (sc′src sc
′
tgt) ∈ screl(d ′) =⇒

∃d ′′, (sc′′src, sc
′′
tgt) ∈ screl(d ′′) ∧ d ⊑ d ′′ ∧ d ′ ⊑ d ′′

(3) ∀scsrc, sctgt, d , (scsrc, sctgt) ∈ screl(d) =⇒
∃w , (load mem(scsrc), load mem(sctgt)) ∈ mrel(w) ∧ (load se(scsrc), load se(sctgt)) ∈ serel(d ,w)

(4) ∀d ,w ,w ′, w ⊑prv w ′ =⇒ serel(d ,w) ⊆ serel(d ,w ′)

(5) ∀d ,w , sesrc, setgt, (sesrc, setgt) ∈ serel(d ,w) =⇒ sesrc .pubs = setgt .pubs ∧

∀(vsrc, vtgt) ∈ MR.vrel(w), vsrc ∈ ftns(sesrc) =⇒ vtgt ∈ ftns(setgt)
(6) ∀d , d ′,w , scsrc, sctgt, sesrc, setgt, d ⊑ d ′ ∧ (scsrc, sctgt) ∈ screl(d) ∧ (sesrc, setgt) ∈ serel(d ′,w) =⇒

(sesrc |scsrc , setgt |sctgt) ∈ serel(d ,w)

(7) ∀d ,w , sesrc, setgt, csrc, ctgt, (sesrc, setgt) ∈ serel(d ,w) ∧ csrc ≿w ctgt =⇒
∀e , rsrc, external call sesrc csrc e rsrc =⇒ ∃rtgt, external call setgt ctgt e rtgt ∧ ∃w ′ ⊒ w , rsrc ≿w ′ rtgt }

(memory predicate)

MP ∈ MemPred =

{ (t, ⊑, ⊑prv, mpred, vpred, sepred) ∈ (Set × P(t × t) × P(t × t) × (t→P(Mem)) × (t→P(Val)) × (t→P(Senv))) |

(⊑ is preorder) ∧ (⊑ ⊆ ⊑prv) ∧ (∀u , u′, u ⊑ u′ =⇒ vpred(u) ⊆ vpred(u′)) ∧

(sepred should satisfy the unary version of serel’s conditions where SR.⊑ and screl are the total relations) }

cpred(u) def

= {c ∈ CallData | c .m ∈ mpred(u) ∧ c .f ∈ vpred(u) ∧ c .vs ∈
−−−−−−−−→
vpred(u) ∧ c .rs ∈

−−−−−−−−→
vpred(u)}

rpred(u) def

= {r ∈ RetData | r .m ∈ mpred(u) ∧ r .v ∈ vpred(u) ∧ r .rs ∈
−−−−−−−−→
vpred(u)}

Fig. 10. Three parameters for open simulations

Memory Relation. The first parameter ranges over Kripke-style memory/value relations in MR.

Following [Dreyer et al. 2010; Hur et al. 2012], we model the evolution of memory relations using

possible worlds and private and public transitions over the worlds. Note that this parameter will

be instantiated with the three memory relations used in CompCert—namely memory identity,

extension, and injection—and the memory injection with module-local invariants we introduced.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 23. Publication date: January 2020.

23:26 Youngju Song, Minki Cho, Dongjoo Kim, Yonghyun Kim, Jeehoon Kang, and Chung-Kil Hur

Amemory relation inMR consists of (i) a set t of possible worlds; (ii) public and private transition
relations ⊑ and ⊑prv over the worlds; and (iii) for each worldw ∈ t, memory relation mrel(w) and

value relation vrel(w). A worldw represents an invariant on the memory, which can evolve over

time according to the public/private transition relations, as we discussed in §2.4. There are four

natural well-formedness conditions, which are self-explanatory. We can also straightforwardly

extend the value/memory relation to relations on CallData and RetData, denoted ≿w .

Symbol Relation. The second parameter ranges over symbol relations in SR that relate information

about global symbols (e.g., which block each global variable points to) in the source and target. This

parameter is needed to verify optimizations like Unusedglob, Unreadglob that remove unnecessary

static variables thereby having non-identical symbol information in the source and target.

A symbol relation in SR consists of (i) a set t of symbol relation states; (ii) an extension relation

⊑ on the states; (iii) for each state d , a (compile-time) symbol code relation screl(d); and (iv)
for each state d and worldw ∈ MR.t, (run-time) symbol environment relation serel(d,w). There

are seven well-formedness conditions: (1) the extension relation ⊑ is transitive and reflexive; (2)

screl is closed under the syntactic linking; (3) if symbol codes are related by screl, then the initial

memories and symbol environments loaded by load mem and load se are related by mrel and

serel, respectively; (4) serel is monotone w.r.t. private transitions; (5) for symbol environments

related by serel, their public symbols are identical and their functions have the same signatures;

(6) serel is compatible with ⊑: for d ⊑ d ′
, serel(d ′) restricted on screl(d) should be in serel(d);

and (7) the memory and symbol relations should be compatible with CompCert’s axiom about

system calls (i.e., external call).

Memory Predicate. The third parameter ranges over Kripke-style memory predicates in MP, which

are needed to modularly verify CompCert’s analysis engines such as value analysis (see §7.2). MP

is essentially a unary version of MR combined with SR where SR.⊑ and screl are taken as the

total relations (i.e., relating everything): it consists of (i) the set t of possible worlds; (ii) public and
private transition relations ⊑ and ⊑prv over the worlds, respectively; and (iii) for each worldw ∈ t,
a memory predicate mpred(w), a value predicate vpred(w), and a symbol environment predicate

sepred(w). The well-formedness conditions are self-explanatory.

7.2 Open Simulations with Parameters
Fig. 11 presents our parameterized open simulations, which are given in the form of forward

simulation for simplicity though they are actually in the form of mixed simulation presented in §2.5.

In this section, we omit MR, SR, and MP when clear from context (e.g., vrel(w) for MR.vrel(w)).

Also, R and G means rely and guarantee conditions for the external modules.

Simulation of Machine States. A relationmatch states on machine states is an open simulation
if all related states either (i) transition to related states, (ii) invoke related external calls (hence the

name “open” simulation), or (iii) halt with related return values and memories. Specifically, given

source and target module semantics semsrc, semtgt and a (source) soundness predicate sound state
(discussed later), the relationmatch states over worlds is an open simulation if the relatedness of

mssrc andmstgt at a worldw with the soundness ofmssrc implies one of the followings.

• (STEP) The source and target states transition to related states. Specifically:

line 1: the source machine state takes intramodule steps, and

line 2: if the source machine state transitions to a next state emitting an event e ,
line 3: then the target machine state is able to transition to a next state emitting the same event

e , possibly with additional silent transitions, and

line 4: the next states are related bymatch states(w ′) for a public future worldw ′ ⊒ w .

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 23. Publication date: January 2020.

CompCertM: CompCert with C-Assembly Linking and Lightweight Modular Verification 23:27

(sim:states)

match states ∈ open sim(semsrc, semtgt, sound state) def

=

∀w , ∀((msrc, ssrc), (mtgt, stgt)) ∈ match states(w), (∃u , (msrc, ssrc) ∈ sound state(u)) =⇒
(STEP) semsrc .at external(msrc, ssrc) = None ∧ semsrc .halted(msrc, ssrc) = None ∧

∀e ,m′
src, s

′
src, (msrc, ssrc)

e
↪→ (m′

src, s
′
src) =⇒

∃m′
tgt, s

′
tgt, (mtgt, stgt)

τ
↪→∗ e

↪→
τ
↪→∗

(m′
tgt, s

′
tgt) ∧

∃w ′ ⊒ w , ((m′
src, s

′
src), (m

′
tgt, s

′
tgt)) ∈ match states(w ′)

∨ (CALL) ∃w ′ ⊒prv w , ∃csrc, ctgt, csrc ≿w ′ ctgt ∧

semsrc .at external(msrc, ssrc) = Some csrc ∧ semtgt .at external(mtgt, stgt) = Some ctgt ∧

∀w ′′ ⊒ w ′ , ∀rsrc, rtgt, rsrc ≿w ′′ rtgt =⇒

∀m′
src, s

′
src, semsrc .after external(ssrc, rsrc) = Some (m′

src, s
′
src) =⇒

∃m′
tgt, s

′
tgt, semtgt .after external(stgt, rtgt) = Some (m′

tgt, s
′
tgt) ∧

∃w ′′′ ⊒prv w ′′, w ′′′ ⊒ w ∧ ((m′
src, s

′
src), (m

′
tgt, s

′
tgt)) ∈ match states(w ′′′)

∨ (RET) ∃w ′ ⊒ w , ∃rsrc, rtgt, rsrc ≿w ′ rtgt ∧

semsrc .halted(msrc, ssrc) = Some rsrc ∧ semtgt .halted(mtgt, stgt) = Some rtgt

(sim:modsem)

semsrc ≿d ,sound state semtgt
def

= ∃match states ∈ open sim(semsrc , semtдt , sound state),

(INIT) ∀w ∈ MR.t, ∀csrc, ctgt, csrc ≿w ctgt =⇒

csrc .f ∈ ftns(semsrc .senv) ∧ ctgt .f ∈ ftns(semtgt .senv) =⇒

(semsrc .senv, semtдt .senv) ∈ serel(d ,w) =⇒ ∀(msrc, ssrc) ∈ semsrc .init core(csrc),

∃(mtgt, stgt) ∈ semtgt .init core(ctgt),

∃w ′ ⊒ w , ((msrc, ssrc), (mtgt, stgt)) ∈ match states(w ′)

(sim:mod)

Msrc ≿ Mtgt
def

= ∃d ∈ SR.t, ∃sound state : MP.t → P(Mem ×Msrc .state),

(1) (Msrc .scode,Mtgt .scode) ∈ screl(d)

∧ (2) ∀sesrc, sound state ∈ open prsv(Msrc .sem sesrc)

∧ (3) ∀d ′ ⊒ d , ∀w , ∀(sesrc, setgt) ∈ serel(d ′,w) ,

Msrc .sem (sesrc) ≿d ,sound state Mtgt .sem (setgt)

(sim:prog)

Progsrc ≿ Progtgt
def

=

∀i ∈ N, Progsrc[i] ≿ Progtgt[i]

(preservation)

sound state ∈ open prsv(semsrc)
def

=

(INIT) ∀u ∈ MP.t, ∀csrc ∈ cpred(u) , semsrc .senv ∈ sepred(u) =⇒ ∀(msrc, ssrc) ∈ semsrc .init core(csrc),

∃u′ ⊒ u , (msrc, ssrc) ∈ sound state(u′)

∧ (STEP) ∀u , ∀(msrc, ssrc) ∈ sound state(u), ∀e ,m′
src, s

′
src, (msrc, ssrc)

e
↪→ (m′

src, s
′
src) =⇒

∃u′ ⊒ u , (m′
src, s

′
src) ∈ sound state(u′)

∧ (CALL) ∀u , ∀(msrc, ssrc) ∈ sound state(u), ∀csrc, semsrc .at external(msrc, ssrc) = Some csrc =⇒

∃u′ ⊒prv u , csrc ∈ cpred(u′) ∧

∀u′′ ⊒ u′, ∀rsrc ∈ rpred(u′′) , ∀m′
src, s

′
src, semsrc .after external(ssrc, rsrc) = Some (m′

src, s
′
src) =⇒

∃u′′′ ⊒prv u′′, u′′′ ⊒ u ∧ ∃m′
src ∈ mpred(u′′′) ∧ (m′

src, s
′
src) ∈ sound state(u′′′)

∧ (RET) ∀u , ∀(msrc, ssrc) ∈ sound state(u), ∀rsrc, semsrc .halted(msrc, ssrc) = Some rsrc =⇒

∃u′ ⊒ u , rsrc ∈ rpred(u′)

Fig. 11. Parameterized Open Simulations

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 23. Publication date: January 2020.

23:28 Youngju Song, Minki Cho, Dongjoo Kim, Yonghyun Kim, Jeehoon Kang, and Chung-Kil Hur

• (CALL) The source and target states invoke related external calls. Specifically:

line 1: certain external functions and arguments in the source and target are related at a private

future worldw ′ ⊒prv w , and

line 2: the source and target machine states invoke the related external functions with the related

arguments, and

line 3: for any return values and memories related at any public future worldw ′′ ⊒ w ′
,

line 4: if the source safely returns from the external call,

line 5: then the target also safely returns from the external call, and

line 6: the states after return are related bymatch states(w ′′′) for a worldw ′′′
that is a private

future ofw ′′
and a public future ofw .

• (RET) The source and target states halt with related values and memories. Specifically:

line 1: with return values and memories related atw ′
for a public future worldw ′ ⊒ w ,

line 2: the source and target machine states halt.

Simulation of Module Semantics. Module semantics are related if their initial machine states are

related. Specifically, for a symbol relation d ∈ SR and a (source) soundness predicate sound state , a
targetmodule semantics semtgt simulates a source one semsrc if for an open simulationmatch states :

• (INIT) the initial machine states of semsrc and semtgt are related bymatch states . Specifically:
line 1: for any source and target call data related at any worldw ∈ MR,

line 2: if the functions of the source and target call data belong to the modules and

line 3: the symbol environments are related at d andw , then for any initial machine state of the

source function call,

line 4: there exists an initial machine state of the target function call such that

line 5: the two initial machine states are related bymatch states(w ′) forw ′
a public future ofw .

Simulation of Modules. Modules are related if their module semantics are related. Specifically, a

target moduleMtgt simulates a source oneMsrc if the following hold for a symbol relation d ∈ SR

and a soundness predicate sound state:

line 1: the source and target symbol codes are related at d ,
line 2: sound state satisfies the open preservation property (discussed below), and

line 3: for any symbol environments related at any symbol relationd ′
extendingd and any worldw ,

line 4: the source and target module semantics for the related symbol environments are related at

d andw .

Note that the symbol environments are related at d ′
, which represents the possible symbol infor-

mation after linking with an arbitrary module, while the module semantics are related at d , which
represents the module’s own symbol information.

Simulation of Programs. Two programs each of which consists of a list of modules are simulated

if each corresponding modules are simulated.

Open Preservation with Parameters. CompCert uses a relationmatch states to prove correct-

ness of a translation pass and a predicate sound state to prove correctness of the analyzer perform-

ing value analysis, where sound state specifies those states where the analysis results hold. As we
do formatch states , we perform a similar generalization from a closed setting to an open setting for

sound state . Specifically, we generalize the conditions for sound state from preservation to open

preservation (cf. from simulation to open simulation); and parameterize over memory predicates

MP (cf. memory relations MR), which intuitively encodes the analysis results of the analyzer. Also,

as we do for open simulation, we prove that all Clight and Asm modules satisfy open preservation

with MP, which intuitively means that all those context modules preserve the analysis results of the

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 23. Publication date: January 2020.

CompCertM: CompCert with C-Assembly Linking and Lightweight Modular Verification 23:29

analyzer. Note that the definition of open preservation, open prsv, is essentially a unary version

of that of open simulation, where the (INIT) case corresponds to that of the module semantics

simulation and the (STEP), (CALL), and (RET) cases to those of the state simulation.

7.3 Horizontal Compositionality and Adequacy
To use open simulations in RUSC, we prove their horizontal compositionality and adequacy. Let

P and Q be programs (i.e., lists of modules) and we define P ⊕ Q to be the list concatenation of P
and Q . Let MR ∈ MemRel, SR ∈ SymbRel,MP ∈ MemPred be parameters, and ≿ be the program

simulation relation for the parameters, given in (sim:prog) of Fig. 11. Then we have:

Theorem 7.1 (HorComp). For any programs Psrc, Ptgt,Qsrc,Qtgt, if Psrc ≿ Ptgt andQsrc ≿ Qtgt:

Psrc ⊕ Qsrc ≿ Ptgt ⊕ Qtgt .

Theorem 7.2 (Adeqacy). For any programs Psrc and Ptgt, if Psrc ≿ Ptgt:

Beh(Psrc) ⊇ Beh(Ptgt) .

8 RELATEDWORK
We discuss related work on compositional compiler correctness for CompCert and other higher-

order languages.

8.1 Compositional Correctness for CompCert
CompComp. Besides what we have discussed, CompComp introduces self-relatedness as a part

of the notion of well-defined context and shows refinement under well-defined contexts as a

result of the compiler correctness proof, whereas we uses such refinement as a method to prove

compiler correctness. Also, the PhD thesis of [Stewart 2015] observed, with a counterexample, one

of the three reasons for inadequacy of interaction semantics at assembly level: not enforcing the

assumption on the outgoing arguments area of the stack. It informally concludes that assembly

contexts should respect the compiler’s assumption without giving a formal solution. Our repaired

interaction semantics gives a formal way to enforce the assumption by giving UB to those behaviors

violating it. The thesis also suggests closed specification modules (i.e., without making external

calls) written in Coq’s Gallina language, which foreshadows our open specification modules and

verification against them.

CompCertX. Besides what we have discussed, the latest version of CompCertX [Wang et al. 2019]

supports two features that CompCertM currently does not support. First, it proves that CompCertX

preserves the stack consumption by instrumenting the languages’ semantics to record the size of

the concrete stack frames. Second, it carries the compiler correctness down to assembly with the flat

memory model instead of CompCert’s block-based memory model. On the other hand, CompCertX

instruments the languages’ semantics to record permissions in the stack frames in order to support

address-taken stack variables, whereas CompCertM supports them, without instrumenting the

semantics, by adding the private memory components to memory injections as shown in §2.4.2.

Interesting future work would be to apply the techniques of CompCertX to CompCertM to support

the two missing features, and conversely apply the technique of CompCertM to CompCertX to

support address-taken stack variables without recording permissions on the stack.

SepCompCert. SepCompCert [Kang et al. 2016] proves a weaker form of compositional correctness

for CompCert, namely correctness of separate compilation. Specifically, the proof assumes that all

modules are separately compiled by the same compiler and then linked together without linking

with any handwritten assembly. For this, SepCompCert employs a surprisingly lightweight closed
simulation technique, which, therefore, has been officially adopted by CompCert since version 2.7.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 23. Publication date: January 2020.

23:30 Youngju Song, Minki Cho, Dongjoo Kim, Yonghyun Kim, Jeehoon Kang, and Chung-Kil Hur

CASCompCert. CASCompCert [Jiang et al. 2019] extends CompComp to support concurrency

in the absence of data races, which demonstrates that the proof technique of CompComp (i.e.,
structured simulations) scales to a concurrent setting. However, in the Coq formalization, Com-

pComp tames the complexity of structured simulations by (i) not allowing address-taken stack

variables (although how to support them using structured simulations is described with paper

proofs in the associated technical report
13
); and (ii) only covering 12 out of the 20 passes in its base

version, CompCert 3.0.1 (although the 12 passes are exactly those that are covered by the original

CompComp): these restrictions unnecessitate the use of memory injection. Also, CASCompCert can

only allow special nondeterminism caused by scheduling threads by slightly relaxing the conditions

for forward simulation, while CompCertM can allow arbitrary nondeterminism by mixing forward

and backward simulations.

We do not currently see any problemwith applying the approach of CASCompCert to CompCertM

to support concurrency in the absence of data races. Moreover, we expect that the compiler

verification technique for promising semantics [Kang et al. 2017], which is also based on simple

closed simulations, applies to CompCertM to fully support relaxed-memory concurrency.

8.2 Compositional Compiler Correctness for Higher-Order Languages
Pilsner. Pilsner [Hur et al. 2012; Neis et al. 2015] is a multi-pass optimizing compiler from a higher-

order imperative language down to an idealized assembly language. To verify horizontally and

vertically compositional correctness in the presence of higher-order functions, Pilsner uses very

general and flexible open simulations, called parametric simulations, whose vertical compositionality

proof is also technically very involved. Since it would be hard to define interaction semantics due

to the different representations of values and memory in the source and target languages, the RUSC

technique is unlikely to be applicable to Pilsner.

Also, our approach to reasoning about dynamically and statically allocated local memory, pre-

sented in §2, follows that of Pilsner, which is based on the work of [Dreyer et al. 2010]. A minor

difference is that we simplify the formulation by restricting the occurrence of private transitions

only to just before and after external calls, while Pilsner allows private transitions at every local

step only requiring public transitions between the end-to-end worlds of the execution of a function.

Multi-language semantics. Ahmed and her collaborators proposemulti-language semantics [New

et al. 2016; Patterson and Ahmed 2019; Patterson et al. 2017; Perconti and Ahmed 2014; Scherer

et al. 2018] as an approach to prove compositional correctness and full abstraction of a compiler for

both assembly-like and higher-order languages. Specifically, they define a language that combines

all of the source, intermediate and target languages, and prove contextual equivalence and/or

full abstraction for each translation pass in the combined language using logical relations (with

back-translations). In this approach, they rule out ill-formed contexts by syntactic type systems

and use the typed contextual equivalence for compositionality. Since RUSC rules out ill-formed

contexts by semantic program relations, it would be interesting to see if RUSC could be applicable

and beneficial to the approach of Ahmed et al., in particular, for full abstraction.

ACKNOWLEDGMENTS
We thank anonymous reviewers for very helpful feedback and Sung-hwan Lee and Yeonwoo Kim

for their contribution to early development. This work was supported in part by the Basic Science

Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry

of Science and ICT (2017R1A2B2007512) and by a KAIST new faculty fund (Project No. G04190021).

13
https://plax-lab.github.io/publications/ccc/ccc-tr.pdf

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 23. Publication date: January 2020.

https://plax-lab.github.io/publications/ccc/ccc-tr.pdf

CompCertM: CompCert with C-Assembly Linking and Lightweight Modular Verification 23:31

REFERENCES
Andrew W. Appel. 2011. Verified Software Toolchain. In Proceedings of the 20th European Symposium on Programming (ESOP

2011).
Andrew W Appel. 2014. Program Logics for Certified Compilers. Cambridge University Press.

Lennart Beringer, Gordon Stewart, Robert Dockins, and Andrew W. Appel. 2014. Verified Compilation for Shared-Memory

C. In Proceedings of the 23rd European Symposium on Programming Languages and Systems (ESOP 2014).
Derek Dreyer, Georg Neis, and Lars Birkedal. 2010. The impact of higher-order state and control effects on local relational

reasoning. In Proceeding of the 15th ACM SIGPLAN International Conference on Functional Programming (ICFP 2010).
Liang Gu, Alexander Vaynberg, Bryan Ford, Zhong Shao, and David Costanzo. 2011. CertiKOS: A Certified Kernel for Secure

Cloud Computing. In Proceedings of the 2nd ACM SIGOPS Asia-Pacific Workshop on Systems (APSys 2011).
Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao, Xiongnan (Newman) Wu, Shu-Chun Weng, Haozhong

Zhang, and Yu Guo. 2015. Deep Specifications and Certified Abstraction Layers. In Proceedings of the 42nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL 2015).

Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan Wu, Jieung Kim, Vilhelm Sjöberg, and David Costanzo. 2016. CertiKOS: An

Extensible Architecture for Building Certified Concurrent OS Kernels. In Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 2016).

Chung-Kil Hur, Derek Dreyer, Georg Neis, and Viktor Vafeiadis. 2012. The Marriage of Bisimulations and Kripke Logical

Relations. In Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL
2012).

Hanru Jiang, Hongjin Liang, Siyang Xiao, Junpeng Zha, and Xinyu Feng. 2019. Towards Certified Separate Compilation

for Concurrent Programs. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2019).

Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. 2017. A Promising Semantics for Relaxed-

memory Concurrency. In Proceedings of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL 2017).

Jeehoon Kang, Chung-Kil Hur, William Mansky, Dmitri Garbuzov, Steve Zdancewic, and Viktor Vafeiadis. 2015. A formal C

memory model supporting integer-pointer casts. In Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2015).

Jeehoon Kang, Yoonseung Kim, Chung-Kil Hur, Derek Dreyer, and Viktor Vafeiadis. 2016. Lightweight Verification of

Separate Compilation. In Proceedings of the 43rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL 2016).

Xavier Leroy. 2006. Formal Certification of a Compiler Back-end or: Programming a Compiler with a Proof Assistant. In

Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL 2006).
Xavier Leroy. 2009. Formal Verification of a Realistic Compiler. Commun. ACM 52, 7 (July 2009), 107–115.

Georg Neis, Chung-Kil Hur, Jan-Oliver Kaiser, Craig McLaughlin, Derek Dreyer, and Viktor Vafeiadis. 2015. Pilsner: A

Compositionally Verified Compiler for a Higher-order Imperative Language. In Proceedings of the 20th ACM SIGPLAN
International Conference on Functional Programming (ICFP 2015).

Max S. New,William J. Bowman, and Amal Ahmed. 2016. Fully Abstract Compilation via Universal Embedding. In Proceedings
of the 21st ACM SIGPLAN International Conference on Functional Programming (ICFP 2016).

Daniel Patterson and Amal Ahmed. 2019. The Next 700 Compiler Correctness Theorems (Functional Pearl). In Proceedings
of the 24th ACM SIGPLAN International Conference on Functional Programming (ICFP 2019).

Daniel Patterson, Jamie Perconti, Christos Dimoulas, and Amal Ahmed. 2017. FunTAL: Reasonably Mixing a Functional

Language with Assembly. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2017).

James T. Perconti and Amal Ahmed. 2014. Verifying an Open Compiler Using Multi-language Semantics. In Proceedings of
the 23rd European Symposium on Programming (ESOP 2014).

Gabriel Scherer, Max S. New, Nick Rioux, and Amal Ahmed. 2018. FabULous Interoperability for ML and a Linear Language.

In Proceedings of the European Joint Conferences on Theory and Practice of Software (ETAPS 2018).
Gordon Stewart. 2015. Verified Separate Compilation for C. Ph.D. Dissertation. Princeton University.

Gordon Stewart, Lennart Beringer, Santiago Cuellar, and Andrew W. Appel. 2015. Compositional CompCert. In Proceedings
of the 42nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL 2015).

YutingWang, PierreWilke, and Zhong Shao. 2019. An Abstract Stack Based Approach to Verified Compositional Compilation

to Machine Code. In Proceedings of the 46th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL 2019).

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 23. Publication date: January 2020.

	Abstract
	1 Introduction
	2 Verification Techniques
	2.1 Background
	2.2 Problems
	2.3 Our Solution
	2.4 Memory Relations of CompCertM
	2.5 Mixed Simulation

	3 Repaired Interaction Semantics
	3.1 Background
	3.2 Problems
	3.3 Our Solution

	4 Module-Local Invariants and Specification Modules
	4.1 Advanced Optimizations with Module-Local Invariants
	4.2 Verification against Specification Modules
	4.3 Verification of utod

	5 CompCertM
	5.1 Compositional Correctness
	5.2 Evaluation of Verification Efforts

	6 Formal Semantics
	6.1 Loading in Interaction Semantics
	6.2 Module Semantics

	7 Formalization of Verification Techniques
	7.1 Parameters for Open Simulations
	7.2 Open Simulations with Parameters
	7.3 Horizontal Compositionality and Adequacy

	8 Related Work
	8.1 Compositional Correctness for CompCert
	8.2 Compositional Compiler Correctness for Higher-Order Languages

	Acknowledgments
	References

