
Formally Verified Simulations of State-Rich1

Processes using Interaction Trees in Isabelle/HOL2

Simon Foster !�3

University of York4

Chung-Kil Hur !5

Seoul National University6

Jim Woodock !�7

University of York8

Abstract9

Simulation and formal verification are important complementary techniques necessary in high10

assurance model-based systems development. In order to support coherent results, it is necessary to11

provide unifying semantics and automation for both activities. In this paper we apply Interaction12

Trees in Isabelle/HOL to produce a verification and simulation framework for state-rich process13

languages. We develop the core theory and verification techniques for Interaction Trees, use them to14

give a semantics to the CSP and Circus languages, and formally link our new semantics with the15

failures-divergences semantic model. We also show how the Isabelle code generator can be used to16

generate verified executable simulations for reactive and concurrent programs.17

2012 ACM Subject Classification Theory of computation → Concurrency18

Keywords and phrases Coinduction, Process Algebra, Theorem Proving, Simulation19

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2021.1720

Related Version Previous Version: https://arxiv.org/abs/2105.0513321

Funding Simon Foster : EPSRC EP/S001190/1 (CyPhyAssure)22

Jim Woodock: EPSRC EP/V026801/1 (TAS Verifiability), EP/M025756/1 (RoboCalc)23

Acknowledgements We would like to thank the anonymous reviewers of our paper, whose helpful24

and insightful comments have improved the content and presentation.25

1 Introduction26

Simulation is an important technique for prototyping system models, which is widely used in27

several engineering domains, notably robotics and autonomous systems [9]. For such high28

assurance systems, it is also necessary that controller software be formally verified, to ensure29

absence of faults. In order for results from simulation and formal verification to be used30

coherently, it is important that they are tied together using a unifying formal semantics.31

Interaction trees (ITrees) have been introduced by Xia et al. [43] as a semantic technique32

for reactive and concurrent programming, mechanised in the Coq theorem prover. They are33

coinductive structures, and therefore can model infinite behaviours supported by a variety of34

proof techniques. Moreover, ITrees are deterministic and executable structures and so they35

can provide a route to both verified simulators and implementations.36

Previously, we have demonstrated an Isabelle-based theory library and verification37

tool for reactive systems [15, 16]. This supports verification and step-wise development38

of nondeterministic and infinite state systems, based on the CSP [8, 21] and Circus [42]39

process languages. This includes a specification mechanism, called reactive contracts, and40

calculational proof strategy. Extensions of our theory support reasoning about hybrid41

dynamical systems, which make it ideal for verifying autonomous robots. Recently, the42

© Simon Foster, Chung-Kil Hur, and Jim Woodcock;
licensed under Creative Commons License CC-BY 4.0

32nd International Conference on Concurrency Theory (CONCUR 2021).
Editors: Serge Haddad and Daniele Varacca; Article No. 17; pp. 17:1–17:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:simon.foster@york.ac.uk
https://orcid.org/0000-0002-9889-9514
mailto:gil.hur@sf.snu.ac.kr
mailto:jim.woodcock@york.ac.uk
https://orcid.org/0000-0001-7955-2702
https://doi.org/10.4230/LIPIcs.CONCUR.2021.17
https://arxiv.org/abs/2105.05133
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Formally Verified Simulations of State-Rich Processes using Interaction Trees

set-based theory of CSP has also been mechanised [39]. However, such reactive specifications,43

even if deterministic, are not executable and so there is a semantic gap with implementations.44

In this paper, we demonstrate how ITrees can be used as a foundation for verification45

and simulation of state-rich concurrent systems. For this, we present a novel mechanisation46

of ITrees in Isabelle/HOL, which requires substantial adaptation from the original work.47

The benefit is access to Isabelle’s powerful proof tools, notably the sledgehammer automated48

theorem prover integration [5], but also the variety of other tools we have created in49

Isabelle/UTP [14], such as Hoare logic and refinement calculus [1, 30]. Isabelle’s code50

generator allows us to automatically produce ITree-based simulations, which allows a tight51

development loop, where simulation and verification activities are intertwined. All our results52

have been mechanised, and can be found in the accompanying repository1, and clickable icon53

links next to each specific result, with for Isabelle code and for Haskell code.54

The structure of our paper is as follows. In §2 we show how ITrees are mechanised in55

Isabelle/HOL, including the core operators, and strong and weak bisimulation techniques.56

In §3 we show how deterministic CSP and Circus processes can be semantically embedded57

into ITrees, including operators like external choice and parallel composition. In §4 we link58

ITrees with the standard failures-divergences semantic model for CSP, which justifies their59

integration with other CSP-based techniques. In §5 we show how the code generator can be60

used to generate simulations. In §6 we briefly consider related work, and in §7 we conclude.61

2 Interaction Trees in Isabelle/HOL62

Here, we introduce Interaction Trees (ITrees) and develop the main theory in Isabelle/HOL,63

along with several novel results. ITrees were originally mechanised in Coq by Xia et al. [43].64

Our mechanisation in Isabelle/HOL brings unique advantages, including a flexible frontend65

syntax, an array of automated proof tools, and code generation to several languages.66

ITrees are potentially infinite trees whose edges are decorated with events, representing67

the interactions between a process and its environment. They are parametrised over two sorts68

(types): E of events and R of return values (or states). There are three possible interactions:69

(1) termination, returning a value in R; (2) an internal event (τ); or (3) a choice between70

several visible events. In Isabelle/HOL, we encode ITrees using a codatatype [4, 7]:71

▶ Definition 1 (Interaction Tree Codatatype).72

codatatype (’e, ’r) itree =73

Ret ’r | Sil "(’e, ’r) itree" | Vis "’e 7→ (’e, ’r) itree"74

Type parameters ’e and ’r encode the sorts E and R. Constructor Ret represents a return75

value, and Sil an internal event, which evolves to a further ITree. A visible event choice (Vis)76

is represented by a partial function (A 7→ B) from events to ITrees, with a potentially infinite77

domain. This representation is the main deviation from ITrees in Coq [43] (see §6). Here,78

A 7→ B is isomorphic to A⇒ B option, where B option can take the value None or Some x79

for x::B. We usually specify partial functions using λ x ∈ A • f (x), which restricts a function80

f to the domain A. We write {7→} for an empty function, and adopt several operators from81

the Z notation [38], such as dom, override (F ⊕G), and domain restriction (A◁F). With the82

associated theorems, we can use Isabelle’s simplifier to equationally calculate the domain and83

other properties of choice partial functions, which provides a high degree of proof automation.84

1 https://github.com/isabelle-utp/interaction-trees

https://github.com/isabelle-utp/interaction-trees/blob/ff9f73f98c653b265bd9da55689715cf973499c1/Interaction_Trees.thy#L21
https://github.com/isabelle-utp/interaction-trees

Simon Foster, Chung-Kil Hur, and Jim Woodcock 17:3

We sometimes use ✓v to denote Ret v, τP to denote Sil P, and [] e ∈ E → P(e) to85

denote Vis(λ e ∈ E • P(e)), which are more concise and suggestive of their process algebra86

equivalents. We write e1 → P1 [] · · · [] en → Pn when E = {e1, · · · , en}. We use τnP for an87

ITree prefixed by n ∈ N internal events. We define stop ≜ Vis {7→}, a deadlock situation88

where no event is possible. An example is a → τ(✓x) [] b → stop, which can either perform89

an a followed by a τ , and then terminate returning x, or perform a b and then deadlock.90

We call an ITree unstable if it has the form τP, and stable otherwise. An ITree stabilises,91

written P ⇓ , if it becomes stable after a finite sequence of τ events, that is ∃n P ′ • P =92

τnP ′ ∧ stable(P ′). An ITree that does not stabilise is divergent, written P ⇑ ≜ ¬(P ⇓).93

Using the operators mentioned so far, we can specify only ITrees of finite depth. Infinite94

ITrees can be specified using primitive corecursion [4], as exemplified below.95

primcorec div :: "(’e, ’s) itree" where "div = τ div"96

primcorec run :: "’e set ⇒ (’e, ’s) itree" where97

"run E = Vis (map_pfun (λ x. run E) (pId_on E))"98

The primcorec command requires that every corecursive call on the right-hand side of an99

equation is guarded by a constructor. ITree div represents the divergent ITree that does100

not terminate, and only performs internal activity. It is divergent, div ⇑ , since it never101

stabilises. Moreover, we can show that div is the unique fixed-point of τn+1 for any n ∈ N,102

τn+1P = P ⇔ P = div , and consequently div is the only divergent ITree: P ⇑ ⇒ P = div .103

ITree run E can repeatedly perform any e ∈ E without ceasing. It has the equivalent104

definition of run E ≜ []e ∈ E → run E , and thus the special case run ∅ = stop. The formulation105

above uses the function map pfun :: (’b⇒’c)⇒ (’a 7→’b)⇒ (’a 7→’c) which maps a total106

function over every output of a partial function. Function pId on E is the identity partial107

function with domain E. This formulation is required to satisfy the syntactic guardedness108

requirements. For the sake of readability, we elide these details in the definitions that follow.109

Corecursive definitions can have several equations ordered by priority, like a recursive110

function. We specify a monadic bind operator for ITrees [43] using such a set of equations.111

▶ Definition 2 (Interaction Tree Bind). We fix P,P ′ : (E ,R)itree, K : R⇒ (E , S)itree, r : R,
and F : E 7→ (E ,S)itree. Then, P >>= K is defined corecursively by the equations

✓r >>=K = K r τP ′ >>=K = τ(P ′ >>=K) Vis F >>=K = Vis (λ e ∈ dom(F) • F(x)>>=K)

The intuition of P >>= K is to execute P, and whenever it terminates (✓x), pass the given112

value x on to the continuation K . We term K a Kleisli tree [43], or KTree, since it is a Klesli113

lifting of an ITree. KTrees are of great importance for defining processes that depend on a114

previous state. For this, we define the type synonym (E ,S)htree ≜ (S ⇒ (E ,S)itree) for a115

homogeneous KTree. We define the Kleisli composition operator P # Q ≜ (λ x.Px >>= Q), so116

symbolised because it is used as sequential composition. Bind satisfies several algebraic laws:117

▶ Theorem 3 (Interaction Tree Bind Laws).118

Ret x >>= K = K x
P >>= Ret = P

P >>= (λ x.(Q x >>= R)) = (P >>= Q)>>= R
div >>= K = div

Ret # K = K
K # Ret = K

K1 # (K2 # K3) = (K1 # K2) # K3

run E >>= K = run E

119

Bind satisfies the three monad laws: it has Ret as left and right units, and is essentially120

associative. Moreover, both div and run are left annihilators for bind, since they do not121

terminate. From the monad laws, we can show that (#,Ret) also forms a monoid.122

The laws of Theorem 3 are proved by coinduction, using the following derivation rule.123

CONCUR 2021

https://github.com/isabelle-utp/interaction-trees/blob/ff9f73f98c653b265bd9da55689715cf973499c1/ITree_Divergence.thy#L77
https://github.com/isabelle-utp/interaction-trees/blob/ff9f73f98c653b265bd9da55689715cf973499c1/Interaction_Trees.thy#L96
https://github.com/isabelle-utp/interaction-trees/blob/ff9f73f98c653b265bd9da55689715cf973499c1/Interaction_Trees.thy#L178

17:4 Formally Verified Simulations of State-Rich Processes using Interaction Trees

▶ Theorem 4 (ITree Coinduction). We fix a relation R : (E ,R)itree↔ (E ,R)itree and then
given (P,Q) ∈ R we can deduce P = Q provided that the following conditions of R hold:

∀(P ′,Q′) ∈ R • is Ret(P ′) = is Ret(Q′) ∧ is Sil(P ′) = is Sil(Q′) ∧ is Vis(P ′) = is Vis(Q′);

∀(x, y) • (Ret x,Ret y) ∈ R ⇒ x = y;
∀(P ′,Q′) • (Sil P ′,Sil Q′) ∈ R ⇒ (P ′,Q′) ∈ R;

∀(F ,G) • (Vis F ,Vis G) ∈ R ⇒ (dom(F) = dom(G) ∧ (∀ e ∈ dom(F) • (F(e),G(e)) ∈ R))

To show P = Q, we need to construct a (strong) bisimulation R and show that (P,Q) ∈ R.124

There are four provisos to show that R is a bisimulation. The first requires that only ITrees125

of the same kind are related, where is Ret, is Sil , and is Vis distinguish the three cases.126

The second proviso states that if (✓x ,✓y) ∈ R then x = y. The third proviso states that127

internal events must yield bisimilar continuations: (τP, τQ) ∈ R ⇒ (P,Q) ∈ R. The final128

proviso states that for two visible interactions the two functions must have the same domain129

(dom(F) = dom(G)) and every event e ∈ dom(F) must lead to bisimilar continuations. The130

majority of our ITree proofs in Isabelle apply this law, and then use a mixture of equational131

simplification and automated reasoning with sledgehammer to discharge the resulting provisos.132

Next, we define an operator for iterating ITrees:133

corec while :: "(’s ⇒ bool) ⇒ (’e, ’s) htree ⇒ (’e, ’s) htree" where134

"while b P s = (if (b s) then Sil (P s >>= while b P) else Ret s)"135

This is not primitively corecursive, since the corecursive call uses >>=, and so we define it136

using the corec command [6, 3] instead of primcorec. This requires us to show that >>= is a137

“friendly” corecursive function [3]: it consumes at most one input constructor to produce one138

output constructor. A while loop iterates whilst the condition b is satisfied by state s. In this139

case, a τ event is followed by the loop body and the corecursive call. If the condition is false,140

the current state is returned. We introduce the special cases loop F ≜ while (λ s • True)F and141

iter P ≜ loop (λ s • P) (), which represent infinite loops with and without state, respectively.142

We can show that iter (✓()) = div , since it never terminates and has no visible behaviour.143

Though strong bisimulation is a useful equivalence, we often wish to abstract over τs.144

We therefore also introduce weak bisimulation, P ≈ Q, as a coinductive-inductive predicate.145

It requires us to construct a relation R such that whenever (P,Q) in R both stabilise, all146

their visible event continuations are also related by R. For example, τm P ≈ τn Q whenever147

P ≈ Q. We have proved that ≈ is an equivalence relation, and P ≈ div ⇒ P = div .148

3 CSP and Circus149

Here, we give an ITree semantics to deterministic fragments of the CSP [8, 21] and Circus [42,150

32] languages. Our deterministic CSP fragment is consistent with the one identified by151

Roscoe [36, Section 10.5]. The standard CSP denotational semantics is provided by the152

failures-divergences model [8, 36], and we provide preliminary results on linking to this in §4.153

3.1 CSP154

CSP processes are parametrised by an event alphabet (Σ), which specifies the possible ways a155

process communicates with its environment. For ITrees, Σ is provided by the type parameter156

E . Whilst E is typically infinite, it is usually expressed in terms of a finite set of channels,157

which can carry data of various types. Here, we characterise channels abstractly using158

prisms [33], a concept well known in the functional programming world:159

https://github.com/isabelle-utp/interaction-trees/blob/ff9f73f98c653b265bd9da55689715cf973499c1/Interaction_Trees.thy#L63
https://github.com/isabelle-utp/interaction-trees/blob/ff9f73f98c653b265bd9da55689715cf973499c1/ITree_Divergence.thy#L352
https://github.com/isabelle-utp/interaction-trees/blob/4bdea2d0a52341e7a19abc3950a3bcdd4b65e7fd/ITree_Weak_Bisim.thy

Simon Foster, Chung-Kil Hur, and Jim Woodcock 17:5

▶ Definition 5 (Prisms). A prism is a quadruple (V,Σ,match, build) where V and Σ are
non-empty sets. Functions match : Σ 7→ V and build : V ⇒ Σ satisfy the following laws:

match(build x) = x y ∈ dom(match)⇒ build (match y) = y

We write X : V ∆−→E if X is a prism with ΣX = E and VX = V .160

Intuitively, a prism abstractly characterises a datatype constructor, E , taking a value of161

type V. Then, build is the constructor, and match is the destructor, which is partial due to162

the possibility of several disjoint constructors. For CSP, each prism models a channel in E163

carrying a value of type V. We have created a command chantype, which automates the164

creation of prism-based event alphabets.165

CSP processes typically do not return data, though their components may, and so they166

are typically denoted as ITrees of type (E , ())itree, returning the unit type (). An example is167

skip ≜ Ret (), which is a degenerate form of Ret. We now define the basic CSP operators.168

▶ Definition 6 (Basic CSP Constructs).169

inp :: (V ∆−→E)⇒ V set⇒ (E ,V)itree170

inp c A ≜ Vis (λ e ∈ dom(matchc) ∩ buildc(| A |) • Ret (matchc e))171172

outp :: (V ∆−→E)⇒ V ⇒ (E , ())itree
outp c v ≜ Vis {buildc v 7→ Ret ()}

guard b :: B⇒ (E , ())itree
guard b ≜ (if b then skip else stop)

173

An input event (inp c A) permits any event over the channel c, that is e ∈ dom(matchc),174

provided that its parameter is in A (e ∈ buildc(| A |)), and it returns the value received for175

use by a continuation. It corresponds to the trigger construct in [43]. An output event176

(outp c v) permits a single event, v on channel c, and returns a null value of type (). We also177

define the special case sync e ≜ outp e () for a basic event e :: ()
∆−→E . A guard b behaves as178

skip if b = true and otherwise deadlocks. It corresponds to the guard in CSP, which can be179

defined as b & P ≜ (guard b >>= (λ x • P)).180

Using the monadic “do” notation, which boils down to applications of >>=, we can now181

write simple reactive programs such as do{x ← inp c; outp d (2 · x); Ret x}, which inputs x182

over channel c : N ∆−→E , outputs 2 · x over channel d, and finally terminates, returning x.183

Next, we define the external choice operator, P 2 Q, where the environment resolves the184

choice with an initial event of P or Q. In CSP, 2 can also introduce nondeterminism, for185

example (a → P) 2 (a → Q) introduces an internal choice, since the a event can lead to186

P or Q, and is equal to a → (P ⊓ Q). Since we explicitly wish to avoid introducing such187

nondeterminism, we make a design choice to exclude this possibility by construction. There188

are other possibilities for handling nondeterminism in ITrees, which we consider in §7. As189

for >>=, we define external choice corecursively using a set of ordered equations.190

▶ Definition 7 (External choice). P 2 Q, is defined by the following set of equations:191

(Vis F) 2 (Vis G) = Vis (F ⊙G)

(Sil P ′) 2 Q = Sil (P ′ 2 Q)

P 2 (Sil Q′) = Sil (P 2 Q′)

(Ret x) 2 (Vis G) = Ret x
(Vis F) 2 (Ret y) = Ret y
(Ret x) 2 (Ret y) = (if x = y then (Ret x) else stop)

192

where F ⊙G ≜ (dom(G)−◁ F)⊕ (dom(F)−◁G)193

An external choice between two functions F and G essentially combines all the choices194

presented using F ⊙ G. The caveat is that if the domains of F and G overlap, then any195

events in common are excluded. Thus, ⊙ restricts the domain of F to maplets e 7→ P196

CONCUR 2021

https://github.com/isabelle-utp/interaction-trees/blob/ff9f73f98c653b265bd9da55689715cf973499c1/ITree_CSP.thy#L7
https://github.com/isabelle-utp/interaction-trees/blob/ff9f73f98c653b265bd9da55689715cf973499c1/ITree_CSP.thy#L75

17:6 Formally Verified Simulations of State-Rich Processes using Interaction Trees

where e /∈ dom(G), and vice-versa. This has the effect that (a → P) 2 (a → Q) = stop, for197

example. In the special case that dom(F) ∩ dom(G) = ∅, P ⊙Q = P ⊕Q. We chose this198

behaviour to ensure that 2 is commutative, though we could alternatively bias one side.199

Internal steps on either side of 2 are greedily consumed. Due to the equation order, τ200

events have the highest priority, following a maximal progress assumption [20]. Return events201

also have priority over visible events. If two returns are present then they must agree on the202

value, otherwise they deadlock. External choice satisfies several important properties:203

▶ Theorem 8 (External Choice Properties).

P 2 Q = Q 2 P stop 2 P = P div 2 P = div P 2 (τn Q) = (τn P) 2 Q = τn(P 2 Q)

(Vis F 2 Vis G)>>= H = (Vis F >>= H) 2 (Vis G >>= H)

External choice is commutative and has stop as a unit. It has div as an annihilator, because204

the τ events means that no other activity is chosen. A finite number of τ events on either205

the left or right can be extracted to the front. Finally, bind distributes from the left across a206

visible event choice. We prove these properties using coinduction (Theorem 4), followed by207

several invocations of sledgehammer to discharge the resulting provisos.208

Using the operators defined so far, we can implement a simple buffer process:209

chantype Chan = Input::integer Output::integer State::"integer list"210

211

definition buffer :: "integer list ⇒ (Chan, integer list) itree" where212

"buffer = loop (λ s.213

do { i ← inp Input {0..}; Ret (s @ [i]) }214

2 do { guard(length s > 0); outp Output (hd s); Ret (tl s) }215

2 do { outp State s; Ret s })"216

We first create a channel type Chan, which has channels (prisms) for inputs and outputs,217

and to view the current buffer state. We define the buffer process as a simple loop with a218

choice with three branches inside. The variable s::integer list denotes the state. The219

first branch allows a value to be received over Input, and then returns s with the new value220

added, and then iterates. The second branch is only active when the buffer is not empty. It221

outputs the head on Output, and then returns the tail. The final branch simply outputs the222

current state. In §5 we will see how such an example can be simulated.223

Next, we tackle parallel composition. The objective is to define the usual CSP operator224

P |[E]|Q, which requires that P and Q synchronise on the events in E and can otherwise225

evolve independently. We first define an auxiliary operator for merging choice functions.226

mergeE(F ,G) = (λ e ∈ dom(F) \ (dom(G) ∪ E) • Left(F(e)))227

⊕ (λ e ∈ dom(G) \ (dom(F) ∪ E) • Right(G(e)))228

⊕ (λ e ∈ dom(F) ∩ dom(G) ∩ E • Both(F(e),G(e))229
230

Operator mergeE(F ,G) merges two event functions. Each event is tagged depending on231

whether it occurs on the Left, Right, or Both sides of a parallel composition. An event in232

dom(F) can occur independently when it is not in E , and also not in dom(G). The latter233

proviso is required, like for 2, to prevent nondeterminism by disallowing the same event234

from occurring independently on both sides. An event in dom(G) can occur independently235

through the symmetric case for dom(F). An event can synchronise provided it is in the236

domain of both choice functions and the set E . We use this operator to define generalised237

parallel composition. For the sake of presentation, we present partial functions as sets.238

https://github.com/isabelle-utp/interaction-trees/blob/df092d827c91393ea5b29a0cece4567380a8c931/ITree_CSP.thy#L231
https://github.com/isabelle-utp/interaction-trees/blob/7695143479e6f604209545c500db1c6ee6d25faa/examples/ITree_CSP_Examples.thy#L23

Simon Foster, Chung-Kil Hur, and Jim Woodcock 17:7

▶ Definition 9. P ∥E Q is defined corecursively by the following equations:239

(Vis F) ∥E (Vis G) = Vis

 {e 7→ (P ′ ∥E (Vis G)) | (e 7→ Left(P ′)) ∈ mergeA(F ,G)}
⊕{e 7→ ((Vis F) ∥E Q′) | (e 7→ Right(Q′)) ∈ mergeE(F ,G)}
⊕{e 7→ (P ′ ∥E Q′) | (e 7→ Both(P ′,Q′)) ∈ mergeE(F ,G)}

240

(Sil P ′) ∥E Q = Sil (P ′ ∥E Q) P ∥E (Sil Q′) = Sil (P ∥E Q′)241

(Ret x) ∥E (Ret y) = Ret (x, y)242

(Ret x) ∥E (Vis G) = Vis {e 7→ Ret x ∥E Q′ | (e 7→ Q′) ∈ G}243

(Vis F) ∥E (Ret y) = Vis {e 7→ P ′ ∥E Ret y | (e 7→ P ′) ∈ F}244245

The most complex case is for Vis, which constructs a new choice function by merging F and246

G. The three cases are again represented by three partial functions. The first two allow the247

left and right to evolve independently to P ′ and Q′, respectively, using one of their enabled248

events, leaving their opposing side, Vis G and Vis F respectively, unchanged. The third case249

allows them both to evolve simultaneously on a synchronised event.250

The Sil cases allow τ events to happen independently and with priority. If both sides can251

return a value, x and y, respectively then the parallel composition returns a pair, which can252

later be merged if desired. The final two cases show what happens when only one side has a253

return value, and the other side has visible events. In this case, the Ret value is retained and254

pushed through the parallel composition, until the other side also terminates.255

We use ∥E to define two special cases for CSP: P |[E]|Q ≜ (P ∥E Q)>>= (λ(x, y) • Ret ())
and P ||| Q ≜ P |[∅]| Q. As usual in CSP, these operators do not return any values and
so P,Q :: (E , ())itree. The P |[E]| Q operator is similar to ∥E , except that if both sides
terminate any resultant values are discarded and a null value is returned. This is achieved
by binding to a simple merge function. P and Q do not return values, and so this has no
effect on the behaviour, just the typing. The interleaving operator P ||| Q, where there is no
synchronisation, is simply defined as P |[∅]|Q. We prove several algebraic laws:

(P ∥E Q) = (Q ∥E P)>>= (λ(x, y) • Ret (y, x)) div ∥E P = div

P |[E]|Q = Q |[E]| P P ||| Q = Q ||| P skip ||| P = P

Parallel composition is commutative, except that we must swap the outputs, and so |[E]| and256

||| are commutative as well. Parallel has div as an annihilator for similar reasons to 2. For |||,257

skip is a unit since there is no possibility of communication and no values are returned.258

The final operator we consider is hiding, P \ A, which turns the events in A into τs:259

▶ Definition 10 (Hiding). P \ A is defined corecursively by the following equations:260

Vis(F) \ A =


Sil (F(e) \ A) if A ∩ dom(F) = {e}
Vis {(e,P \ A) | (e,P) ∈ F} if A ∩ dom(F) = ∅
stop otherwise

261

Sil(P) \ A = Sil(P \ A) Ret x \ A = Ret x262
263

We consider a restricted version of hiding where only one event can be hidden at a time, to264

avoid nondeterminism. When hiding the events of A in the choice function F there are three265

cases: (1) there is precisely one event e ∈ A enabled, in which case it is hidden; (2) no enabled266

event is in A, in which case the event remains visible; (3) more than one e ∈ A is enabled,267

and so we deadlock. We again impose maximal progress here, so that an enabled event to be268

CONCUR 2021

https://github.com/isabelle-utp/interaction-trees/blob/7695143479e6f604209545c500db1c6ee6d25faa/ITree_CSP.thy#L321
https://github.com/isabelle-utp/interaction-trees/blob/7695143479e6f604209545c500db1c6ee6d25faa/ITree_CSP.thy#L476
https://github.com/isabelle-utp/interaction-trees/blob/7695143479e6f604209545c500db1c6ee6d25faa/ITree_CSP.thy#L571

17:8 Formally Verified Simulations of State-Rich Processes using Interaction Trees

hidden is prioritised over other visible events: (a → P [] b → Q) \ {a} = τP, for example.269

In spite of the significant restrictions on hiding, it supports the common pattern where one270

output event is matched with an input event. Moreover, a priority can be placed on the271

order in which events are hidden, rather than deadlocking, by sequentially hiding events.272

Hiding can introduce divergence, as the following theorem shows: (iter (sync e)) \ e = div .273

3.2 Circus274

Whilst CSP processes can be parametrised to allow modelling state, there is no support for275

explicit state operators like assignment. The do notation somewhat allows variables, but276

these are immutable and are not preserved across iterations. Circus [42, 32] is an extension277

of CSP that allows state variables. Given a state variable buf::integer list, the buffer278

example can be expressed in Circus as follows:279

buf := [] # loop((Input?(i)→ buf := buf @ [i])280

2 ((length(buf) > 0) & Output!(hd buf)→ buf := tl buf)281

2 State!(buf)→ Skip)282
283

We update the state with assignments, which are threaded through sequential composition.284

In our work [15, 14, 16], each state variable is modelled as a lens [12], x :: V =⇒ S. This285

is a pair of functions get :: V ⇒ S and put :: S ⇒ V ⇒ S, which query and update the286

variables present in state S, and satisfy intuitive algebraic laws [14]. They allow an abstract287

representation of state spaces, where no explicit model is required to support the laws of288

programming [22]. Lenses can be designated as independent, x ▷◁ y, meaning they refer to289

different regions of S. An expression on state variables is simply a function e :: S ⇒ V , where290

V is the return type. We can check whether an expression e uses a lens x using unrestriction,291

written x ♯ e. If x ♯ e, then e does not use x in its valuation, for example x ♯ (y + 1), when292

x ▷◁ y. Updates to variables can be expressed using the notation [x1 ⇝ e1, x2 ⇝ e2, · · ·], with293

xi :: Vi =⇒ S and ei :: S ⇒ Vi , which represents a function S ⇒ S.294

We can characterise Circus through a Kleisli lifting of CSP processes that return values,295

so that Circus actions are simply homogeneous KTrees. We define the core operators below:296

▶ Definition 11 (Circus Operators).297

⟨σ⟩ ≜ (λ s • Ret(σ(s)))298

x := e ≜ ⟨[x ⇝ e]⟩299

c?x:A→ F(x) ≜ (λ s • inp c A >>= (λ x • F(x) s))300

c!e → P ≜ (λ s • outp c (e s)>>= (λ x • P s))301

P 2 Q ≜ (λ s • P(s) 2 Q(s))302

P |[ns1|E |ns2]|Q ≜ (λ s • (P(s) ∥E Q(s))>>= (λ(s1, s2) • s ◁ns1 s1 ◁ns2 s2))303
304

Operator ⟨σ⟩ lifts a function σ : S ⇒ S to a KTree. It is principally used to represent305

assignments, which can be constructed using our maplet notation, such that a single assign-306

ment x := e is ⟨[x ⇝ e]⟩. Most of the remaining operators are defined by lifting of their307

CSP equivalents. An output c!e → P carries an expression e, rather than a value, which308

can depend on the state variables. The main complexity is the Circus parallel operator,309

P |[ns1|E |ns2]|Q, which allows P and Q to act on disjoint portions of the state, characterised310

by the name sets ns1 and ns2. We represent ns1 and ns2 as independent lenses, ns1 ▷◁ ns2,311

though they can be thought of as sets of variables with ns1 ∩ ns2 = ∅. The definition of312

https://github.com/isabelle-utp/interaction-trees/blob/4bdea2d0a52341e7a19abc3950a3bcdd4b65e7fd/examples/ITree_Circus_Examples.thy#L9
https://github.com/isabelle-utp/interaction-trees/blob/4bdea2d0a52341e7a19abc3950a3bcdd4b65e7fd/ITree_Circus.thy#L7

Simon Foster, Chung-Kil Hur, and Jim Woodcock 17:9

the operator first lifts ∥E , and composes this with a merge function. The merge function313

constructs a state that is composed of the ns1 region from the final state of P, the ns2 region314

from Q, and the remainder coming from the initial state s. This is achieved using the lens315

override operator s1 ◁X s2, which extracts the region described by X from s2 and overwrites316

the corresponding region in s1, leaving the complement unchanged.317

Our Circus operators satisfy many standard laws [32, 16], beyond the CSP laws:318

⟨σ⟩ # ⟨ρ⟩ = ⟨ρ ◦ σ⟩319

⟨σ⟩ # (P 2 Q) = (⟨σ⟩ # P) 2 (⟨σ⟩ # Q)320

x := e # y := f = y := f # x := e if x ▷◁ y, x ♯ f , y ♯ e321

P |[ns1|E |ns2]|Q = Q |[ns2|E |ns1]|P if ns1 ▷◁ ns2322
323

Sequential composition of two state updates σ and ρ entails their functional composition.324

State updates distribute through external choice from the left. Two variable assignments325

commute provided their variables are independent (x ▷◁ y) and their respective expressions326

do not depend on the adjacent variable. Circus parallel composition is commutative, provided327

that we also switch the name sets.328

4 Linking to Failures-Divergences Semantics329

Next, we show how ITrees are related to the standard failures-divergences semantics of CSP [8].330

The utility of this link is to both allow symbolic verification of ITrees and allow them to act331

as a target of step-wise refinement. In this way, we can use existing the mechanisations of the332

CSP set-based and relational semantics [39, 16] to capture and reason about nondeterministic333

specifications, and use ITrees to provide executable implementations.334

In the failures-divergences model, a process is characterised by two sets: F :: (E✓ list ×335

E set) set and D :: P(E list), which are, respectively, the set of failures and divergences. A336

failure is a trace of events plus a set of events that can be refused at the end of the interaction.337

A divergence is a trace of events that leads to divergent behaviour. A distinguished event338

✓ ∈ E is used as the final element of a trace to indicate that this is a terminating observation.339

For example, consider the process a → c → skip 2 b → div , which initially permits an a340

or b event, and following a permits a c event. It exhibits the failure ([], {c}), since before341

any events are performed, the event c is being refused. A second failure is ([a], {a, b}), since342

after performing an a, only c is enabled and the other events are refused. A third failure343

is ([a, c,✓], {a, b, c}), which represents successful termination, after which all events are344

refused. This process also has a divergence trace [b], since after performing event b, the345

process diverges. If a divergent state is unreachable then D is empty. Here, we show how to346

extract F and D from any ITree, and thus processes constructed from the operators of §3.347

We begin by giving a big-step operational semantics to ITrees, using an inductive predicate.348

▶ Definition 12 (Big-Step Operational Semantics).349

−

P []−→ P
P tr−→ P ′

τP tr−→ P ′

e ∈ E F(e) tr−→ P ′

([] x ∈ E • F(x)) e#tr−−−→ P ′

The relation P tr−→ Q means that P can perform the trace of visible events contained in the350

list tr : E list and evolve to the ITree Q. This relation skips over τ events. The first rule351

states that any ITree may perform an empty trace ([]) and remain at the same state. The352

second rule states that if P can evolve to P ′ by performing tr , then so can τP. The final rule353

states that if e is an enabled visible event, and P(e) can evolve to P ′ by doing tr , then the354

CONCUR 2021

https://github.com/isabelle-utp/interaction-trees/blob/4bdea2d0a52341e7a19abc3950a3bcdd4b65e7fd/ITree_Circus.thy#L44
https://github.com/isabelle-utp/interaction-trees/blob/4bdea2d0a52341e7a19abc3950a3bcdd4b65e7fd/Interaction_Trees.thy#L310

17:10 Formally Verified Simulations of State-Rich Processes using Interaction Trees

event choice can evolve to P ′ via e#tr , which is tr with e inserted at the head. This inductive355

predicate is different from the trace predicate (is trace of) in [43], since P tr−→ P ′ records356

both the trace and the continuation ITree. It is therefore more general, and provides the357

foundation for characterising both structural operational and denotational semantics. With358

these laws, we can prove the usual operational laws for sequential composition as theorems:359

▶ Theorem 13 (Sequential Operational Semantics).360

−
skip→ ✓()

P tr−→ P ′

(P >>= Q)
tr−→ (P ′ >>= Q)

P tr1−−→ ✓x Q(x) tr2−−→ Q′

(P >>= Q)
tr1 @ tr2−−−−−→ Q′

The skip process immediately terminates, returning (). If the left-hand side P of >>= can361

evolve to P ′ performing the events in tr , then the overall bind evolves similarly. If P can362

terminate after doing tr1, returning x, and the continuation Q(x) can evolve over tr2 to Q′
363

then the overall >>= can also evolve over the concatenation of tr1 and tr2, tr1 @ tr2, to Q′.364

Often in CSP, one likes to show that there are no divergent states, a property called365

divergence freedom. It is captured by the following inductive-coinductive definition:366

▶ Definition 14 (Divergence Freedom).

−
✓x
⇒ R

P ⇒ R
τP ⇒ R

ran(F) ⊆ R
Vis F ⇒ R div-free ≜

⋃
{R | R ⊆ {P | P ⇒ R}}

Predicate P ⇒ R is defined inductively. It requires that P stabilises to a Ret, or to a Vis367

whose coninuations are all contained in R. Then, div-free is the largest set consisting of all368

sets R = {P | P ⇒ R}, and is coinductively defined. If we can find an R such that for every369

P ∈ R, it follows that P ⇒ R, that is R is closed under stabilisation, then any P ∈ R is370

divergence free. Essentially, R needs to enumerate the symbolic post-stable states of an371

ITree; for example R = {run E} satisfies the provisos and so run E is divergence free. We372

have proved that P ∈ div-free ⇔ (∄s • P s−→ div), which gives the operational meaning.373

With our transition relation, we can define Roscoe’s step relation, which is used to link374

the operational and denotational semantics of CSP [36, Section 9.5]. The utility of this375

definition, and the theorems that follow, is to permit symbolic verification of CSP processes376

by calculating their set-based characterisation.377

▶ Definition 15 (Roscoe’s Step Relation).

(P s
=⇒ P ′) ≜ ((∃ t ∈ Σ list • s = t @ [✓x] ∧ P t−→ ✓x ∧ P ′ = stop) ∨ (set(s) ⊆ Σ ∧ P s−→ P ′))

Here, set(s) extracts the set of elements from a list. The step relation is similar to s−→, except378

that the event type is adjoined with a special termination event ✓. We define the enlarged379

set Σ✓ ≜ Σ ∪ {✓x | x ∈ S}, which adds a family of events parametrised by return values, as380

in the semantics of Occam [34], which derives from CSP. A termination is signalled when the381

transition relation reaches a Ret x in the ITree, in which case the trace is augmented with ✓x382

and the successor state is set to stop. We often use a condition of the form set(s) ⊆ Σ to mean383

that no ✓x event is in s. We can now define the sets of traces, failures, and divergences [36]:384

▶ Definition 16 (Traces, Failures, and Divergences).385

traces(P) ≜ {s | set(s) ⊆ Σ✓ ∧ (∃P ′ • P s
=⇒ P ′)}386

P ref E ≜ ((∃F • P = Vis F ∧ E ∩ dom(F) = ∅) ∨ (∃ x • P = Ret x ∧ ✓x /∈ E))387

failures(P) ≜
{
(s,X) | set(s) ⊆ Σ✓ ∧ (∃Q • P s

=⇒ Q ∧ Q ref X)
}

388

divergences(P) ≜ {s @ t | set(s) ⊆ Σ ∧ set(t) ⊆ Σ ∧ (∃Q • P s
=⇒ Q ∧ Q⇑)}389

390

https://github.com/isabelle-utp/interaction-trees/blob/4bdea2d0a52341e7a19abc3950a3bcdd4b65e7fd/Interaction_Trees.thy#L420
https://github.com/isabelle-utp/interaction-trees/blob/4bdea2d0a52341e7a19abc3950a3bcdd4b65e7fd/ITree_Divergence.thy#L30
https://github.com/isabelle-utp/interaction-trees/blob/4bdea2d0a52341e7a19abc3950a3bcdd4b65e7fd/ITree_FDSem.thy#L46
https://github.com/isabelle-utp/interaction-trees/blob/4bdea2d0a52341e7a19abc3950a3bcdd4b65e7fd/ITree_FDSem.thy#L77

Simon Foster, Chung-Kil Hur, and Jim Woodcock 17:11

The set traces(P) is the set of all possible event sequences that P can perform. For failures(P),391

we need to determine the set of events that an ITree is refusing, P ref E . If P is a visible392

event, Vis F , then any set of events E outside of dom(F) is refused. If P is a return event,393

Ret x , then every event other than ✓x is refused. With this, we can implement Roscoe’s form394

for the failures. Finally, the divergences is simply a trace s leading to a divergent state Q⇑ ,395

followed by any trace t. We exemplify these definitions with two calculations of failures:396

failures(inp c A) =
{([],E) | ∀ x ∈ A • c.x /∈ E} ∪ {([c.x],E) | x ∈ A ∧ ✓ /∈ E}
∪ {([c.x,✓()],E) | x ∈ A}397

failures(P >>= Q) =
{(s,X) | set(s) ⊆ Σ ∧ (s,X ∪ {✓x | x ∈ S}) ∈ failures(P)}
∪ {(s @ t,X) | ∃ v • s @ [✓v] ∈ traces(P) ∧ (t,X) ∈ failures(Q(v))}398

399

The failures of inp c A consists of (1) the empty trace, where no valid input on c is refused;400

(2) the trace where an input event c.x occurred, and ✓() is not being refused; and (3) the401

trace where both c.x and ✓() occurred, and every event is refused. The failures of P >>= Q402

consist of (1) the failures of P that do not reach a return, and (2) the terminating traces403

of P, ending in ✓v appended with a failure of Q(v), the continuation. With the help of404

Isabelle’s simplifier, these equations can be used to automatically calculate the failures and405

divergences, which can be easier to reason with than directly applying coinduction.406

We conclude this section with some important properties of our semantic model:407

▶ Theorem 17 (Semantic Model Properties).408

(s,X) ∈ failures(P) ∧ (Y ∩ {x | s @ [x] ∈ traces(P)} = ∅)⇒ (s,X ∪Y) ∈ failures(P)409

s ∈ divergences(P) ∧ set(t) ⊆ Σ⇒ s @ t ∈ divergences(P)410

P ≈ Q ⇒ (failures(P) = failures(Q) ∧ divergences(P) = divergences(Q))411

P ∈ div-free⇔ divergences(P) = ∅412

P ∈ div-free⇒ (∀ s a • s @ [a] ∈ traces(P)⇒ (s, {a}) /∈ failures(P))413
414

The first two are standard healthiness conditions of the failures-divergences model [36], called415

F3 and D1, respectively. F3 states that if (s,X) is a failure of P then any event that cannot416

subsequently occur after s, according to the traces, must also be refused. D1 states that417

the set of divergences is extension closed. We have also proved that two weakly bisimilar418

processes have the same set of divergences and failures. The next result links the coinductive419

definition of divergence freedom and the set of divergences. The final result demonstrates420

that ITrees satisfy Roscoe’s definition of determinism for CSP [36]: if an ITree P is divergence421

free then there is no trace after which an event can be both accepted and also refused.422

5 Simulation by Code Generation423

The Isabelle code generator [19, 18] can be used to extract code from (co)datatypes, functions,424

and other constructs, to functional languages like SML, Haskell, and Scala. Although ITrees425

can be infinite, this is not a problem for languages with lazy evaluation, and so we can step426

through the behaviour of an ITree. Code generation then allows us to support generation of427

verified simulators, and provides a potential route to correct implementations.428

The main complexity is a computable representation of partial functions. Whilst A 7→ B429

is partly computable, all that we can do is apply it to a value and see whether it yields an430

output or not. For simulations and implementations, however, we typically want to determine431

a menu of enabled events for the user to select from. Moreover, calculation of a semantics for432

CONCUR 2021

https://github.com/isabelle-utp/interaction-trees/blob/4bdea2d0a52341e7a19abc3950a3bcdd4b65e7fd/ITree_FDSem.thy#L363

17:12 Formally Verified Simulations of State-Rich Processes using Interaction Trees

Figure 1 Simulating the CSP buffer in the Glasgow Haskell Interpreter

CSP operators like 2 and ∥ requires us to compute with partial functions. For this, we need433

a way of calculating values for functions dom, ◁, and ⊕, which is not possible for arbitrary434

partial functions. Instead, we need a concrete implementation and a data refinement [18].435

We choose associative lists as an implementation, A 7→ B ≈ (A × B) list, which limits436

us to finite constructions. However, it has the benefit of being easily pretty printed and so437

makes the simulator easier to implement. More sophisticated implementations are possible,438

as the core theory of ITrees is separated from the code generation setup. To allow us to439

represent partial functions by associative lists, we need to define a mapping function:440

fun pfun_alist :: "(’a × ’b) list ⇒ (’a 7→ ’b)" where441

"pfun_alist [] = {7→}" | "pfun_alist ((k,v) # f) = pfun_alist f ⊕ {k 7→ v}"442

This recursive function converts an associative list to a partial function, by adding each pair443

in the list as a maplet. We generally assume that associative lists preserve distinctness of444

keys. However, for this function, keys which occur earlier take priority. With this function445

we can then demonstrate how the different partial function operators can be computed. We446

prove the following congruence equations as theorems in Isabelle/HOL.447

(pfun alist f)⊕ (pfun alist g) = pfun alist (g @ f)448

A◁ (pfun alist f) = pfun alist (AList.restrict A m)449

(λ x ∈ (set xs) • f (x)) = pfun alist (map (λ k • (k, f k)) xs)450
451

Override (⊕) is expressed by concatenating the associative lists in reverse order. Domain452

restriction (◁) has an efficient implementation in Isabelle, AList.restrict, which we use. For a453

partial λ-abstraction, we assume that the domain set is characterised by a list (set xs). Then,454

a λ term can be computed by mapping the body function f over xs.455

With these equations, we can set up the code generator. The idea is to designate certain456

representations of abstract types as code datatypes in the target language, of which each457

mapping function is a constructor. For sets, the following Haskell code datatype is produced:458

459
data Set a = Set [a] | Coset [a] deriving (Read, Show);460461

A set is represented as a list of values using the constructor Set, which corresponds to the462

function set. It is often the case that we wish to capture a complement of another set, and so463

there is also the constructor Coset for a set whose elements are all those not in the given list.464

Functions on sets are then computed by code equations, which provide the implementation465

for each concrete representation. The membership function member is implemented like this:466

https://github.com/isabelle-utp/interaction-trees/blob/df092d827c91393ea5b29a0cece4567380a8c931/examples/Buffer_CSP.hs
https://github.com/isabelle-utp/Z_Toolkit/blob/b51b75fa419fb69d33d542238238e6f692732c37/Partial_Fun.thy#L700

Simon Foster, Chung-Kil Hur, and Jim Woodcock 17:13

467
member :: forall a. (Eq a) => a -> Set a -> Bool;468

member x (Coset xs) = not (x ‘elem‘ xs); member x (Set xs) = xs ‘elem‘ x;469470

Each case for the function corresponds to a code equation. The function elem is the Haskell471

prelude function that checks whether a value is in a list. This kind of representation ensures472

correctness of the generated code with respect to the Isabelle specifications. Similarly to473

sets, we can code generate the following representation for partial functions:474

475
data Pfun a b = Pfun_alist [(a, b)];476

477

dom :: forall a b. Pfun a b -> Set a;478

dom (Pfun_alist xs) = Set (map fst xs);479480

A partial function has a single constructor, although it is possible to augment this with481

additional representations. Each code equation likewise becomes a case for the corresponding482

recursive function, as illustrated by the domain function. Finally, we can code generate483

interaction trees, which are represented by a very compact datatype:484

485
data Itree a b = Ret b | Sil (Itree a b) | Vis (Pfun a (Itree a b));486487

Each semantic definition, including corecursive functions, are also automatically mapped to488

Haskell functions. We illustrate the code generated for external choice below:489

490
extchoice :: (Eq a, Eq b) => Itree a b -> Itree a b -> Itree a b;491

extchoice p q = (case (p, q) of {492

(Ret r, Ret y) -> (if r == y then Ret r else Vis zero_pfun);493

(Ret _, Sil qa) -> Sil (extchoice p qa); (Ret r, Vis _) -> Ret r;494

(Sil pa, _) -> Sil (extchoice pa q); (Vis _, Ret a) -> Ret a;495

(Vis _, Sil qa) -> Sil (extchoice p qa);496

(Vis f, Vis g) -> Vis (map_prod f g); });497498

The map_prod function corresponds to ⊙, and is defined in terms of the corresponding code499

generated functions for partial functions. The external choice operator (2) is simply defined500

as an infinitely recursive function with each of the corresponding cases in Definition 7.501

For constructs like inp (Definition 6), there is more work to support code generation,502

since these can potentially produce an infinite number of events which cannot be captured503

by an associative list. Consider, for example, inp c {0..}, for c : N ∆−→E , which can produce504

any event c.i for i ≥ 0. We can code generate this by limiting the value set to be finite, for505

example {0..3}. Then, the code generator maps this to a list [0, 1, 2, 3], which is computable.506

Thus, we can finally export code for concrete examples using the operator implementations.507

We can now implement a simple simulator, the code for which is shown below:508

509
sim_cnt :: (Eq e, Show e, Read e, Show s) => Int -> Itree e s -> IO ();510

sim_cnt n (Ret x) = putStrLn ("Terminated:␣" ++ show x);511

sim_cnt n (Sil p) =512

do { if (n == 0) then putStrLn "Internal␣Activity..." else return ();513

if (n >= 20)514

then do { putStr "Many␣steps␣(>␣20);␣Continue?"; q <- getLine;515

if (q=="Y") then sim_cnt 0 p else putStrLn "Ended."; }516

else sim_cnt (n + 1) p };517

sim_cnt n (Vis (Pfun_alist [])) = putStrLn "Deadlocked.";518

sim_cnt n t@(Vis (Pfun_alist m)) =519

do { putStrLn ("Events:␣" ++ show (map fst m)); e <- getLine;520

case (reads e) of521

CONCUR 2021

https://github.com/isabelle-utp/interaction-trees/blob/df092d827c91393ea5b29a0cece4567380a8c931/examples/Buffer_CSP.hs#L36
https://github.com/isabelle-utp/interaction-trees/blob/df092d827c91393ea5b29a0cece4567380a8c931/examples/Buffer_CSP.hs#L40
https://github.com/isabelle-utp/interaction-trees/blob/df092d827c91393ea5b29a0cece4567380a8c931/examples/Buffer_CSP.hs#L173
https://github.com/isabelle-utp/interaction-trees/blob/df092d827c91393ea5b29a0cece4567380a8c931/examples/Buffer_CSP.hs#L222

17:14 Formally Verified Simulations of State-Rich Processes using Interaction Trees

[] -> do { putStrLn "No␣parse"; sim_cnt n t }522

[(v, _)] -> case (lookup v m) of523

Nothing -> do { putStrLn "Rejected"; sim_cnt n t }524

Just k -> sim_cnt 0 k };525

simulate = sim_cnt 0;526527

The idea is to step through τs until we reach either a ✓x , in which case we terminate, or a Vis,528

in which we case the user can choose an option. Since divergence is a possibility, we limit the529

number of τs that the will be skipped. After 20 τ steps, the user can choose to continue or530

abort the simulation. If an empty event choice is encountered, then the simulation terminates531

due to deadlock. Otherwise, it displays a menu of events, allows the user to choose one,532

and then recurses following the given continuation. The simulator currently depends on533

associative lists to represent choices, but other implementations are possible.534

In order to apply the simulator, we need only augment the generated code for a particular535

ITree with the simulator code. Figure 1 shows a simulation of the CSP buffer in §3, with the536

possible inputs limited to {0..3}. We provide an empty list as a parameter for the initial537

state. The simulator tells us the events enabled, and allows us to pick one. If we try and538

pick a value not enabled, the simulator rejects this. Since lenses and expressions can also be539

code generated, we can also simulate the Circus version of the buffer, with the same output.540

As a more sophisticated example, we have implemented a distributed ring buffer, which
is adopted from the original Circus paper [42]. The idea is to represent a buffer as a ring of
one-place cells, and a controller that manages the ring. It has the following form:

(Controller |[{rd.c,wrt.c | c ∈ N}]| (||| i ∈ {0..maxbuff } • Cell(i))) \ {rd.c,wrt.c | c ∈ N}

where rd.c and wrt.c are internal channels for the controller to communicate with the ring.
Each cell is a single place buffer with a state variable val, and has the form

Cell(i) ≜ wrt?c → val := v # loop(wrt?c → val := v 2 rd!val → Skip)

The cells are arranged through indexed interleaving, and maxbuff is the buffer size. The541

channels Input and Output are used for communicating with the overall buffer. Space will542

not permit further details. The simulator can efficiently simulate this example, for a small543

ring with 5 cells, with a similar output to Figure 1, which is a satisfying result.544

We were also able to simulate the ring buffer with 100 cells, which requires about 3545

seconds to compute the next step. With 1000 cells, the simulator takes more than a minute546

to calculate the next transition. The highest number of cells we could reasonably simulate547

is around 250. However, we have made no attempt to optimise the code, and several data548

types could be replaced with efficient implementations to improve scalability. Thus, as an549

approach to simulation and potentially implementation, this is very promising.550

6 Related Work551

Infinite trees are a ubiquitous model for concurrency [40]. In particular, ITrees can be seen552

as a restricted encoding of Milner’s synchronisation trees [27, 41, 28]. In contrast to ITrees,553

synchronisation trees allow multiple events from each node, including both visible and τ554

events. They have seen several generalisations, most recently by Ferlez et al. [10], who555

formalise Generalized Synchronisation Trees based on partial orders, define bisimulation556

relations [11], and apply them to hybrid systems. Our work is different, because ITrees use557

explicit coinduction and corecursion, but there are likely mutual insights to be gained.558

https://github.com/isabelle-utp/interaction-trees/blob/df092d827c91393ea5b29a0cece4567380a8c931/examples/RingBuffer.thy#L96
https://github.com/isabelle-utp/interaction-trees/blob/df092d827c91393ea5b29a0cece4567380a8c931/examples/RingBuffer.hs

Simon Foster, Chung-Kil Hur, and Jim Woodcock 17:15

ITrees naturally support deterministic interactions, which makes them ideal for imple-559

mentations. Milner extensively discusses determinism in [28, chapter 11], a property which is560

imposed by construction in our operators. Similarly, Hoare defines a deterministic choice561

operator a → P | b → Q in [21, page 29], which is similar to ours except that Hoare’s562

operator imposes determinism syntactically, where we introduce deadlock.563

ITrees [43], and their mechanisation in Coq, have been applied in various projects as a564

way of defining abstract yet executable semantics [23, 44, 26, 45, 46, 25, 37]. They have been565

used to verify C programs [23] and a HTTP key-value server [25]. The Coq mechanisation566

uses features not available in Isabelle, notably type constructor variables. Specifically, in567

[43] the Vis constructor has two parameters, rather than one, for the enabled events (i.e.568

channels) e : E A and k : A → itree E R, a total function, for the continuation. There, E is a569

type constructor over A, the type of data. Our work avoids this, with no apparent loss of570

generality, by fixing an event universe, E ; using partial functions to represent visible event571

choices; and using prisms [33] to characterise channels. We can encode the two parameter572

Vis e k as [] x∈dom(matche)→ k(matche(x)) with e : A ∆−→E . The benefit of having a fixed573

E is that ITrees become much simpler semantic objects. Traces can be represented as lists,574

rather than the bespoke type used in [43]. These are amenable to first-order automated575

proof [5], which has allowed us to develop our library quickly and with minimal effort.576

7 Conclusions577

In this paper we showed how Interaction Trees [43] can be used to develop verified simulations578

for state-rich process languages with the help of Isabelle codatatypes [4] and the code579

generator [19, 18]. Our early results indicate that the technique provides both tractable580

verification, with the help of Isabelle’s proof automation [5] and efficient simulation. We581

applied our technique to the CSP and Circus process languages, though it is applicable to a582

variety of other process algebraic languages.583

So far, we have focused primarily on deterministic processes, since these are easier to584

implement. This is not, however, a limitation of the approach. There are at least three585

approaches that we will investigate to handling nondeterminism in the future: (1) use of a586

dedicated indexed nondeterminism event; (2) extension of ITrees to permit a computable587

set of events following a τ ; (3) a further Kleisli lifting of ITrees into sets. Moreover, we will588

formally link ITrees to our formalisation of reactive contracts [15, 16], which provides both a589

denotational semantics for Circus and a refinement calculus for reactive systems, building on590

our link with failures-divergences. We will implement the remaining CSP operators, such as591

renaming and interruption. We will also further investigate the failures-divergence semantics592

of our ITree process operators, and determine whether failures-divergences equivalence entails593

weak bisimulation. Finally we will provide a more user friendly interface for our simulator as594

found in animators like FDR4’s probe tool [17] and ProB [24] for Event-B.595

Our work has many practical applications in production of verified simulations. We596

intend to use it to mechanise a semantics for the RoboChart [29] and RoboSim [9] languages,597

which are formal UML-like languages for modelling robots with denotational semantics based598

in CSP. This will require us to consider discrete time, which we believe can be supported599

using a dedicated time event in ITrees, similar to tock-CSP [35]. This will build on our600

colleagues’ work with ✓-tock [2], a new semantics for tock-CSP. This will open up a pathway601

from graphical models to verified implementations of autonomous robotic controllers. In602

concert with this, we will also explore links to our other theories for hybrid systems [31, 13],603

to allow verification of controllers in the presence of a continuously evolving environment.604

CONCUR 2021

17:16 Formally Verified Simulations of State-Rich Processes using Interaction Trees

References605

1 R.-J. Back and J. Wright. Refinement Calculus: A Systematic Introduction. Springer, 1998.606

2 J. Baxter, P. Ribeiro, and A. Cavalcanti. Sound reasoning in tock-CSP. Acta Informatica,607

April 2021. doi:10.1007/s00236-020-00394-3.608

3 J. C. Blanchette, A. Bouzy, A. Lochbihler, A. Popescu, and D. Traytel. Friends with Benefits:609

Implementing Corecursion in Foundational Proof Assistants. In Programming Languages and610

Systems, 26th European Symposium on Programming (ESOP), April 2017.611

4 J. C. Blanchette, J. Hölzl, A. Lochbihler, L. Panny, A. Popescu, and D. Traytel. Truly modular612

(co)datatypes for Isabelle/HOL. In Gerwin Klein and Ruben Gamboa, editors, 5th Intl. Conf.613

on Interactive Theorem Proving (ITP), volume 8558 of LNCS, pages 93–110. Springer, 2014.614

5 J. C. Blanchette, C. Kaliszyk, L. C. Paulson, and J. Urban. Hammering towards QED. Journal615

of Formalized Reasoning, 9(1), 2016. doi:10.6092/issn.1972-5787/4593.616

6 J. C. Blanchette, A. Popescu, and D. Traytel. Foundational extensible corecursion: a proof617

assistant perspective. In 20th Intl. Conf. on Functional Programming (ICFP), pages 192–204.618

ACM, August 2015. doi:10.1145/2858949.2784732.619

7 J. C. Blanchette, A. Popescu, and D. Traytel. Soundness and completeness proofs by620

coinductive methods. Journal of Automated Reasoning, 58:149–179, 2017. doi:10.1007/621

s10817-016-9391-3.622

8 S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating sequential623

processes. Journal of the ACM, 31(3):560–599, 1984. doi:10.1145/828.833.624

9 A. Cavalcanti, A. Sampaio, A. Miyazawa, P. Ribeiro, M. Filho, A. Didier, W. Li, and625

J. Timmis. Verified simulation for robotics. Science of Computer Programming, 174:1–37,626

2019. doi:10.1016/j.scico.2019.01.004.627

10 J. Ferlez, R. Cleaveland, and S. Marcus. Generalized synchronization trees. In Proc. 17th Intl.628

Conf. on Foundations of Software Science and Computation Structures (FOSSACS), volume629

8412 of LNCS, pages 304–319. Springer, 2014. doi:10.1007/978-3-642-54830-7_20.630

11 J. Ferlez, R. Cleaveland, and S. I. Marcus. Bisimulation in behavioral dynamical systems and631

generalized synchronization trees. In Proc. 2018 IEEE Conf. on Decision and Control (CDC),632

pages 751–758. IEEE, 2018. doi:10.1109/CDC.2018.8619607.633

12 J. Foster. Bidirectional programming languages. PhD thesis, University of Pennsylvania, 2009.634

13 S. Foster. Hybrid relations in Isabelle/UTP. In 7th Intl. Symp. on Unifying Theories of635

Programming (UTP), volume 11885 of LNCS, pages 130–153. Springer, 2019.636

14 S. Foster, J. Baxter, A. Cavalcanti, J. Woodcock, and F. Zeyda. Unifying semantic foundations637

for automated verification tools in Isabelle/UTP. Science of Computer Programming, 197,638

October 2020. doi:10.1016/j.scico.2020.102510.639

15 S. Foster, A. Cavalcanti, S. Canham, J. Woodcock, and F. Zeyda. Unifying theories of640

reactive design contracts. Theoretical Computer Science, 802:105–140, January 2020. doi:641

10.1016/j.tcs.2019.09.017.642

16 S. Foster, K. Ye, A. Cavalcanti, and J. Woodcock. Automated verification of reactive and643

concurrent programs by calculation. Journal of Logical and Algebraic Methods in Programming,644

121, June 2021. doi:10.1016/j.jlamp.2021.100681.645

17 T. Gibson-Robinson, P. Armstrong, A. Boulgakov, and A. W. Roscoe. FDR3 — A Modern646

Refinement Checker for CSP. In Erika Ábrahám and Klaus Havelund, editors, Tools and647

Algorithms for the Construction and Analysis of Systems, volume 8413 of LNCS, pages 187–201,648

2014.649

18 F. Haftmann, A. Krauss, O. Kuncar, and T. Nipkow. Data refinement in Isabelle/HOL. In650

Proc. 4th Intl. Conf. on Interactive Theorem Proving (ITP), volume 7998 of LNCS, pages651

100–115. Springer, 2013.652

19 F. Haftmann and T. Nipkow. Code generation via higher-order rewrite systems. In 10th Intl.653

Symp. on Functional and Logic Programming (FLOPS), volume 6009 of LNCS, pages 103–117.654

Springer, 2010.655

https://doi.org/10.1007/s00236-020-00394-3
https://doi.org/10.6092/issn.1972-5787/4593
https://doi.org/10.1145/2858949.2784732
https://doi.org/10.1007/s10817-016-9391-3
https://doi.org/10.1007/s10817-016-9391-3
https://doi.org/10.1007/s10817-016-9391-3
https://doi.org/10.1145/828.833
https://doi.org/10.1016/j.scico.2019.01.004
https://doi.org/10.1007/978-3-642-54830-7_20
https://doi.org/10.1109/CDC.2018.8619607
https://doi.org/10.1016/j.scico.2020.102510
https://doi.org/10.1016/j.tcs.2019.09.017
https://doi.org/10.1016/j.tcs.2019.09.017
https://doi.org/10.1016/j.tcs.2019.09.017
https://doi.org/10.1016/j.jlamp.2021.100681

Simon Foster, Chung-Kil Hur, and Jim Woodcock 17:17

20 Matthew Hennessy and Tim Regan. A process algebra for timed systems. Information and656

Computation, 117(2):221–239, 1995.657

21 C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.658

22 C. A. R. Hoare, I. Hayes, J. He, C. Morgan, A. Roscoe, J. Sanders, I. Sørensen, J. Spivey, and659

B. Sufrin. The laws of programming. Communications of the ACM, 30(8):672–687, August660

1987.661

23 Nicolas Koh, Yao Li, Yishuai Li, Li yao Xia, Lennart Beringer, Wolf Honoré, William Mansky,662

Benjamin C. Pierce, and Steve Zdancewic. From C to Interaction Trees: Specifying, Verifying,663

and Testing a Networked Server. In Proc. 8th ACM SIGPLAN International Conference on664

Certified Programs and Proofs (CPP), 2019. doi:10.1145/3293880.3294106.665

24 M. Leuschel and M. Butler. ProB: an automated analysis toolset for the B method. Int J666

Softw Tools Technol Transf, 10:185–203, 2008. doi:10.1007/s10009-007-0063-9.667

25 Yishuai Li, Benjamin C. Pierce, and Steve Zdancewic. Model-based testing of networked668

applications. In Proc. 30th ACM SIGSOFT International Symposium on Software Testing669

and Analysis (ISSTA), 2021.670

26 William Mansky, Wolf Honoré, and Andrew W. Appel. Connecting higher-order separation671

logic to a first-order outside world. In Proc. 29th European Symposium on Programming672

(ESOP), 2020.673

27 Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Computer674

Science. Springer, 1980.675

28 Robin Milner. Communication and Concurrency. Prentice Hall, 1989.676

29 A. Miyazawa, P. Ribeiro, W. Li, A. Cavalcanti, J. Timmis, and J. Woodcock. RoboChart:677

modelling and verification of the functional behaviour of robotic applications. Software and678

Systems Modelling, January 2019. doi:10.1007/s10270-018-00710-z.679

30 C. Morgan. Programming from Specifications. Prentice-Hall, January 1996.680

31 J. H. Y. Munive, G. Struth, and S. Foster. Differential Hoare logics and refinement calculi for681

hybrid systems with Isabelle/HOL. In RAMiCS, volume 12062 of LNCS. Springer, April 2020.682

doi:10.1007/978-3-030-43520-2_11.683

32 M. Oliveira, A. Cavalcanti, and J. Woodcock. A UTP semantics for Circus. Formal Aspects of684

Computing, 21:3–32, 2009. doi:10.1007/s00165-007-0052-5.685

33 M. Pickering, J. Gibbons, and N. Wu. Profunctor optics: Modular data accessors. The Art,686

Science, and Engineering of Programming, 1(2), 2017. doi:10.22152/programming-journal.687

org/2017/1/7.688

34 A. W. Roscoe. Denotational semantics for Occam. In Intl. Seminar on Concurrency, volume689

197 of LNCS, pages 306–329. Springer, 1984.690

35 A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 2005.691

36 A. W. Roscoe. Understanding Concurrent Systems. Springer, 2010.692

37 Lucas Silver and Steve Zdancewic. Dijkstra monads forever: Termination-sensitive specifica-693

tions for Interaction Trees. Proceedings of the ACM on Programming Languages, 5(POPL),694

January 2021. doi:10.1145/3434307.695

38 M. Spivey. The Z-Notation - A Reference Manual. Prentice Hall, Englewood Cliffs, N. J.,696

1989.697

39 S. Taha, B. Wolff, and L. Ye. Philosophers may dine – definitively! In Proc. 16th Intl. Conf.698

on Integrated Formal Methods, LNCS. Springer, 2020. doi:10.1007/978-3-030-63461-2_23.699

40 R. J. van Glabbeek. Notes on the methodology of CCS and CSP. Theoretical Computer700

Science, 1997.701

41 G. Winsel. Synchronisation trees. Theoretical Computer Science, 34(1-2):33–82, 1984.702

42 J. Woodcock and A. Cavalcanti. A concurrent language for refinement. In A. Butterfield,703

G. Strong, and C. Pahl, editors, Proc. 5th Irish Workshop on Formal Methods (IWFM),704

Workshops in Computing. BCS, July 2001.705

CONCUR 2021

https://doi.org/10.1145/3293880.3294106
https://doi.org/10.1007/s10009-007-0063-9
https://doi.org/10.1007/s10270-018-00710-z
https://doi.org/10.1007/978-3-030-43520-2_11
https://doi.org/10.1007/s00165-007-0052-5
https://doi.org/10.22152/programming-journal.org/2017/1/7
https://doi.org/10.22152/programming-journal.org/2017/1/7
https://doi.org/10.22152/programming-journal.org/2017/1/7
https://doi.org/10.1145/3434307
https://doi.org/10.1007/978-3-030-63461-2_23

17:18 Formally Verified Simulations of State-Rich Processes using Interaction Trees

43 L.-Y. Xia, Y. Zakowski, P. He, C.-K. Hur, G. Malecha, B. C. Pierce, and S. Zdancewic.706

Interaction trees: Representing recursive and impure programs in Coq. In Proc. 47th ACM707

SIGPLAN Symposium on Principles of Programming Languages (POPL). ACM, 2020. doi:708

10.1145/3371119.709

44 Yannick Zakowski, Paul He, Chung-Kil Hur, and Steve Zdancewic. An equational theory for710

weak bisimulation via generalized parameterized coinduction. In Proc. 9th ACM SIGPLAN711

International Conference on Certified Programs and Proofs (CPP), 2020. doi:10.1145/712

3372885.3373813.713

45 Vadim Zaliva, Ilia Zaichuk, and Franz Franchetti. Verified translation between purely functional714

and imperative domain specific languages in HELIX. In Proc. 12th International Conference715

on Verified Software: Theories, Tools, Experiments (VSTTE), 2020.716

46 Hengchu Zhang, Wolf Honoré, Nicolas Koh, Yao Li, Yishuai Li, Li-Yao Xia, Lennart Beringer,717

William Mansky, Benjamin C. Pierce, and Steve Zdancewic. Verifying an HTTP key-value718

server with Interaction Trees and VST. In Proc. 12th International Conference on Interactive719

Theorem Proving (ITP), 2021. doi:10.4230/LIPIcs.ITP.2021.32.720

https://doi.org/10.1145/3371119
https://doi.org/10.1145/3371119
https://doi.org/10.1145/3371119
https://doi.org/10.1145/3372885.3373813
https://doi.org/10.1145/3372885.3373813
https://doi.org/10.1145/3372885.3373813
https://doi.org/10.4230/LIPIcs.ITP.2021.32

	1 Introduction
	2 Interaction Trees in Isabelle/HOL
	3 CSP and Circus
	3.1 CSP
	3.2 Circus

	4 Linking to Failures-Divergences Semantics
	5 Simulation by Code Generation
	6 Related Work
	7 Conclusions

