POPL 2017
Paris

A Promising Semantics for
Relaxed-Memory Concurrency

Seoul National University
(Korea)

MPI-SWS
(Germany)

Jeehoon Kang
Chung-Kil Hur

Ori Lahav
Viktor Vafeiadis
Derek Dreyer

Relaxed-Memory Concurrency

e Semantics of multi-threaded programs?
- Sequential consistency (SC): simple but
e Relaxed memory models (C/C++, Java)

- Many consistency modes (cost vs. consistency tradeoft)

- - what is the ” semantics?

2 /21

“Right” Concurrency Semantics?

e Conflicting goals of “masters”

e Compiler/hardware: validating optimizations
(e.g. reordering, merging)

e Programmer: supporting reasoning principles
(e.g. DRF theorem, program logic)

3 /2l

“Right” Concurrency Semantics?

e Conflicting goals of “masters”

e Compiler/hardware: validating optimizations
(e.g. reordering, merging) o«

e Programmer: supporting reasoning principles
(e.g. DRF theorem, program logic)

3 /2l

“Right” Concurrency Semantics?

e Conflicting goals of “masters”

e Compiler/hardware: validating optimizations
(e.g. reordering, merging) o«

e Programmer: supporting reasoning principles
(e.g. DRF theorem, program logic)

v 9
h—d

3 /2l

“Right” Concurrency Semantics?

e Conflicting goals of “masters”

e Compiler/hardware: validating optimizations
(e.g. reordering, merging) @]ava memory model

e Programmer: supporting reasoning principles
(e.g. DRF theorem, program logic)

@ C/C++ memory model

Key problem:“out-of-thin-air”

3 /2l

“Out-of-thin-air” problem (1/3)

Load-Buffering (LB)

Thread 1 Thread 2
a=X b=Y
Y =a X =4)

(a=b=42?)

4 /21

“Out-of-thin-air” problem (1/3)

A oad-Buftering (LB)

Registers

Thread 2
a=X b=Y
Y =a X =4)

(a=b=42?)

4 /21

a=X b=Y
Y =a X =4)

(a=b=42?)

4 /21

“Out-of-thin-air’ problem (1/3)

Shared
Locations

Registers

Relaxed

Y =a
(a=b=42?)

4 /21

“Out-of-thin-air” problem (1/3)

Load-Buffering (LB)

Thread 1 Thread 2
a=X b=Y
Y =a X =4)

(a=b=42?)

4 /21

“Out-of-thin-air” problem (1/3)

Load-Buffering (LB)

Thread 1 Thread 2

a =X b=Y
Y =a X =4)
(a=b=42?) |

Allowed by reordering ;‘
(Power/ARM) /

X =4) " 4
b=Y

4 /21

“Out-of-thin-air” problem (1/3)

Load-Buffering (LB)

Thread1 Thread 2 [X=Y=0] (Sel?:fzr;;:)ed-
a =X b=Y — \
Y =4 X = 49 Read X,42(read-from) Read Y,42

(a=b=42?)

Allowed by reordering
(Power/ARM) /

X =42 ¥
b =Y

Write Y,42 Write X,42

Allowed by justification
(C/C++)

-

4 /21

“Out-of-thin-air” problem (1/3)

Load-Buffering (LB)

Thread1 Thread 2 [X=Y=0] (Segleufzr;g)ed-
a =X b=Y — \

Read X,42(read-from) Read Y,42

Y =a X =42 l >< l

(a=b=42?) Write Y,42 Write X,42

Allowed by reordering ‘
(Power/ARM) /

X=42 % Justification is
b=Y too loose!

Allowed by justification
(C/C++)

4 /21

“Out-of-thin-air” problem (2/3)

Classic Out-of-thin-air (OOTA)

Thread 1 Thread 2
a=X b=Y
Y =a X =

(a=b=42?)

51721

“Out-of-thin-air” problem (2/3)

Classic Out-of-thin-air (OOTA)

Thread 1 Thread 2

a =X b=Y
Y =a X=b
(a=b=42?)

should be forbidden

47) is out-of-thin-air!

Reasoning principles
(e.g. invariant a=b=X=Y=0)

51721

“Out-of-thin-air” problem (2/3)

Classic Out-of-thin-air (OOTA)

Thread1 Thread 2 [X=Y=0] (Sel?:fir;g;d-
a =X b=Y — \

Read X,42(read-from)Read Y,42

Y=a o RED I

(a=b=42?) Write Y,42 Write X,42

should be forbidden Allowed by justification

42 is out-of-thin-air! w/ same graph (C/C++)
B ———
Reasoning principles
(e.g. invariant a=b=X=Y=0)

51721

“Out-of-thin-air” problem (2/3)

Classic Out-of-thin-air (OOTA)

Thread 1 Thread 2

a =X b=Y
Y =a X=b
(a=b=42?)

should be forbidden

47) is out-of-thin-air!
L —

Reasoning principles
(e.g. invariant a=b=X=Y=0)

51721

[X:Y: O] (sequenced-

/ \liefore)
Read X,42(read-from)Read Y,42

| == |

Write Y,42 Write X,42

Allowed by justification
w/ same graph (C/C++)

What does
hardware do!?

“Out-of-thin-air” problem (3/3)
Tracking Syntactic Dependency?

Thread 1 Thread 2 Thread 1 Thread 2
a =X b=Y a =X b=Y
Y =a X =4) Y =a X=b

(a=b=427) (a=b=427)

6 /2l

“Out-of-thin-air” problem (3/3)
Tracking Syntactic Dependency?

Thread 1 Thread 2 Thread 1 Thread 2
a =X b=Y a =X
Y =a X=4) Y =a

(a=b=427) (a=b=427)

6 /2l

“Out-of-thin-air” problem (3/3)
Tracking Syntactic Dependency?

Thread 1 Thread 2 Thread 1 Thread 2
a =X b=Y a =X L (dep)
Y=a X =42 Y=a <b P

(a=b=42?) allowed (a=b=42?) | i{e)asitalal=n
in hardware in hardware

...

6 /2l

“Out-of-thin-air” problem (3/3)
Tracking Syntactic Dependency?

Thread 1 Thread 2 Thread 1 Thread 2
a=X b =Y a =X
Y=a X=b+42-b | Y=a

(a=b=42?) (a=b=42?) [ieidsrialal=ly
in hardware

7 121

“Out-of-thin-air” problem (3/3)
Tracking Syntactic Dependency?

Thread 1 Thread 2 Thread 1 Thread 2
a=X (b= a=X =Y
Y =13 'S " Y — a ,,«

forbidden
in hardware

(a=b=42?) forbidden (a=b=42?)
in hardware

B ——

7 121

“Out-of-thin-air” problem (3/3)
Tracking Syntactic Dependency?

Thread 1 Thread 2 Thread 1 Thread 2
a=X {2} a =X ‘b’

Y =a Y =a

a=b=42) D 2;' (a=b=42!) | OIS
in hardware : in hardware

could be optimized to “42",
should be allowed in PL

— —

7 121

“Out-of-thin-air” problem (3/3)
Tracking Syntactic Dependency?

Thread1 Thread 2 Thread1 Thread 2
a =X b=Y a =X
Y = a f‘ Y —a /
(a=b=42?) | RTINS | 1| (a=b=42?) | RTINSy
in hardware §i§ in hardware

could be optimized to “42”, | SyntactiC approach

\
should be allowed in PL} joesn’t work for PL!
S —

7 121

“Out-of-thin-air” problem (3/3)

“A major open problem for PL semantics™

(Batty et al. ESOP 2015)

Thread 1 Thread 2 Thread1 Thread 2
(a=b=42?) | RN | 1| (a=b=42?) | RTINS
in hardware " in hardware

E——————

could be optimized to “42”, Syntactic approach

\
should be allowed in PL} jgesn't work for PL!

7 121

Promising Semantics

e Solving the out-of-thin-air problem
e Supporting optimizations & reasoning principles
e Covering most C/C++ concurrency features

e Operational semantics w/o undefined behavior

e Most results are verified in Coq
http://sf.snu.ac.kr/promise-concurrency

8 /21

http://sf.snu.ac.kr/promise-concurrency

Key Idea: Promises

e A thread can promise to write X=V in the future,
after which other threads can read X=V.

e To avoid OOTA, the promising thread must
certify that it can write X=V in isolation.

91719

Key Idea: Promises

Thread 1 Thread 2
a=X b=Y
Y =a X =4)

e A thread can promise to write X=V in the future,
after which other threads can read X=V.

e To avoid OOTA, the promising thread must
certify that it can write X=V in isolation.

10/ 21

Key Idea: Promises

Thread 1 Thread 2

Y =2 IX=42"

X=42 promised

e A thread can promise to write X=V in the future,
after which other threads can read X=V.

e To avoid OOTA, the promising thread must
certify that it can write X=V in isolation.

10/ 21

Key Idea: Promises

Lhread 1 Thread 2 Certified:

T2 in isolation

X=42 promised

e A thread can promise to write X=V in the future,
after which other threads can read X=V.

e To avoid OOTA, the promising thread must
certify that it can write X=V in isolation.

10/ 21

Key Idea: Promises

Thread 1 Thread 2 Certified:

T2 in isolation

Y=a2a IX =421

X=42 promised

e A thread can promise to write X=V in the future,
after which other threads can read X=V.

e To avoid OOTA, the promising thread must
certify that it can write X=V in isolation.

10/ 21

Key Idea: Promises

read42 ~ Thread 1 Thread 2 Certified:

T2 in isolation

(from promise) Ba=X
Y=a [X=42]

X=42 promised

e A thread can promise to write X=V in the future,
after which other threads can read X=V.

e To avoid OOTA, the promising thread must
certify that it can write X=V in isolation.

10/ 21

Key Idea: Promises

read42 ~ Thread 1 Thread 2 Certified:

— T2 in isolation
(from promise) ® a = X

e A thread can promise to write X=V in the future,
after which other threads can read X=V.

e To avoid OOTA, the promising thread must
certify that it can write X=V in isolation.

10/ 21

Key Idea: Promises

Thread 2 Certified:
T2 in isolation

read 42 _ Thread 1

(from promise) #

e A thread can promise to write X=V in the future,
after which other threads can read X=V.

e To avoid OOTA, the promising thread must
certify that it can write X=V in isolation.

10/ 21

Key Idea: Promises

read 42 _ Thread 1 Thread 2 Certified:

T2 in iSOIation

<=5
X=42 promised & kept

e A thread can promise to write X=V in the future,
after which other threads can read X=V.

e To avoid OOTA, the promising thread must
certify that it can write X=V in isolation.

11721

Key Idea: Promises

Thread 1 Thread 2
a=X b=Y
Y =a X=b

e A thread can promise to write X=V in the future,
after which other threads can read X=V.

e To avoid OOTA, the promising thread must
certify that it can write X=V in isolation.

12 /21

Key Idea: Promises

Thread 2

e A thread can promise to write X=V in the future,
after which other threads can read X=V.

e To avoid OOTA, the promising thread must
certify that it can write X=V in isolation.

12 /21

Promises: “‘Semantic Solution” to OOTA

—

Lhread 1 Thread 2

“cannot promise X=42

e A thread can promise to write X=V in the future,
after which other threads can read X=V.

e To avoid OOTA, the promising thread must
certify that it can write X=V in isolation.

12 /21

Basis: Operational Semantics

e Memory: pool of messages (loc, val, timestamp)

e Per-thread view on the memory

Loc.
Y

Timestamp

13 /21

Basis: Operational Semantics

e Memory: pool of messages (loc, val, timestamp)

e Per-thread view on the memory

>

Timestamp

13 /21

Basis: Operational Semantics

e Memory: pool of messages (loc, val, timestamp)

e Per-thread view on the memory

Thread 1
Loc s

readab/ writable

X

o - [y [y [y > b - b = b =) 25 9 -4

>

Timestamp

13 /21

Basis: Operational Semantics

e Memory: pool of messages (loc, val, timestamp)

e Per-thread view on the memory

Thread 1 Thread 2

Loc!
readab/ writable

X A 0

o - [y [y [y > b - b = b =) 25 9 -4

>

Timestamp

13 /21

Example (1/3)

Store Buffering
Thread 1 Thread 2
| d: a=b=
— -4 — = 1 (allowed: a=b=0)
a=X b=Y

Timestamp

14 /21

Example (1/3)

Store Buffering
Thread 1
1 d: a=b=0
M&Y=42 (allowed: a >)b=Y
a =X reorderable X =42
(x86/Power/ARM)

>

Timestamp

14 /21

Example (1/3)

Store Buffering
Thread 1 Thread 2 (allowed: a=b=0)
— Y =42 - X =4) b=Y
T a=X b=Y reorderable X = 42
(x86/Power/ARM)

>

Timestamp

14 /21

Example (1/3)

Store Buffering
Threid_142 'Ihre:(d_242 (allowed: a=b=0) oy
—r a=X i b=Y reorderable » X =4)
(x86/Power/ARM)
Loc.
X
Y

>

Timestamp

14 /21

Example (1/3)

Store Buffering
Thread 1 Thread2 o wed: a=b=0)
Y =42 — X =42 X b=Y

—p 2 =X T b=Y reorderable X =4)

‘ (x86/Power/ARM)
Loc.

X

Y

>

Timestamp

14 /21

Example (1/3)

Store Buffering
Thread 1 Thread 2 (allowed: 2=b=0)
Y =42 X =42 b=Y
a=X - b=Y reorderable X = 42

(x86/Power/ARM)

>

Timestamp

14 /21

Example (2/3)

Load Buftering (LB)
Thread 1 Thread 2 (allowed: a=b=42)
P a=X " Tb=y
Y=a X =4)

Timestamp

15721

Example (2/3)

Load Buftering (LB)
Thread 1 Thread 2 (allowed: a=b=42)
.,..__yazx — L _v
Y=a X =4)
Thread 2’s
4 2 promise

Timestamp

15721

Example (2/3)

Load Buftering (LB)

Thread 1

Thread 2 (allowed: a=b=42)

a=X b=Y
Y =a X =4)
Thread 2’s
(-) promise

Timestamp

15721

Example (2/3)

Certification
Thread 2
T b=Y
X =42
Thread 2 should be
© 423 Jble to write It
. . in isolation

N —

Timestamp

16 /21

Example (2/3)

Certification
Thread 2
— b=Y
X =42
Thread 2 should be
© 423 Jble to write It
. . in isolation

N —

Timestamp

16 /21

Example (2/3)
Certification

Thread 2
b=Y
- X =4)

Thread 2 should be
Jble to write 1t

Thread 2’s

5 promise
in isolation

Timestamp

16 /21

Example (2/3)
Certification

Thread 2
b=Y
» X =42

Thread 2’s Promise ‘S'
promise certified:

——

>

Timestamp

16 /21

Example (2/3)

Load Buftering (LB)

Thread 1

Thread 2 (allowed: a=b=42)

a=X b=Y
Y =a X =4)
Thread 2’s Promise 1S
S promise certified!

Timestamp

17721

Example (2/3)

Load Buftering (LB)
Thread 1 Thread 2 (allowed: a=b=42)
a=X T b=Y
¥ y=a X = 42
Loc. i Thread 2’s Promise IS
X Ny promise certified!
Y

Timestamp

17721

Example (2/3)

Load Buftering (LB)
Thread 1 Thread 2 (allowed: a=b=42)
. =X =
Y =123 X = 4)
Thread 2’s Promise IS
X S promise certifiEd!
Y

>

Timestamp

17721

Example (2/3)

Load Buftering (LB)
Thread 1 Thread 2 (allowed: a=b=42)
a=X . b=Y

Y =a T X =42

’ Thread 2’s Promise 1S
promise

certified!

42

Timestamp

17721

Example (2/3)

Load Buftering (LB)
Thread 1 Thread 2 (allowed: a=b=42)
a=X b=Y
Y =a _a X =42

{l Thread 2’s Promise '\S'
promise certified!

Timestamp

17721

Example (2/3)

Load Buftering (LB)

Thread 1 Thread 2 (allowed: a=b=42)
a=X b=Y denc
Ise dependency
- T=a X =b+42-b r::k:s no difference!

Il Thread 2’ Promise 1S
certified!

——

>

Timestamp

17721

Example (3/3)
Classic Out-of-thin-air (OOTA)

Thread 1

— (forbidden: a=b=42)
a=X

Y =a

Timestamp

18/ 21

Example (3/3)

Classic Out-of-thin-air (OOTA)

E;ead 1 Thread2 (forbidden: a=b=42)
a=X S b=Y
Y =a X=b
Thread 2’s
4 2 - promise?

Timestamp

18/ 21

Example (3/3)

Classic Out-of-thin-air (OOTA)

Thread2 (forbidden: a=b=42)
-
X=b

Thread 2’s

« « +« promise?
427

e _o -0 O

Timestamp

Promises: “‘Semantic Solution” to OOTA

—>

Thread2 (forbidden: a=b=42)
-y
X =b

Thread 2’s

« « +« promise?
427

Timestamp

18/ 21

Results (1/2)

Compiler/HW Optimizations

e Operational semantics for C/C++ concurrency:
plain/relaxed/release/acquire r/w/u/fence, SC fence

e Compiler optimizations 5]
(reordering, merging, dead code elim., ...)

e Compilation to x86) & Power Z/

19/ 21

Results (2/2)
Reasoning Principles

e DREF: Data Race Freedom = SC

- DREF-PromiseFree: DRF = semantics w/o promises < -/

e Invariant-based logic: -~
soundness of global invariant (e.g. a=b=X=Y=0)

e http://sf.snu.ac.kr/promise-concurrency

20/ 21

http://sf.snu.ac.kr/promise-concurrency

More comprehensive semantics for

C/C++ concurrency

® DREF: Data Race Freedom = SC 1}

2,
- DRF-PromiseFree: DRF = semantics w/o promises \,:J

e Invariant-based logic: "),/
soundness of global invariant (e.g. a=b=X=Y=0)

e http://sf.snu.ac.kr/promise-concurrency

20/ 21

http://sf.snu.ac.kr/promise-concurrency

Future Work

e Supporting SC reads & writes
(We found a flaw in C/C++11 on SC)

e Supporting consume reads
e Compilation to ARMvS

e Developing a rich program logic &
Verifying fine-grained concurrent programs

21 /21

