
A Kripke Logical Relation Between ML and Assembly

Chung-Kil Hur ∗ Derek Dreyer
Max Planck Institute for Software Systems (MPI-SWS)

{gil,dreyer}@mpi-sws.org

Abstract
There has recently been great progress in proving the correctness
of compilers for increasingly realistic languages with increasingly
realistic runtime systems. Most work on this problem has focused
on proving the correctness of a particular compiler, leaving open
the question of how to verify the correctness of assembly code that
is hand-optimized or linked together from the output of multiple
compilers. This has led Benton and other researchers to propose
more abstract, compositional notions of when a low-level program
correctly realizes a high-level one. However, the state of the art
in so-called “compositional compiler correctness” has only consid-
ered relatively simple high-level and low-level languages.

In this paper, we propose a novel, extensional, compiler-
independent notion of equivalence between high-level programs
in an expressive, impure ML-like λ-calculus and low-level pro-
grams in an (only slightly) idealized assembly language. We define
this equivalence by means of a biorthogonal, step-indexed, Kripke
logical relation, which enables us to reason quite flexibly about
assembly code that uses local state in a different manner than the
high-level code it implements (e.g., self-modifying code). In con-
trast to prior work, we factor our relation in a symmetric, language-
generic fashion, which helps to simplify and clarify the formal pre-
sentation, and we also show how to account for the presence of a
garbage collector. Our approach relies on recent developments in
Kripke logical relations for ML-like languages, in particular the
idea of possible worlds as state transition systems.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.3 [Programming
Languages]: Language Constructs and Features; F.3.1 [Logics
and Meanings of Programs]: Specifying and Verifying and Rea-
soning about Programs

General Terms Languages, Theory, Verification

Keywords Step-indexed Kripke logical relations, biorthogonal-
ity, compositional compiler correctness, garbage collection, self-
modifying code

∗ This work was undertaken while the first author was at PPS, Univer-
sité Paris Diderot, supported by Digiteo/Ile-de-France project COLLODI
(2009-28HD) and Engineering Research Center of Excellence Program of
Korea Ministry of Education, Science and Technology (MEST) / National
Research Foundation of Korea (NRF) Grant R11-2008-007-01002-0.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’11, January 26–28, 2011, Austin, Texas, USA.
Copyright c© 2011 ACM 978-1-4503-0490-0/11/01. . . $10.00

1. Introduction
While compiler verification is an age-old problem, there has been
remarkable progress in the last several years in proving the correct-
ness of compilers for increasingly realistic languages with increas-
ingly realistic runtime systems. Of particular note is Leroy’s Com-
pcert project [18], in which he used the Coq proof assistant to both
program and verify a multi-pass optimizing compiler from Cmi-
nor (a C-like intermediate language) to PowerPC assembly. Dar-
gaye [13] has adapted the Compcert framework to a compiler for a
pure mini-ML language, and McCreight et al. [19] have extended it
to support interfacing with a garbage collector. Independently, Chli-
pala [10, 12] has developed verified compilers for both pure and im-
pure functional core languages, the former garbage-collected, with
a focus on using custom Coq tactics to provide significant automa-
tion of verification.

That said, all of the aforementioned work has focused on prov-
ing the correctness of a particular compiler, leaving open the ques-
tion of how to verify the correctness of assembly code that is hand-
optimized or linked together from the output of multiple compil-
ers. The issue is that compiler correctness results are typically es-
tablished by exhibiting a fairly close simulation relation between
source and target code, but code produced by another compiler
may obey an entirely different simulation relation with the source
program, and hand-optimized code might not closely simulate the
source program at all. Thus, existing correctness proofs depend
fundamentally on the “closed-world” assumption that one has con-
trol over how the whole source program is compiled.

In order to lift the closed-world assumption, Benton and Hur [5]
suggest that what is needed is a more abstract, extensional notion
of what it means for a low-level program to correctly implement
a high-level one—a notion that is not tied to a particular com-
piler and that, moreover, offers as much flexibility in the low-level
representation of high-level features as possible. When reasoning
strictly about high-level programs, the canonical extensional notion
of when one program implements the same functionality as another
is observational (or contextual) equivalence, which says that the
two programs exhibit the same (termination) behavior when placed
into the context of an arbitrary enclosing well-typed high-level pro-
gram. However, it is not clear how to define such a contextual no-
tion of equivalence between high- and low-level programs, because
there is no way to run both programs under the same context—one
would need to quantify over equivalent high- and low-level pro-
gram contexts, but when are two contexts equivalent? We are back
to the original question.

Benton and Hur’s solution is to define a logical relation be-
tween the high- and low-level languages (actually two relations,
one for each direction of semantic approximation, employing a de-
notational semantics to represent the high-level side). Logical rela-
tions are inherently extensional—e.g., two functions are logically
related iff they map related arguments to related results, regardless
of their private implementation details—and guarantee equivalent

1

termination behavior under arbitrary contexts that are themselves
logically related. While not as canonical as contextual equivalence,
logical equivalence is nevertheless useful as long as one can estab-
lish that the logical relations are sufficiently populated—i.e., that
they relate enough programs/contexts of interest.

In the traditional setting where one is defining equivalence of
programs in the same language, this “sufficient population” prop-
erty is ensured by the fundamental theorem of logical relations,
which states that all well-typed programs (and thus all well-typed
contexts) are logically self-related. For mixed high-low relations,
Benton and Hur demonstrate sufficient population by providing a
simple, one-pass compilation translation from their high- to their
low-level language and proving that all well-typed high-level pro-
grams are logically equivalent to their compilations. They also use
the logical relations to show the relatedness of some simple hand-
optimized low-level code with corresponding high-level programs.

Benton and Hur present their work as the first step towards
“compositional compiler correctness”. However, the source lan-
guage they consider—the simply-typed λ-calculus with recursion—
is purely functional, and the target language they consider—an
SECD machine—is relatively high-level. Chlipala [11] has subse-
quently proposed a more syntactic approach to proving composi-
tional compiler correctness, applicable to a richer, impure (albeit
untyped) source language, but the target language he considers is
also pretty high-level, namely a CPS variant of the source.

1.1 Contributions
In this paper, we study compositional equivalence of high- and
low-level programs in a more realistic setting. Our high-level lan-
guage is an expressive ML-like CBV λ-calculus, supporting ab-
stract types, general recursive types, and general mutable refer-
ences. Our low-level language is an (only slightly) idealized as-
sembly language. Furthermore, our logical relation is designed to
be sound in the presence of garbage collection, under some fairly
abstract assumptions about the behavior of the garbage collector
that are satisfied by both mark-and-sweep and copying collectors.

Following Benton and Hur, we define our equivalence using
a biorthogonal, step-indexed logical relation. Biorthogonality is
useful when reasoning about programs (such as low-level ones)
whose behavior is context-sensitive, and step-indexing is useful in
reasoning about semantically “cyclic” features like recursive types
and higher-order state.

We depart from prior work, though, in that our relation is also
a Kripke logical relation—i.e., it is indexed by possible worlds that
specify assumptions about the machine state. Possible worlds are
useful in enforcing invariants about low-level data structures (e.g.,
that a heap-allocated representation of a closure is immutable).
They are also helpful in encoding a variety of runtime system in-
variants, such as the convention concerning callee-save registers
and the notion of data liveness. Last but not least, possible worlds
enable us to reason quite flexibly about assembly code that uses
local state in a different manner than the high-level code it imple-
ments. An interesting example of this is self-modifying assembly
code, whose correctness proof involves reasoning about low-level
internal state changes—specifically, changes to the code itself—
that clearly have no high-level counterpart. This is the essence of
what we mean when we say that our relation is extensional.

Technically, our approach relies closely on recent develop-
ments in Kripke logical relations for ML-like languages, in par-
ticular the idea of possible worlds as state transition systems. This
idea, which we review in Section 3.3, was proposed originally by
Ahmed et al. [2] (in a somewhat different form) as a way to rea-
son about representation independence for so-called “generative”
abstract data types, whose private state undergoes a controlled
series of state transitions during the execution of the program.

Dreyer et al. [14] have subsequently generalized the idea in or-
der to reason about “well-bracketed” state changes. By basing our
high-low logical relations on this most recent work, we are able
to cleanly model a variety of state transition systems that arise
naturally in low-level code (e.g., in self-modifying code).

Lastly, a novel feature of our logical relation is that, while it
is defined by induction on an ML-like type structure, it is also de-
fined in a language-generic fashion. That is, it may be instantiated
to form an equivalence relation between any two languages (high-
or low-level) that are capable of implementing various relevant lin-
guistic constructs—e.g., function application, plugging a continu-
ation with a value, etc. Factoring the relation in this way helps to
simplify and clarify the formal presentation. Moreover, it has the
advantage that the relation becomes inherently symmetric and thus
easier to use in proving high-low equivalences than Benton and
Hur’s asymmetric approximation relations.

2. HIGH and LOW
The high-level language HIGH is a System F-like polymorphic λ-
calculus extended with existential, product and iso-recursive types,
as well as ML-style general references (higher-order state). Fig-
ure 1 shows the syntax and the typing and evaluation judgments.
The inference rules for typing and evaluation are standard, so we
omit them (see the companion technical appendix [15] for details).

The low-level language LOW is an assembly language ideal-
ized in two ways: its word and memory sizes are infinite and its in-
structions are represented by abstract objects rather than by physi-
cal words. Its memory consists of four entities: code memory, regis-
ter file, stack and heap. A code memory is a map from physical ad-
dresses (represented by natural numbers) to instructions. A register
file is a map from registers to words. Words in turn are represented
by natural numbers with an extra bit indicating whether the word
is a pointer to a heap cell or not (useful for garbage collection pur-
poses). There are 12 registers, half of which (sp,sv0, . . . , sv4) are
specified as callee-save registers by our calling convention. Both
a stack and a heap are random-access memories (i.e., maps from
addresses to words).

The instruction set includes standard instructions (jmp, jnz,
jneq, move, plus, minus) supporting different addressing modes
via lvalues and rvalues. The non-standard operations include halt
for normal termination, fail for raising a runtime error, jptr for
testing whether a value is a pointer or not, setptr for marking a
pointer bit, and isr, isw for inspecting and updating instructions
in code memory. Note that as instructions are not represented by
words, we employ a bijection E and its inverse D (for Encode and
Decode) to convert back and forth between instructions and words.

The dynamic semantics of LOW is standard and is given in
Figure 1. A machine configuration (Φ,pc) is a pair consisting of a
memory and a program counter; it halts, fails or evolves to another
configuration (Φ′, pc′) by executing the instruction stored at pc in
the code memory Φ.code.

3. The Key Ideas
In this section, we present the key ideas behind our work through
the lens of an illustrative, challenging example. We will walk
through the code of this example, suggest intuitively how to reason
about it, and then explain how our Kripke logical relation formal-
izes this intuition. While we will initially ignore the question of
how garbage collection affects matters, we will return to this is-
sue at the end of the section and discuss how our logical relation
enables reasoning in the presence of a garbage collector.

This section is intended to be accessible to a broad programming-
languages audience, and hopefully to serve as a useful guide to the

2

HIGH – Syntax & Semantics
τ ::= α | b | τ1 × τ2 | τ1 → τ2 | ∀α. τ | ∃α. τ | µα. τ | ref τ
e ::= x | ` | 〈e1, e2〉 | e.1 | e.2 | λx:τ. e | e1 e2 | Λα.e | e τ |

pack 〈τ1, e〉 as τ2 | unpack e1 as 〈α, x〉 in e2 |
rollτ e | unroll e | ref e | e1 := e2 | !e | e1 == e2 | . . .

v ::= x | ` | 〈v1, v2〉 | λx:τ. e | Λα.e | pack 〈τ1, v〉 as τ2 | rollτ v | . . .
K ::= • | 〈K, e2〉 | 〈v1,K〉 |K.1 |K.2 |K e2 | v1 K |K τ | rollτ K |

unroll K | pack 〈τ1,K〉 as τ2 | unpack K as 〈α, x〉 in e2 |
ref K |K := e2 | v1 := K | !K |K == e2 | v1 == K | . . .

Σ ::= · | Σ, `:τ with ftv(τ) = ∅ ∆ ::= · |∆, α Γ ::= · | Γ, x:τ

Static semantics : Σ; ∆; Γ ` e : τ

HCVal
def
= { v | ftv(v) = ∅ ∧ fv(v) = ∅ }

HHeap
def
= {h ∈ HLoc ⇀fin HCVal }

Dynamic semantics : (h, e) ↪→ (h′, e′)

LOW – Syntax
PConf

def
= { (Φ, pc) ∈ PMem× PAddr }

PMem
def
= {Φ = (code, reg, stk,hp)

∈ PCode× PRegFile× PStack× PHeap }
PCode

def
= PAddr→ Instruction PRegFile

def
= Register→ PWord

PStack
def
= PAddr→ PWord PHeap

def
= PAddr→ PWord

PAddr
def
= { a ∈ N } PWord

def
= {w ∈ { 0, 1 } × N }

r ∈ Register ::= sp | sv0 | . . . | sv4 | wk0 | . . . | wk5

lv ∈ PLvalue ::= brc | 〈a〉s | 〈r − o〉s | 〈a〉h | 〈r + o〉h
rv ∈ PRvalue ::= lv | w
ι ∈ Instruction ::= fail | halt | jmp rv | jnz rv rv | jneq rv rv rv |

jptr rv rv | setptr lv | move lv rv | plus lv rv rv |
minus lv rv rv | isr lv rv | isw rv rv

LOW – Semantics
|w| def

= π2(w) isptr(w)
def
= (π1(w) = 1) n

def
= (0, n) â

def
= (1, a)

Φ(w)
def
= w Φ(brc) def

= Φ.reg(r)
Φ(〈a〉s)

def
= Φ.stk(a) Φ(〈r − o〉s)

def
= Φ.stk(|Φ(brc)| − o)

Φ(〈a〉h)
def
= Φ.hp(a) Φ(〈r + o〉h)

def
= Φ.hp(|Φ(brc)|+ o)

Φ[brc 7→ w]
def
= (Φ.code,Φ.reg[r 7→ w],Φ.stk,Φ.hp)

Φ[〈a〉s 7→ w]
def
= (Φ.code,Φ.reg,Φ.stk[a 7→ w],Φ.hp)

Φ[〈r − o〉s 7→ w]
def
= (Φ.code,Φ.reg,Φ.stk[|Φ(brc)| − o 7→ w],Φ.hp)

Φ[〈a〉h 7→ w]
def
= (Φ.code,Φ.reg,Φ.stk,Φ.hp[a 7→ w])

Φ[〈r + o〉h 7→ w]
def
= (Φ.code,Φ.reg,Φ.stk,Φ.hp[|Φ(brc)|+ o 7→ w])

JfailK (Φ,pc)
def
= fail

JhaltK (Φ,pc)
def
= halt

Jjmp rvK (Φ, pc)
def
= (Φ, |Φ(rv)|)

Jjnz rv1 rv2K (Φ, pc)
def
= if Φ(rv2) 6= 0

then (Φ, |Φ(rv1)|) else (Φ,pc + 1)
Jjneq rv1 rv2 rv3K (Φ, pc)

def
= if Φ(rv2) 6= Φ(rv3)

then (Φ, |Φ(rv1)|) else (Φ,pc + 1)
Jjptr rv1 rv2K (Φ, pc)

def
= if isptr(Φ(rv2))

then (Φ, |Φ(rv1)|) else (Φ,pc + 1)
Jmove lv rvK (Φ, pc)

def
= (Φ[lv 7→ Φ(rv)], pc + 1)

Jsetptr lvK (Φ, pc)
def
= (Φ[lv 7→ ̂|Φ(lv)|], pc + 1)

Jplus lv rv1 rv2K (Φ, pc)
def
= (Φ[lv 7→ |Φ(rv1)|+ |Φ(rv2)|], pc + 1)

Jminus lv rv1 rv2K (Φ, pc)
def
= (Φ[lv 7→ |Φ(rv1)| − |Φ(rv2)|], pc + 1)

Jisr lv rvK (Φ, pc)
def
= (Φ[lv 7→ E(Φ.code(|Φ(rv)|))], pc + 1)

Jisw rv1 rv2K (Φ, pc)
def
= ((Φ.code[|Φ(rv1)| 7→ D(|Φ(rv2)|)],

Φ.reg,Φ.stk,Φ.hp),pc + 1)
where E : Instruction→ N is a bijection, and D = E−1.

Dynamic semantics : (Φ,pc) ↪→ JΦ.code(pc)K (Φ, pc)

Figure 1. Syntax and Semantics for the HIGH and LOW Languages (excerpt)

vast majority of readers who are not intimately familiar with recent
developments in Kripke logical relations.

3.1 A Motivating Example
Our motivating example is based on Pitts and Stark’s “awkward”
example [22]. Their original example is almost blindingly simple—
prove that the following HIGH terms are contextually equivalent:

e
def
= let x = ref 0 in λf :unit→ unit. (x := 1; f 〈〉; !x)

e′
def
= λf :unit→ unit. (f 〈〉; 1)

The first term, e, allocates a fresh memory location x, initially set to
0, and then returns a higher-order function. When called, the latter
will set x to 1, invoke its callback argument f , and then return the
contents of x. The second term, e′, is similar, except that it does
not bother allocating or updating any memory, and the function
it defines always returns 1. Proving that e and e′ are contextually
equivalent is tantamount to showing that, in the former, whenever
the callback invocation f 〈〉 returns, x points to 1.

After a moment’s thought, it should hopefully be intuitively
clear why the equivalence holds. The pointer x in e is initially set
to 0, but once the function that e returns is applied for the first time,
x will be set to 1 and will never be set back to 0. This is because e
“owns” x as a piece of local state and the only thing e ever does to x
after first allocating it is to set it to 1. Thus, the “awkward” example
serves as an elegant distillation of (1) the ability of code to control
some local state and impose arbitrary constraints on it, and (2) the
ability of that local state to evolve over time in an irreversible
(or monotone) way. Such irreversible changes to local state arise
in a variety of real-world situations—e.g., in “generative” ADTs
(whose sets of inhabitants grow over time), and in data structure
initialization [2]. It is thus rather remarkable that only recently have

methods been developed for proving an equivalence as simple as
the “awkward” example [8, 2, 23]. (More on that in Section 3.3.)

We are now ready to present our motivating example. We want
to prove a variant of the awkward example, namely that the HIGH
term e is implemented correctly by a LOW program p, where p’s
implementation follows the second HIGH term e′ fairly closely.
By itself, that would already be an interesting result—it would
demonstrate the extensional equivalence of a high-level program
with an “optimized” low-level program, where the optimization is
based on the inability of high-level program contexts to observe e’s
manipulation of local state. But we will make it more interesting
still with an added twist: the code of the function that p evaluates to
will be obfuscated using a primitive form of encryption, and when
first applied, the function will first decrypt and overwrite itself via
self-modifying code.

The LOW program p is shown in Figure 2. Before we walk
through the code, let us first note that p is parameterized by alloc, a
code pointer to the memory allocation routine, and bg, the location
in the code segment where p’s code will be loaded and where its
execution will begin—these parameters will be instantiated as part
of linking and loading. (We will define the formal semantics of
linking and loading for LOW programs in Section 7.)

bg: Create and return a closure. The evaluation of p is very
simple: it does no interesting computation except to immediately
create and return a closure value, just as the HIGH term e′ does.
The first 3 instructions starting at bg allocate a fresh one-word
closure on the heap by invoking the alloc routine (passing it the
size parameter 1 in register wk5 and the return address bg + 3
in register wk4). We only need one word for the closure because
the function we’re implementing (e′) is closed, so all we need to
store in the closure is the naked code pointer. The alloc routine
is assumed to return the pointer to a fresh one-word cell in wk5,
without modifying the contents of any registers except wk4 and

3

e
def
= let x = ref 0 in λf :unit→ unit. x := 1; f 〈〉; !x

p
def
= λ alloc, bg. [

bg move bwk4c bg + 3
move bwk5c 1
jmp alloc

bg + 3 move 〈wk5 + 0〉h bg + 5
jmp bwk0c

bg + 5 move bwk3c bg + 10
bg + 6 isr bwk4c bwk3c

minus bwk4c bwk4c 666
isw bwk3c bwk4c
plus bwk3c bwk3c 1

bg + 10 D(E(jneq bg + 6 bwk3c bg + 21) + 666)
bg + 11 D(E(isw bg + 5 E(jmp bg + 12)) + 666)
bg + 12 D(E(move 〈wk1 + 0〉h bg + 13) + 666)

bg + 13 D(E(plus bspc bspc 1) + 666)
D(E(move 〈sp− 1〉s bwk0c) + 666)
D(E(move bwk1c bwk2c) + 666)
D(E(move bwk0c bg + 18) + 666)
D(E(jmp 〈wk1 + 0〉h) + 666)

bg + 18 D(E(move bwk5c 1) + 666)
D(E(minus bspc bspc 1) + 666)

bg + 20 D(E(jmp 〈sp− 0〉s) + 666)
]

Figure 2. Motivating Example

wk5. We then store in that cell the code pointer bg + 5, before
jumping to the return address, which we assume the linker/loader
had passed to p originally in register wk0. (The linker/loader has
essentially the same calling convention as for ordinary functions,
which is different from the one for alloc and is described below—
see bg + 12.) Although our calling convention is that return values
are passed back to the caller in wk5, our return value was already in
wk5 after the call to alloc, so we need not explicitly move anything
into wk5 before returning.

We now describe the implementation of the closure returned (in
wk5) by the evaluation of p. Initially, this closure contains just a
code pointer to bg + 5, but eventually that code pointer will be
updated (see below).

bg + 5: Decrypt and overwrite the code. The code from
bg + 10 on is obfuscated by the addition of 666 to the machine
representation of each instruction. Eventually, once the code is
decrypted, the function will be executable starting at the address
bg + 13. Before that time, however, the function must begin ex-
ecuting at bg + 5, because the first step will be to decrypt and
overwrite the obfuscated instructions. The reader can easily verify
manually that the code starting at bg + 5 will use register wk3 to
loop through the instructions bg + 10 through bg + 20. For each,
it will use isr to read the instruction stored at wk3 into wk4, sub-
tract 666 from it, and then write the decrypted instruction back to
the code segment at address wk3. When this loop is finished, the
program counter will be at bg + 11.

bg + 11: Redirect the first instruction of the function. Hav-
ing decrypted the code, we do not want future calls to this function
to perform the decryption again. We therefore overwrite the first
instruction (at bg + 5) with a jump to bg + 12.

bg + 12: Update the code pointer. The LOW calling conven-
tion is that a function is passed its return address in wk0, its argu-
ment in wk2, and its own closure in wk1. The decryption code start-
ing at bg + 5 did not touch any of these registers, so at bg + 12 we
know that wk1 still stores a closure with a code pointer to bg + 5.
Having decrypted the code, we can now safely update this code
pointer—〈wk1 + 0〉h—to point to bg + 13, the address where the
function begins its computation in earnest.

An important point: Why did we bother both redirecting the
bg + 5 instruction (to jump to bg + 12) and updating the code
pointer in the function closure? Would the latter alone not have
been sufficient? The answer is that it depends. If p were only
evaluated once, in which case only one closure for this function
were ever generated, then yes, just updating the code pointer would
be sufficient because bg + 5 would become effectively dead code.
But we would like our notion of high-low program equivalence
to be preserved under a rich set of program contexts including
those that evaluate the programs—here, p and e—more than once.
Repeated evaluation of p will result in the creation of multiple
closures for the function p defines, and merely updating the code
pointer for one closure will not change the fact that other closures
may still point to bg + 5, so it is necessary to redirect the bg + 5
instruction as well.

bg + 13: Implement λf. (f 〈〉; 1). This is the implementation
of the function proper. We first push our return address wk0 onto
the stack. We then invoke the callback argument (f in the HIGH
code) by moving a pointer to f ’s closure into wk1, moving the
return address bg + 18 into wk0, and jumping to f ’s code pointer
〈wk1 + 0〉h. (Note: f ’s argument type is unit, so there is no need
to pass anything in the argument register wk2.) When control is
returned to bg + 18, we store the result 1 in the result register wk5,
pop the return address off the stack, and jump to it.

3.2 Discussion of the Motivating Example
Why does p implement e? Intuitively, the reason is that the self-
modifying aspects of p are not visible to p’s clients because they
do not affect its extensional behavior; and ultimately, once p has
decrypted itself, it behaves essentially the same as the HIGH term
e′, which we have already argued is equivalent to e. Of course, this
begs the question: how exactly do we know that p’s clients cannot
observe its self-modifications?

Interestingly, the answer is remarkably similar to the argument
for why e and e′ are equivalent, namely that what p does to its
own code takes the form of irreversible changes to local state.
Specifically, we take it as a given that p “owns” its own code, and
since the evaluation of p will allocate a fresh memory cell for the
closure it returns, p owns that closure as well. Thus, in reasoning
about p, we can place restrictions on how its code and closure
may evolve over time. Much as the local variable x in e starts out
pointing to 0 and eventually points to 1, the code of p starts out in
encrypted form, and if/when any closure it returns is first applied,
it changes to decrypted form. In both cases, it is critical that we
never revert to the earlier state. Similarly, the closure returned by
the evaluation of p starts out with its code pointer set to bg + 5,
but if/when the closure is ever applied, it will be set to bg + 13. In
this case, it is not so essential for correctness that the code pointer
never revert back to bg+5, but it is essential that the closure’s code
pointer only be set to bg + 13 when the code is in the decrypted
state.

Given these restrictions on how the local state of p and e may
evolve, it is but a short distance to a bona fide proof. Before
sketching that proof, let us first review the recent work on Kripke
logical relations that will put our reasoning on a solid footing.

3.3 Kripke Logical Relations and State Transition Systems
Logical relations are a well-established technique for reasoning
about equivalence of higher-order programs. A logical relation is
defined inductively on the type structure of the language: at base
type the logical relation coincides with observable equality—e.g.,
two programs of type int are logically related if they produce the
same integer—and at higher type the relation is defined by inter-
preting each type operator by the appropriate logical connective—
e.g., two functions are related at type τ1 → τ2 if relatedness of their

4

arguments at type τ1 implies relatedness of their results at type τ2.
The important feature about logical relations for our purposes is
that they give considerable leeway to how related functions are im-
plemented, so long as they produce related results. (As Benton and
Hur [5] channeling Machiavelli put it, “the ends justify the means.”)

In the presence of state, we cannot talk about the relatedness
of two programs without making some assumptions and impos-
ing some restrictions on how they manipulate state. This is where
Kripke logical relations come in. Kripke logical relations are in-
dexed by possible worlds, which represent a set of restrictions on
the memories of the two programs under which the programs are
guaranteed to behave equivalently. When we want to prove the re-
latedness of two programs under a world W , we suppose we are
given arbitrary initial memories that are related by (i.e., satisfy the
restrictions of) W , and we proceed typically by showing that when
evaluated under those memories the programs either (1) both di-
verge (don’t terminate), or else (2) produce values and final mem-
ories that are related under some “future” world W ′ of W .

What does it mean for W ′ to be a future world of W ? If in the
course of evaluation the programs allocate fresh pieces of memory,
W ′ may extend the initial worldW with new restrictions governing
the use of the freshly allocated memory. This approach allows us
to establish whatever constraints we want on freshly allocated state
that is kept local. (If the state is made globally accessible—e.g., by
being passed to the context at a ref type—then the state will have
to obey the usual invariants dictated by the ref type.)

In traditional Kripke logical relations, such as those of Pitts
and Stark [22], possible worlds essentially take the form of simple
memory relations, i.e., memory invariants. As we have seen in the
“awkward” example, however, memory invariants are not necessar-
ily enough; we need additionally the ability to describe assumptions
about state that may change in a controlled and monotone way. (It
is thus not a surprise that Pitts and Stark put forth the “awkward”
example as an example for which their method was inadequate.)

To address this limitation, Ahmed et al. [2] proposed gener-
alizing possible worlds to include the ability for a memory rela-
tion to evolve. Dreyer et al. [14] later streamlined and extended
Ahmed et al.’s approach in various ways, and cast Ahmed et al.’s
possible worlds as collections of state transition systems (STS’s).
In the case of the “awkward” example, one can understand the re-
strictions placed on e’s local variable x according to the following
STS:

x ↪→ 0
++
x ↪→ 1

When this STS is first added to the initial world W , it starts out
in the x ↪→ 0 state, because after x is first allocated, it points to
0. However, under Dreyer et al.’s model, future worlds of W may
not only place additional restrictions on fresh pieces of memory but
also update the state of existing STS’s in W . Thus, in some future
world W ′, the above STS may be switched to the x ↪→ 1 state, and
memories satisfying W ′ would have to map x to 1. Furthermore,
any future world of W ′ would have to remain in the x ↪→ 1 state
as there is no transition out of it. This corresponds to the intuitive
reasoning about the example that we described in Section 3.1.

3.4 State Transition Systems for the Motivating Example
Using Kripke logical relations based on state transition systems, we
can now roughly sketch the proof of equivalence of p and e.

We will prove that p and e are logically related in some initial
world W0 that includes some basic assumptions (in the form of
STS’s) about registers, the stack, etc. (See Section 7 for details.)

First, since we can assume p has just been loaded into memory,
we can think of its code as a freshly allocated piece of memory,
and we are therefore given the opportunity to extend W0 with an
STS governing p’s code. For most programs, we would extend W0

at this point with a one-state STS, representing the simple invariant
that the code of the program never changes. For our motivating
example, we instead extend W0 with an STS of the form:

encrypted
,,
decrypted

When the STS is in the left state, the associated memory relation
will require that p’s code be in its initial, encrypted form, and when
the STS is in the right state, the memory relation will require that
p’s code be in decrypted form. Once decrypted, always decrypted.

When p and e are executed, the former allocates a fresh closure
on the heap, setting its constituent code pointer to bg + 5, and the
latter allocates the local ref cell x, setting its contents to 0. Since
both the closure and x are freshly allocated, we may at that point
also extend the world with a new STS governing both of them:

x ↪→ 0 ∧
closure ↪→ bg + 5

-- x ↪→ 1 ∧
closure ↪→ bg + 13

We have joined the assumptions about them into one STS because
they change in lockstep: when the functions returned by p and e are
applied for the first time, x gets updated to 1 and the closure’s code
pointer gets updated to bg + 13 simultaneously.

As noted in Section 3.2, it should never be the case that the
code is still encrypted while the closure returned by p points to
bg + 13. (The closure would behave in an unspecified manner if
it were called in such a state.) When adding the second STS, it is
therefore important that we outlaw this possibility up front so that
we will not have to consider it later. Fortunately, Dreyer et al.’s
model, on which our logical relation is based, allows us to define
the second STS in such a way that we can only be in its right state
if the first STS is also in its right state.

LetW be the world resulting from extendingW0 with the above
two STS’s. What remains to be shown is that the functions returned
by p and e are related in world W . So, suppose that W ′ is a future
world of W , and that we begin executing the high- and low-level
functions in some corresponding high- and low-level memories that
are related by W ′. There are three cases to consider, depending on
the states of the two STS’s of interest in W ′ (the fourth case was
outlawed, as described above):

Case 1: Code is encrypted, x ↪→ 0, closure ↪→ bg + 5. In this
case, we first decrypt the code, and then set x to 1 and the closure’s
code pointer to bg + 13.

Case 2: Code is decrypted, x ↪→ 0, closure ↪→ bg + 5. In this
case, we set x to 1 and the closure’s code pointer to bg + 13.

Case 3: Code is decrypted, x ↪→ 1, closure ↪→ bg + 13. In this
case, we set x to 1 and don’t touch the closure’s code pointer.

In all three cases, we end up transitioning to a future world
W ′′ in which both STS’s of interest are in the right state, if they
weren’t already there inW ′. After making the state transition, both
the high- and low-level functions invoke their callback arguments.
Assuming they return, they will do so with memories that satisfy
some future world of W ′′, but in the STS’s of interest, there is
nowhere to transition to. So we know that x must still point to 1.
The high- and low-level functions must therefore both return the
same result, namely 1, along with memories that satisfy a future
world of the starting world W ′.

3.5 Well-Bracketed State Changes and Private Transitions
For simplicity, we have glossed over many details in the above
proof sketch. One important detail is how we reason about the
stack. When the functions invoke their unknown callback argu-
ments, we need to know that the callback will return the stack—
i.e., the contents of the stack segment up to the stack pointer sp—
as it found it. One approach would be to bake this condition into

5

our logical relation for functions. However, as we explained in the
introduction, we have set out to define our relation in a largely
language-generic fashion, and it would not make sense to bake a
low-level property about the stack into a language-generic relation.

Instead, we wish to build this condition into the initial world
under which we relate high- and low-level programs, but the prop-
erty we desire of the stack is not expressible in terms of STS’s as
we have described them so far. To account for stack-like behav-
ior, we employ another aspect of Dreyer et al.’s possible worlds,
namely the idea of private vs. public transitions [14]. Private tran-
sitions were introduced in order to reason about so-called “well-
bracketed” state changes, of which the behavior of the stack is a
perfect example.

The basic idea is to label local state transitions as either public
or private. Functions may make either private or public transitions
internally, but viewed extensionally (i.e., end-to-end), they must
appear to make a public transition. In the STS that we use to
reason about the stack, the states of the STS correspond to the
possible states of the stack; every state is accessible from every
other state by a private transition, but the only public transitions
are self-transitions. This grants logically-related functions plenty
of flexibility in how they manipulate the stack, but requires that,
when they return, they leave the stack exactly how they found it.

We also use private transitions to reason about callee-save reg-
isters, which logically-related functions are expected to return as
they found them, even if they modify them internally.

3.6 Reasoning in the Presence of Garbage Collection
Another important detail we have glossed over is how the presence
of a garbage collector affects our proof of equivalence of p and
e. Let us assume that we are using a standard mark-and-sweep
or copying collector. The main effect such a collector has on our
reasoning is that, whenever we pass control to the allocator (or to
an unknown function that may call the allocator), we need to make
sure that (1) all data that we care about being able to access in the
future is in the reachable portion of the heap, and (2) there are no
dangling pointers in the reachable portion of the heap.

Typically, guaranteeing these two conditions is straightforward.
In our example, there is one call to the allocator (at bg+2) and one
call to an unknown function (at bg + 17). In the case of the former,
there is nothing interesting to show. But in the case of the latter, it is
important that when we increment the stack pointer before invoking
the callback, we set the contents at the top of the stack to a value
from which no dangling pointer may be reached. Here, we store
in that stack slot the return address bwk0c, which trivially satisfies
this requirement.

So at an abstract level, reasoning in the presence of garbage
collection is no big deal. What is more interesting is the techni-
cal question of how we actually implement this reasoning in the
context of our logical relation. The central difficulty is that Kripke
logical relations traditionally enjoy a monotonicity property, mean-
ing that when two values are related in a world W , they are related
in any future world of W . Monotonicity is essential when reason-
ing about unknown functions, such as the callback argument in our
example. There, we were given the assumption that the callback
argument was logically related in the world W ′, but we did not ac-
tually invoke it until we had transitioned to the future world W ′′.
This step requires a use of monotonicity to show that the callback
argument is still related in W ′′.

Unfortunately, garbage collection seems superficially to throw
a wrench into monotonicity. For instance, in our logical relation we
want to be able to relate a HIGH pair value 〈v1, v2〉with a memory
location pointing to a representation of that pair value on the heap.
How can we expect those two value representations to be related in
all future worlds if, at some point in the future, the memory location

may get deallocated (or its contents moved by a moving collector)
and later reused for storing something else?

Our solution is to employ logical memories, which form a
layer of abstraction over physical memories. Pointers in a logical
memory are never moved or deallocated. Their connection to reality
is established by a component of the logical memory called the
lookup table, which specifies for any given logical pointer whether
it is live and, if so, what physical pointer it corresponds to. We say
that a logical memory M represents a physical memory Φ only
if M’s lookup table describes a bijection between the reachable
portions of M and Φ.

We maintain a global invariant on the logical memory, which
must hold before and after calls to the allocator, requiring that all
reachable data be live (and thus not dangling) according to the
lookup table. Together with the definition of what it means for a
logical memory to represent a physical one, this invariant guar-
antees the allocator’s precondition—(2) above—that there are no
reachable dangling pointers. After the allocator returns, the lookup
table of the logical memory may have completely changed—e.g.,
due to a semi-space collection—but the only other change to the
logical memory will be its extension with a freshly allocated log-
ical pointer. Thus, if any data we care about was reachable prior
to allocation—condition (1) above—it will still be reachable post-
allocation, and by the global invariant it will also still be live.

With logical memories in hand, we can adapt our logical rela-
tions accordingly so that they relate values in HIGH with logical
values (i.e., logical pointers or non-pointer data) in LOW. We also
define our possible worlds to impose invariants on logical mem-
ories, not physical ones. In this way, we regain monotonicity, as
well as a clean, abstract account of memory locations that gives the
garbage collector significant flexibility in how it implements them
and allows us to essentially ignore how it does so.

4. A Language-Generic Kripke Logical Relation
Figure 3 defines a Kripke logical relation between two languages
that is parameterized by abstract specifications for those languages
(∈ LangSpec), as well as by a specification for the possible worlds
relating the memories of those languages (∈WorldSpec).

4.1 Language Specifications
A language specification (upper left of Figure 3) must provide sets
of values (Val), computations (Com), continuations (Cont), mem-
ories (Mem), and configurations (Conf), together with a number
of operations on these sets. (Note that we are assuming here a stan-
dard stratification on sets, and that Val, Com, etc. are “smaller”
than LangSpec.) Most of these operations take elements of some
of these sets and return a predicate on another of the sets. In most
cases, this is because there may be a number of different represen-
tations of the same thing—e.g., in LOW, a pair value 〈v1, v2〉 is
represented by a pointer that satisfies some conditions, but many
pointers may satisfy those conditions.

“plugv” forms a configuration by plugging a value into a con-
tinuation under a given memory. “plugc” does the same, but plug-
ging a computation instead of a value. “step” executes a configu-
ration for one step of computation, resulting in either a new config-
uration, termination (halt), or failure (fail). “mdom” returns the
domain of a memory, and “mdisj” takes two memories and returns
a memory that contains their disjoint union, if it exists.

“oftype(τ)” determines whether a value is considered syntacti-
cally to have type τ under a certain memory. In our specification for
HIGH, we include heap typings Σ in memories in order to define
this predicate at ref type. For LOW, there is no notion of syntactic
typing, but we find oftype convenient for expressing assumptions
about the “syntactic” structure of closures (see Section 5).

6

CType
def
= { τ | ftv(τ) = ∅ }

LangSpec
def
=

{ (Val,Com,Cont,Mem,Conf,
plugv, plugc, step,mdom,mdisj,
oftype, baseb,pair, app, appty,
pack, roll, ref, asgn) |
Val,Com,Cont,Mem,Conf ∈ Set ∧
plugv ∈ Val× Cont×Mem→ P(Conf) ∧
plugc ∈ Com× Cont×Mem→ P(Conf) ∧
step ∈ Conf → Conf] { fail , halt } ∧
mdom ∈ Mem→ P(Val) ∧
mdisj ∈ Mem×Mem→ P(Mem) ∧
oftype ∈ CType→ P(Val×Mem) ∧
baseb ∈ JbK→ P(Val×Mem) ∧
pair ∈ Val×Val→ P(Val×Mem) ∧
app ∈ Val×Val→ P(Com) ∧
appty ∈ Val× CType→ P(Com) ∧
pack ∈ CType×Val→ P(Val×Mem) ∧
roll ∈ Val→ P(Val×Mem) ∧
ref ∈ Val→ P(Val×Mem) ∧
asgn ∈ Mem×Val×Val ⇀ Mem ∧
∀M1,M2. ∀M ∈ mdisj(M1,M2).

mdom(M) ⊇ mdom(M1)]mdom(M2) }

For L1,L2 ∈ LangSpec,

WorldSpec
def
=

{ (World, lev,M,B,O, .,w,wpub) |
World ∈ Set ∧
lev ∈World→ N ∧
M ∈World→ P(L1.Mem× L2.Mem) ∧
B ∈World→ P(L1.Val× L2.Val) ∧
O ∈World→ P(L1.Conf × L2.Conf) ∧
. ∈World→World ∧
w∈ P(World×World) ∧
wpub∈ P(World×World) ∧
w,wpub are preorders ∧ wpub ⊆ w ∧
∀W ′ wW. .W ′ w .W ∧
∀W ′ wpub W. .W

′ wpub .W ∧
∀W. .W wpub W ∧
∀W ′ wW. lev(W ′) ≤ lev(W) ∧
∀W. lev(W) > 0 =⇒ lev(.W) = lev(W)− 1 }

A.
def
= { (W ′,W) | lev(W) > 0 ∧W ′ w .W }

WVRel
def
= {R ∈ P(World× L1.Val× L2.Val) }

R(W)
def
= { (v1, v2) | (W,v1, v2) ∈ R }

.R
def
= { (W,v1, v2) | lev(W) > 0 =⇒ (.W,v1, v2) ∈ R }

�R
def
= { (W,v1, v2) | ∀W ′ wW. (W ′,v1, v2) ∈ R }

RA.W
def
= { (W ′,v1, v2) |W ′ A. W ∧ (W ′,v1, v2) ∈ R }

(R1, R2)
def
= { (W,v1, v2) | ∀(M1,M2) ∈M(W). (v1,M1) ∈ R1 ∧ (v2,M2) ∈ R2 }

for R1 ∈ P(L1.Val× L1.Mem), R2 ∈ P(L2.Val× L2.Mem)

TyValRel
def
= { (τ1, τ2, R) | τ1, τ2 ∈ CType ∧R ∈WVRel }

ρ ∈ TypeVar ⇀ TyValRel

ρ.1(τ)
def
= τ [ρ(α).τ1/α] ρ.2(τ)

def
= τ [ρ(α).τ2/α]

oftype(τ, ρ)
def
= �(L1.oftype(ρ.1(τ)),L2.oftype(ρ.2(τ)))

VJαKρ def
= { (W,v1, v2) ∈ oftype(α, ρ) | (W,v1, v2) ∈ �ρ(α).R }

VJbKρ def
= { (W,v1, v2) ∈ oftype(b, ρ) | ∃x ∈ JbK .

(W,v1, v2) ∈ �(L1.baseb(x),L2.baseb(x)) }
VJτ × τ ′Kρ def

= { (W,v1, v2) ∈ oftype(τ × τ ′, ρ) |
∃(u1, u2) ∈ .VJτKρ(W). ∃(u′1, u′2) ∈ .VJτ ′Kρ(W).

(W,v1, v2) ∈ �(L1.pair(u1,u′1),L2.pair(u2, u′2)) }
VJτ ′ → τKρ def

= { (W,v1, v2) ∈ oftype(τ ′ → τ, ρ) | ∀W ′ A. W. ∀(u1, u2) ∈ VJτ ′Kρ(W ′).
∀e1 ∈ L1.app(v1,u1). ∀e2 ∈ L2.app(v2, u2). (W ′, e1, e2) ∈ EJτKρ }

VJ∀α. τKρ def
= { (W,v1, v2) ∈ oftype(∀α. τ, ρ) | ∀W ′ A. W. ∀(τ1, τ2, R) ∈ TyValRel.

∀e1 ∈ L1.appty(v1, τ1). ∀e2 ∈ L2.appty(v2, τ2).
(W ′, e1, e2) ∈ EJτKρ[α 7→ (τ1, τ2, R)] }

VJ∃α. τKρ def
= { (W,v1, v2) ∈ oftype(∃α. τ, ρ) |

∃(τ1, τ2, R) ∈ TyValRel. ∃(u1, u2) ∈ VJτKρ[α 7→ (τ1, τ2, R)](W).

(W,v1, v2) ∈ �(L1.pack(τ1,u1),L2.pack(τ2, u2)) }
VJref τKρ def

= { (W,v1, v2) ∈ oftype(ref τ, ρ) | ∀W ′ wW. ∀(M1,M2) ∈M(W ′).
(v1, v2) ∈ B(W ′) ∧(
∃(u1, u2) ∈ .VJτKρ(W ′). (v1,M1) ∈ L1.ref(u1) ∧ (v2,M2) ∈ L2.ref(u2)

)
∧(

∀(u1, u2) ∈ .VJτKρ(W ′). (L1.asgn(M1,v1,u1),L2.asgn(M2, v2, u2)) ∈M(W ′)
)
}

VJµα. τKρ def
= µ(Fα,τ,ρ)

Fα,τ,ρ
def
= λR. { (W,v1, v2) ∈ oftype(µα. τ, ρ) |

∃(u1, u2) ∈ VJτKρ[α 7→ (ρ.1(µα. τ), ρ.2(µα. τ), R)](W).

(W,v1, v2) ∈ �(L1.roll(u1),L2.roll(u2)) }
µ(F)(W)

def
= F (µ(F)A.W)(W)

KJτKρ def
= { (W,K1,K2) ∈World× L1.Cont× L2.Cont | ∀W ′ wpub W.

∀(v1, v2) ∈ VJτKρ(W ′). ∀(M1,M2) ∈M(W ′).
∀C1 ∈ L1.plugv(v1,K1,M1). ∀C2 ∈ L2.plugv(v2,K2,M2).
(C1, C2) ∈ O(W ′) }

EJτKρ def
= { (W, e1, e2) ∈World× L1.Com× L2.Com |

∀(K1,K2) ∈ KJτKρ(W). ∀(M1,M2) ∈M(W).
∀C1 ∈ L1.plugc(e1,K1,M1). ∀C2 ∈ L2.plugc(e2,K2,M2).
(C1, C2) ∈ O(W) }

Figure 3. Language Specifications, World Specifications, and a Language-Generic Kripke Logical Relation

The remaining operations define the various syntactic language
forms that are referenced in the definition of the logical relation.
One point of note: determining whether a value represents a par-
ticular canonical form may require one to consider an accompany-
ing memory. It is easy to see why—e.g., one cannot determine if a
pointer to a pair of heap cells represents 〈v1, v2〉without inspecting
the heap. Determining whether a computation represents a function
application also may require inspecting the memory, but we have
found it technically more convenient to assume that any memory
inspection is somehow built into the notion of computation (see
Section 5 to see how this works in the LOW specification).

4.2 World Specifications
A world specification (lower left of Figure 3) defines a set of
possible worlds relating the memories of two languages specified
byL1 andL2, together with a variety of operations on and relations
indexed by those worlds. In order to understand some of these, it is
necessary to first say a word about our use of step-indexing.

Appel and McAllester [3] introduced step-indexing in order to
model recursive types in foundational proof-carrying code. The
basic idea is to use a natural number index (“step level”) to stratify
what would otherwise be a circular construction. Step-indexing has
also proven useful in modeling other semantically circular notions
like higher-order state, which is how we use them here. Due to
space considerations, since our step-indexed construction follows
closely that of [2] and [14], we refer the interested reader to those
previous works for the relevant background.

In the world specification, the important step-indexing-related
bits are the lev function, which returns the step level of a given
world, and the . (pronounced “later”) operator, which returns an
approximated version of the given world at one lower step level.
We use . to ensure well-foundedness of the logical relation.

“M(W)” is the memory relation associated with W , which
specifies when two memories (from L1 and L2) satisfy the con-
straints of the STS’s in W . “B(W)” is a bijection on values rep-
resenting memory locations in L1 and L2. This is used in defining
the logical relation for ref type. “O(W)” is an observation relation

7

on configurations. For the possible worlds we employ in this paper,
O(W) actually only depends on lev(W), and it is defined to relate
configurations that either both terminate (without failure) or that
both run for at least lev(W) steps of computation. When we prove
that two programs are logically related, we will prove it in starting
worlds of an arbitrary step level, thus ensuring that the programs
are observably equivalent for arbitrarily many computation steps.

Finally, “w” defines the general “future world” relation between
worlds, and “wpub” defines a restricted “public” version of that
relation: if W ′ wpub W , then for any STS in W , the new state of
that STS in W ′ must be accessible from its old state in W only by
public transitions (see Section 3.5). Bothw andwpub are preorders.

4.3 Kripke Logical Relation
The right side of Figure 3 displays our Kripke logical relation,
whose definition is parametric w.r.t. L1, L2, and an instance of
WorldSpec thereon. In the definition, we adopt the convention that
the entities (values, continuations, etc.) from L1 appear in boldface
(v, K, etc.) and the entities from L2 appear in italics (v, K, etc.).
The coincidence of the notation for L2 entities with the notation
for the corresponding entities from HIGH is deliberate, for in the
next section we will instantiate L1 and L2 with our specifications
for LOW and HIGH, respectively. We abuse notation in this way
in order to avoid the proliferation of more than two fonts.

Our logical relation is based very closely on Dreyer et al.’s [14],
with the principal difference being that the relevant linguistic forms
have been abstracted away in the language specifications L1 and
L2. For instance, in the logical relation for arrow types, we do
not construct the applications v1u1 and v2u2 directly, since L1

and L2 may not include an explicit application construct. Rather,
we quantify over arbitrary computations e1 and e2 drawn from
L1.app(v1,u1) and L2.app(v2, u2), respectively.

The logical relation consists of a relation for values (VJτKρ),
one for continuations (KJτKρ), and one for computations (EJτKρ).
Here, we assume that ρ is a relational interpretation of the free
variables of τ , mapping them to arbitrary world-indexed value
relations. For τ = α, VJτKρ is defined as the restriction of ρ(α)
to triples (W,v1, v2) where v1 and v2 are “well-typed” (according
to Li.oftype) and continue to be related in all future worlds of W .
This last part, which is specified using the �R operator defined at
the top right of the figure, is key to ensuring monotonicity of the
value relation. The pair and existential cases of the value relation
also use the �R operator in order to ensure monotonicity of data
representations—e.g., that if v1 represents a pair of u1 and u′1, it
will continue to do so in all future worlds.

As in Appel et al. [4], the interpretation of recursive types is
defined by induction on the “strictly future world” relation A..
This relation is well-founded because W ′ A. W implies that W ′

has a lower step level than W . By defining the recursive type case
this way, we can relate HIGH programs, where roll and unroll are
explicit coercions, to LOW programs where they have been erased.

The ref type case relates two memory locations if dereferencing,
assigning and testing them for pointer equality will always produce
related results. The condition on pointer equality testing is guaran-
teed by the requirement that the locations be in the bijection of the
world in which they are related.

The value relation is lifted to a relation on computations by the
technique of biorthogonality (aka >>-closure) [22, 17]. The idea
is to define two computations to be related if they behave in an
observably equivalent manner when plugged into related continu-
ations. Two continuations are in turn related if they behave in an
observably equivalent manner when plugged with related values.
By quantifying only over public future worlds in the definition of
KJτKρ, we ensure that computations may only make public transi-
tions when viewed end-to-end, as per the discussion in Section 3.5.

This mind-bending technique is well-suited to languages where
the evaluation of a computation is context-sensitive in the sense
that it cannot be performed in ignorance of its continuation. Such
is the case with LOW, where a computation always ends with
a jump to its return address. As we shall see, the fact that the
return address really is a valid return address, which is part of the
contract between computation and continuation, will be encoded in
the LOW implementation of plugc that we define in Section 5.

5. Implementing the Specifications
In order to instantiate our logical relations to relate LOW and
HIGH entities, we must first show how to implement the abstract
LangSpec interface for both languages.

For HIGH, the implementation of the interface is almost en-
tirely straightforward, as all the required entities (values, computa-
tions) have direct correspondents in the HIGH language. The only
slightly unusual bit is that we define HIGH memories to be pairs
of heaps and heap typings Σ. The inclusion of the heap typing is
necessary for defining oftype. For the remaining details, please see
the companion technical appendix [15].

Low-Level Entities The implementation of LangSpec for LOW
(Figure 4) is much more interesting. As described in Section 3.6,
we employ a notion of logical values v, which are either non-
pointer wordsw or logical pointers l̂. Logical Lvalues are similar to
physical PLvalues except that logical Lvalues include logical heap
locations 〈l : o〉h in place of physical ones 〈a〉h. We include the
offset o because the logical heap is (for convenience) modeled two-
dimensionally as a list of blocks.

LOW computations e are 4-tuples (cpc, kpc, vloc, data),
where: cpc is the code address where the computation begins, kpc
is the return address, vloc is the Lvalue where the return value will
be stored, and data is a memory predicate that must be satisfied
in order for the computation to be correctly executed. LOW con-
tinuations K are pairs (kpc, vloc), where: kpc is the code address
where the continuation begins, and vloc is the Lvalue where the
input to the continuation should be placed. It is worth noting that,
unlike e.cpc and e.kpc, the kpc in K must be a code address,
not an Rvalue, because when we plug an e into a K, we need to
know that the value of K.kpc will be the same before and after the
execution of e. Were K.kpc an Rvalue, we would not know that.

Logical memories M are 6-tuples (code, reg, stk, hp, tab, shp),
where: code is the code segment, reg is the register file (minus sp
since it is determined by the size of the stack), stk is the stack,
hp is the heap, tab is the lookup table (described in Section 3.6),
and shp is the system heap, which is a separate portion of the heap
controlled by the runtime system. The lookup table maps each log-
ical pointer to a physical pointer and the size of the memory block
starting at that address. The pointer is live iff the size is > 0. Note
that reg, stk, and hp are all maps from various Lvalues to logical
values, whereas the tab and shp are maps to physical values. In the
proofs, we end up treating tab and shp as essentially black boxes,
since they can be changed at whim by the allocator, whereas the
allocator should not mess around with the logical portion of the
memory represented by reg, stk, and hp.

Lastly, note that reg, stk, tab, and shp may all be undefined
(undef). This is a useful technical device for defining the disjoint
union of several partial memories: it enables us to specify that only
one of those partial memories contains information about, say, the
stack. (See the definition of “mdisj” below.)

Low-Level Representations of High-Level Constructs The bot-
tom left of Figure 4 defines LOW representations of various high-
level constructs, as required by the LangSpec interface. A pair of
v1 and v2 is represented as a pointer to a pair of cells containing v1

8

Loc
def
= { l ∈ N }

Word
def
= {w ∈ N }

v ∈ Val ::= w | l̂
lv ∈ Lvalue ::= brc | 〈a〉s | 〈r − o〉s | 〈l : o〉h | 〈r + o〉h
rv ∈ Rvalue ::= lv | v
Com

def
= { e = (cpc, kpc, vloc, data)

∈ Rvalue× Rvalue× Lvalue× P(Mem) }
Cont

def
= {K = (kpc, vloc) ∈ PAddr× Lvalue }

CodeFrag
def
= PAddr ⇀fin Instruction

RegFile
def
= (Register \ {sp} → Val)] { undef }

List X
def
= { (x0, . . . , xn−1) | n ∈ N ∧ x0, . . . , xn−1 ∈ X }

Stack
def
= List Val] { undef }

Heap
def
= Loc ⇀fin List Val

Table
def
= (Loc ⇀fin N× PAddr)] { undef }

SysHeap
def
= (PAddr ⇀ Word)] { undef }

Mem
def
= {M = (code, reg, stk,hp, tab, shp)

∈ CodeFrag × RegFile× Stack×Heap× Table× SysHeap }
Conf

def
= PConf

oftype(τ)
def
= { (v,M) ∈ Val×Mem |

∀τ1, τ2. τ = τ1 → τ2 =⇒ ∃l, w. v = l̂ ∧M.hp(l)(0) = w ∧
∀α, τ ′. τ = ∀α. τ ′ =⇒ ∃l, w. v = l̂ ∧M.hp(l)(0) = w }

baseb(x)
def
= { (v,M) ∈ Val×Mem | v is a representation of x }

pair(v1,v2)
def
= { (v,M) ∈ Val×Mem | ∃ l. v = l̂ ∧

M.hp(l)(0) = v1 ∧M.hp(l)(1) = v2 }
app(v1,v2)

def
= { e ∈ Com | ∃ l. v1 = l̂ ∧

e.cpc = 〈l : 0〉h ∧ e.kpc = bwk0c ∧ e.vloc = bwk5c ∧
e.data = {M ∈ Mem |M.reg(wk1) = v1 ∧M.reg(wk2) = v2 } }

appty(v, τ)
def
= { e ∈ Com | ∃ l. v = l̂ ∧

e.cpc = 〈l : 0〉h ∧ e.kpc = bwk0c ∧ e.vloc = bwk5c ∧
e.data = {M ∈ Mem |M.reg(wk1) = v } }

pack(τ,v)
def
= { (v′,M) ∈ Val×Mem | v′ = v }

roll(v)
def
= { (v′,M) ∈ Val×Mem | v′ = v }

ref(v)
def
= { (v′,M) ∈ Val×Mem | ∃ l. v′ = l̂ ∧M.hp(l)(0) = v }

asgn(M,v1,v2)
def
=

{
M[l : 0 7→ v2]hp if v1 = l̂ ∧ |M.hp(l)| > 0
undef otherwise

|v| def
=

{
w if v = w

l if v = l̂

M(v)
def
= v M(brc) def

= M.reg(r)

M(〈a〉s)
def
= M.stk(a) M(〈r − o〉s)

def
= M.stk(|M.reg(r)| − o)

M(〈l : o〉h)
def
= M.hp(l)(o) M(〈r + o〉h)

def
= M.hp(|M.reg(r)|)(o)

M[[T, S]]
def
= (M.code,M.reg,M.stk,M.hp, T, S)

M[l : o 7→ v]hp
def
= (M.code,M.reg,M.stk,

M.hp[l 7→ (v0, . . . ,vo−1,v,vo+1, . . . ,vn−1)],
M.tab,M.shp)

if M.hp(l) = (v0, . . . ,vn−1) ∧ o < n

phyv(M)(v)
def
=

w if v = w

â if v = l̂ ∧M.tab(l) = (n, a)
undef otherwise

phyh(M)
def
=

⊎
M.tab(l)=(n,a) ∧ n>0 ∧M.hp(l)=(v0,...,vn−1)

[a 7→ phyv(M)(v0), . . . , phyv(M)(vn−1)]

M repr Φ
def
= Φ.code ⊇M.code ∧

Φ.reg ⊇ phyv(M) ◦M.reg ∧ Φ.reg(sp) = |M.stk| ∧
∀j < |M.stk|. Φ.stk(j) = phyv(M)(M.stk(j)) ∧
Φ.hp ⊇ phyh(M)]M.shp ∧
∀ l, n, a.M.tab(l) = (n, a) ∧ n > 0 =⇒ |M.hp(l)| = n

plugv(v,K,M)
def
= { (Φ, pc) ∈ Conf |M repr Φ ∧

pc = K.kpc ∧M(K.vloc) = v }
plugc(e,K,M)

def
= { (Φ, pc) ∈ Conf |M repr Φ ∧M ∈ e.data ∧

pc = M(e.cpc) ∧M(e.kpc) = K.kpc ∧ e.vloc = K.vloc }
step(Φ,pc)

def
= R with (Φ, pc) ↪→ R

mdom(M)
def
= { l̂ ∈ Val | l ∈ dom(M.hp) }

mdisj(M1,M2)
def
= {M ∈ Mem |

M.code ⊇M1.code]M2.code ∧
M.hp ⊇M1.hp]M2.hp ∧
nosh(M.reg,M1.reg,M2.reg) ∧
nosh(M.stk,M1.stk,M2.stk) ∧
nosh(M.tab,M1.tab,M2.tab) ∧
nosh(M.shp,M1.shp,M2.shp) }

nosh(X,X1, X2)
def
= (X1 6= undef =⇒ X2=undef ∧X=X1) ∧

(X2 6= undef =⇒ X1=undef ∧X=X2)

Figure 4. The Implementation of LangSpec for LOW

and v2. pack(τ,v) and roll(v) are represented the same as v. Ref-
erences are represented directly as pointers. We also use oftype(τ)
to enforce that values of arrow and universal type are represented
by pointers to closures whose first cell is not a logical pointer. (This
ensures that we can jump to the code address directly.)

The most interesting bit is the representation of app(v1,v2)
(and appty(v, τ), which is similar). In order for a computation e

to represent this application, v1 is assumed to be a pointer l̂ to a
closure. The starting address of the function application (e.cpc)
is thus taken to be the code address stored in the first cell of
the closure, i.e., 〈l : 0〉h. Our calling convention is that, when the
function is called, the return address should be stored in wk0, and
when the function returns, the return value should be stored in wk5,
so e.kpc and e.vloc reflect this convention. Finally, the memory
predicate e.data requires that when control is passed to e.cpc, the
function v1 and argument v2 are stored in wk1 and wk2.

Connecting Logical and Physical Memories The right side of
Figure 4 defines the remaining elements of LangSpec, along with
a number of auxiliary operations. The operations at the top right
give shorthand for various lookup and update operations on logical
memories. “phyv(M)(v)” returns the physical interpretation of
v according to M’s lookup table, if one exists, and “phyh(M)”
returns the live portion of the physical heap according to M’s
lookup table. Note that the definition of phyh demands that the
physical representations of logical memory blocks with distinct

head pointers be disjoint, thus ensuring a proper bijection between
the reachable parts of the physical and logical heaps.

“M repr Φ” says that M is a valid logical abstraction of Φ. The
definition is fairly straightforward, making use of phyv and phyh
as one would expect. The fourth line of the definition guarantees
that the reachable heap is disjoint from the system heap, and the
fifth condition just checks that the block sizes specified for live data
in M.tab are correct. Note that Φ may contain arbitrary other junk
(in the code, stack, and heap segments) that is not described by M.

Plugging Continuations Using M repr Φ, it is easy to specify
how to plug continuations with values and computations. A con-
figuration (Φ, pc) belongs to plugv(v,K,M) if (1) M is a valid
abstraction of Φ, (2) the program counter pc is set to the starting
address of the continuation (K.kpc), and (3) the value v is stored
in the location where the continuation is expecting it (K.vloc).

A configuration (Φ,pc) belongs to plugc(e,K,M) if (1) M
is a valid abstraction of Φ, (2) M satisfies the memory constraints
demanded by e, (3) the program counter pc is set to the starting
address of the computation (e.cpc), (4) the starting address of the
continuation (K.kpc) is stored in the place where the computation
is expecting to find its return address (e.kpc), and (5) the place
where e will store its return value (e.vloc) is the same place where
K is expecting to find its input value (K.vloc).

The remaining definitions (of step, mdom, and mdisj) are
fairly self-explanatory. As mentioned earlier, the definition of

9

[bg Z⇒ instrs]
def
= [bg 7→ instrs(0), . . . , instrs(|instrs| − 1)]

{C}code
def
= (C,undef, undef, ∅, undef,undef) ∈ Mem

{H}heap
def
= (∅, undef, undef, H, undef, undef) ∈ Mem

v live in M
def
=

{
> if v = w

∃n, a.M.tab(l) = (n, a) ∧ n > 0 if v = l̂

reach0(M)
def
= { l | ∃r ∈ Register. l̂ = M.reg(r) } ∪
{ l | ∃j < |M.stk|. l̂ = M.stk(j) }

reachi+1(M)
def
= reachi(M) ∪
{ l | ∃l′ ∈ reachi(M). ∃j. l̂ = M.hp(l′)(j) }

reach(M)
def
=
⋃
i∈N reachi(M)

AllocSpec
def
=

{A ∈ PAddr→ { (init, alloc, instrs, I)
∈ PAddr× PAddr× List Instruction ×

P(Table× SysHeap) } |
∀gcbg,Φ,pc.
Φ.code ⊇ [gcbg Z⇒ A(gcbg).instrs] ∧ Φ.reg(wk4) = pc =⇒
∃M′,Φ′.
(Φ,A(gcbg).init)

∗
↪→ (Φ′, pc) ∧

Φ′.code = Φ.code ∧M′.code = [gcbg Z⇒ A(gcbg).instrs] ∧
M′ repr Φ′ ∧M′ ∈ A.GR(gcbg) ∧M′ ∈ A.MR(gcbg) ∧
∀gcbg,M,Φ, pc, n.
M repr Φ ∧M ∈ A.GR(gcbg) ∧M ∈ A.MR(gcbg) ∧
M.reg(wk4) = pc ∧M.reg(wk5) = n =⇒
∃Φ′,M′, T, S, w, l, w0, . . . , wn−1.

(Φ,A(gcbg).alloc)
∗
↪→ (Φ′, pc) ∧

M′ repr Φ′ ∧M′ ∈ A.GR(gcbg) ∧M′ ∈ A.MR(gcbg) ∧
M′ = M[[T, S]][wk4 7→ w]reg[wk5 7→ l̂]reg]

{[l 7→ (w0, . . . , wn−1)]}heap }
A.GR(gcbg)

def
= {M ∈ Mem | ∀ l ∈ reach(M). l̂ live in M }

A.MR(gcbg)
def
= {M ∈ Mem | (M.tab,M.shp) ∈ A(gcbg).I ∧

M.code ⊇ [gcbg Z⇒ A(gcbg).instrs] }

Figure 5. Abstract Specification of the Memory Allocator

mdisj uses the undef option for reg, stk, tab, and shp to en-
sure that if a memory is split into disjoint pieces, each of these
indivisible components can only appear in one of the pieces.

Possible Worlds The model of possible worlds that we use to im-
plement WorldSpec is based very closely on Dreyer et al. [14]. For
space reasons, we will therefore not present the details of the model
in this paper and instead refer the reader to the appendix [15]. (See
Section 8 for a more detailed discussion of how our model relates
to Dreyer et al.’s.)

That said, there are a few salient aspects of the model that are
needed for understanding the definition of compositional program
equivalence that we will give in Section 7. In the model, worlds
W are 3-tuples (k, ω,GR), where: k is W ’s step level, ω is a fi-
nite set of state transition systems (STS’s) of the sort described in
Section 3, and GR is a global invariant governing the entire mem-
ory. We call the STS’s islands because they govern disjoint pieces
of memory. Two memories are related by W if (1) they satisfy its
global invariant GR, and (2) they can be split into disjoint memo-
ries (one for each island) such that the n-th pair of memories satis-
fies the “local” memory relation determined by the current state of
the n-th island in ω. In our definition of program equivalence, we
will use GR to enforce the property that all reachable data is live.
We need to use a global invariant since reachability cannot be de-
termined by looking at a local subheap. We use islands to express
all other assumptions about memory.

6. Assumptions About the Memory Allocator
Figure 5 shows the assumptions we make about memory allocation
and garbage collection, in the form of the specification AllocSpec.

Given as input a starting physical address gcbg, the runtime sys-
tem represented by A will return a 4-tuple (init, alloc, instrs, I),
where: init is the starting address of the initialization routine that
sets up the runtime system, alloc is the starting address of the allo-
cator, instrs is the list of instructions defining the runtime system,
which are assumed to be loaded at address gcbg, and I is a private
invariant of the runtime system, which describes when a logical
memory’s lookup table is in sync with its system heap. The as-
sumption about instrs is joined together with the private invariant
I to form the memory predicate MR defined at the bottom of the
figure.

Assuming init is invoked with the runtime system code in the
right place, and with a return address placed in wk4, its spec-
ification says it will return control in a memory that satisfies
MR(gcbg), along with the global invariant GR(gcbg) that all
reachable data is live.

Assuming that alloc is invoked in a physical memory Φ repre-
sented abstractly by the logical memory M, that M satisfies the
MR and GR properties, that the number of cells to be allocated
(n) is stored in wk5, and that the return address is stored in wk4,
the specification of alloc says that it will return a pointer to a fresh
n-word block in wk5, and that the memory it returns (M′) will con-
tinue to satisfy all the aforementioned invariants. Moreover, while
the lookup table and system heap of M′ may be completely dif-
ferent from those of M, the contents of M must remain otherwise
unchanged. This does not of course prevent the allocator from hav-
ing performed a GC: any logical pointer that was not reachable in
M before the call to alloc may very well be marked as dead in the
lookup table of the post-allocation M′, but any pointer that was
reachable in M will still be reachable in M′ and thus, by the defi-
nition of GR, still be live.

Our specification of the runtime system provides considerable
flexibility—for example, it should be satisfied by either a mark-
and-sweep or a copying collector because the specification says
nothing about the private invariant of the runtime system. However,
it does assume that the collector places no restrictions (such as read
or write barriers) on what the mutator does to live data. We believe
it should be possible to adapt our approach to a wider range of
collectors, but we leave that to future work.

7. Compositional Program Equivalence
The logical relation EJτKρ characterizes what it means for two
computations to be logically equivalent, but ultimately what we
really care about is whether a pair of HIGH and LOW programs
are logically equivalent. What, one may wonder, is the difference
between computations and programs? In short, a program is what
you write, and a computation is what you run. That is, a program is
a piece of relocatable code that must be linked with other programs
and loaded into memory before it can be executed, whereas a
computation describes the “next” thing to be executed in a running
machine configuration. For the HIGH language, the distinction
between computations and programs can be easily glossed over
because the operational semantics of HIGH is defined directly
on HIGH programs. For the LOW language, however, especially
given the ability to write self-modifying code, it is important to
distinguish the two notions. In this section, we explain what a LOW
program is and how to define logical equivalence between HIGH
and LOW programs, and we then present our key technical results.

7.1 Equivalence of HIGH and LOW Programs
As can already be seen from our motivating example in Section 3.1,
we define a LOW program p to be a function from two code
pointers to a list of instructions. The first of the code pointer inputs
is assumed to be the address of the memory allocation routine,
and the second is assumed to be the address where the list of

10

H.Prog
def
= { e | floc(e) = ∅ }

L.Prog
def
= { p ∈ PAddr× PAddr→ List Instruction }

DJ·K def
= ∅

DJ∆, αK def
= { (ρ, α 7→ R) | ρ ∈ DJ∆K ∧R ∈ TyValRel }

GJ·Kρ def
= { (W,v, ∅) |W ∈World ∧ v ∈ L.Val }

GJΓ, x : τKρ def
= { (W,v, (γ, x 7→ v)) | ∃v1,v2.

(W,v, 〈〉) ∈ �(L.pair(v1,v2),H.Val×H.Mem)∧
(W,v1, v) ∈ VJτKρ ∧ (W,v2, γ) ∈ GJΓKρ }

W ◦k (A, gcbg)
def
= (k, [ιregstk, ιhtyping, ιgc(A, gcbg)],GR◦(A, gcbg))

∆; Γ ` bg ≈W e : τ
def
=

∀W ′ wW. ∀ρ ∈ DJ∆K . ∀(v, γ) ∈ GJΓKρ(W ′).

((bg, bwk0c, bwk5c, {M |M.reg(sv0) = v }), γρe) ∈ EJτKρ(W ′)

where γρe ::= e[ρ(α).τ2/α][γ(x)/x]

∆; Γ ` p ≈ e : τ
def
=

∅; ∆; Γ ` e : τ ∧
∀A, gcbg, bg. ∀k,W wW ◦k (A, gcbg). ∀(M,M) ∈M(W).

∀M′.M′ = M] {[bg Z⇒ p(A(gcbg).alloc, bg)]}code =⇒
∃W ′ wW. lev(W ′) = lev(W) ∧ (M′,M) ∈M(W ′) ∧

∆; Γ ` bg ≈W ′ e : τ

Figure 6. Program Equivalence

instructions returned by the program will be loaded into memory.
When listing the code of a program (e.g., in Figure 2), we write
line numbers on selected lines of code (e.g., bg + 3) to indicate
the physical addresses where we expect the code to be loaded,
but note that (1) these addresses are always relative to the second
parameter of the program (typically named bg), so that the code is
always relocatable, and (2) the notation is merely suggestive—the
line numbers are not part of the actual program.

Now, concerning equivalence of HIGH and LOW programs: it
is possible to define a notion of logical equivalence strictly between
closed programs, but we will find it useful when reasoning about
compiler correctness to generalize this relation to one on open pro-
grams. On the HIGH side, an open program is simply an expres-
sion e with free variables (and no free locations), but what is an
open program on the LOW side? In order to answer this, we need
to pick an environment-passing convention, specifying what is an
official low-level representation of a high-level environment and
where the low-level program expects to get its environment data.
In Figure 6, we give a logical relation GJΓKρ between low-level
values and high-level environments. This relation specifies that a
high-level environment γ should be represented as a linked list of
low-level values that are componentwise related to the high-level
values in the range of γ. We assume that the environment data is
passed in the register sv0—this assumption will be codified in the
definition of the program equivalence relation ≈ (see below).

Before we define program equivalence, we must also specify the
invariants on memories that are required for executing programs.
These conditions are represented by the initial worlds W ◦k in Fig-
ure 6. (The k in W ◦k simply determines the step level but does not
otherwise affect the definition.) The initial worlds consist of three
islands and one global invariant: ιregstk owns the register file and
the stack in the LOW memory and requires that callee-save reg-
isters and stack be preserved before and after function calls (this
is accomplished using a combination of private and public transi-
tions as discussed in Section 3.5); ιhtyping requires that the heap
typing in the HIGH memory should only grow in future worlds;
ιgc(A, gcbg) owns the lookup table and the system heap and en-
forces the private A.MR(gcbg) invariant of the runtime system
(Figure 5); and the global invariant GR◦(A, gcbg) specifies that
all reachable blocks in the LOW memory are live (A.GR(gcbg) in

Figure 5) and that the HIGH memory satisfies its heap typing. All
these components ofW ◦k are formally defined in the appendix [15].

We are now ready to define the program equivalence relation≈.
The judgment ∆; Γ ` p ≈ e : τ says that a LOW program p and a
HIGH program e are equivalent if the following is true. First, let k
be any starting step level, and letW be any future world ofW ◦k that
does not already impose any invariants on the code segment of p.
(This latter condition is guaranteed by the assumption that we are
given initial memories M and M related by W , but where M does
not contain the code segment of p. We use the notation M1]M2

here to denote the “smallest” memory in mdisj(M1,M2), in a
sense defined formally in the appendix.)

Under these assumptions, we must be able to:

1. Extend W to a future world W ′ (of the same step level) such
that W ′ relates M′ and M , where M′ is M extended with
the code of p. Intuitively, this step affords p the opportunity
to “own” its own code segment by extending W with an island
governing it. Typically, this island will take the form of an in-
variant stating that p’s code must never be modified, although in
the case of self-modifying code we would instead define the is-
land to be a state transition system (as described in Section 3.4).

2. Show that the HIGH computation e is related (under the world
W ′ constructed in the previous step) to the LOW computation
e that starts at the beginning (bg) of p’s code segment. This
subgoal is encapsulated in the open computation equivalence
judgment ∆; Γ ` bg ≈W ′ e : τ (Figure 6). This judgment says
that, for any future worldW ′′ ofW ′, for any relational interpre-
tation ρ of the type variables in ∆, and for any environments v
and γ related underW ′′ by GJΓKρ, the HIGH computation γρe
is logically related (by EJτKρ, under W ′′) to the LOW compu-
tation starting at address bg. The other three components of the
LOW computation stipulate, respectively, that (1) the compu-
tation expects to find its return address stored in wk0, (2) the
computation will store its resulting value in wk5, and (3) the
computation expects to find its environment stored in sv0. One
can think of this last assumption about sv0 as having the effect
of “closing” p, in much the same way that γ and ρ close e.

7.2 Compiler Correctness and Other Technical Results
Our first result is an adequacy theorem for our program equivalence
relation ≈. The statement of the theorem refers to the following
simple loader for the LOW language: load(A, p) first runs the
initialization routine of the memory allocator A, then executes p,
and finally halts as soon as it gets control back from p:

load(A, p) ::= let (init, alloc, gcinstrs,) := A(105),
instrsp := p(alloc, 105 + |gcinstrs|),
loadinstrsp := [

(∗ 100 ∗) move bwk4c 102
jmp init

(∗ 102 ∗) move bwk0c 104
jmp 105 + |gcinstrs|

(∗ 104 ∗) halt
] ++ gcinstrs ++ instrsp in
{ (Φ, 100) ∈ PConf | Φ.code ⊇ [100 Z⇒ loadinstrsp] }

The adequacy theorem states that closed HIGH and LOW pro-
grams that are equivalent according to≈must equi-terminate when
loaded by the above loader.

Theorem 1 (Adequacy). For all ∅; ∅ ` p ≈ e : τ ,
∀A ∈ AllocSpec. ∀(Φ, pc) ∈ load(A, p). ∀h.
both (Φ, pc) and (h, e) diverge or both halt without fail.

One might think that this adequacy result is weak because the
loader does not inspect the result returned by the program p. How-

11

Papp(p1, p2) ::= λ alloc,bg.
let instrs1 := p1(alloc,bg + 4), c1 := |instrs1|,

instrs2 := p2(alloc,bg + c1 + 6), c2 := |instrs2| in [
bg plus bspc bspc 2

move 〈sp− 2〉s bwk0c
move 〈sp− 1〉s 0
move bwk0c bg + c1 + 4

instrs1

bg + c1 + 4 move 〈sp− 1〉s bwk5c
move bwk0c bg + c1 + c2 + 6

instrs2

bg + c1 + c2 + 6 move bwk0c 〈sp− 2〉s
move bwk1c 〈sp− 1〉s
move bwk2c bwk5c
minus bspc bspc 2
jmp 〈wk1 + 0〉h

]

Figure 7. Compilation of Function Application

ever, together with the compositionality result below, one can link
the program p with arbitrary well-behaved “test” programs and the
linked programs are guaranteed to behave the same.

In order to show that our logical relations are sufficiently
populated—an important desideratum, as we explained in the
introduction—we have written a very naı̈ve compiler from HIGH
to LOW and proved that every source program is related to its
compiled low-level program by our program equivalence. Specifi-
cally, we have implemented a low-level construct corresponding to
each high-level construct and then defined the compiler purely in-
ductively on the structure of source programs using these low-level
constructs. For each construct, we have shown a corresponding
“compatibility” lemma (following Pitts’ terminology [21]), mean-
ing that program equivalence is preserved under said construct.
This implies that equivalent programs behave the same under arbi-
trary well-behaved contexts.

One example of a high-level construct is function application.
Figure 7 shows its low-level realization as a simple linking program
Papp(p1, p2). We assume here that p1 is some program computing
a value of function type τ ′ → τ , and p2 is some program comput-
ing a value of the argument type τ ′.

The program begins by bumping up the stack pointer twice,
pushing the return address (stored in wk0) onto the first new stack
slot, and clearing the second one with 0. The clearing instruction
(at bg + 2) is needed because the stack slot at 〈sp− 1〉s might
otherwise contain a dangling pointer; thus, in order to maintain
the global invariant that all reachable data is live, we must clear
〈sp− 1〉s before passing control to p1. When p1 returns, we as-
sume it returns a pointer to a function closure in wk5, we store that
pointer in the cleared stack slot, and we proceed to execute p2. Af-
ter p2 returns, we move p1’s closure pointer into wk1, the argument
value (returned by p2) into wk2, and the original return address of
Papp(p1, p2) into wk0. We then pop off two stack slots and make
a tail call to the code pointer stored in wk1’s closure.

The compatibility result for Papp can be seen as a composition-
ality result for our program equivalence relation.

Lemma 1 (Compatibility: App).

∆; Γ ` p1 ≈ e1 : τ ′ → τ ∧∆; Γ ` p2 ≈ e2 : τ ′ =⇒
∆; Γ ` Papp(p1, p2) ≈ e1 e2 : τ

Another related construct of course is λ-abstraction. Figure 8
shows its low-level realization as the program Pabs(p). We assume
here that p is a program implementing the body of a λ-abstraction,
under the assumption that the argument of that abstraction is the
first element in the linked list environment stored at sv0.

Pabs(p) ::= λ alloc, bg.
let code := p(alloc, bg + 16), c := |code| in [

bg move bwk4c bg + 3
move bwk5c 2
jmp alloc

bg + 3 move 〈wk5 + 0〉h bg + 6
move 〈wk5 + 1〉h bsv0c
jmp bwk0c

bg + 6 plus bspc bspc 2
move 〈sp− 2〉s bwk0c
move 〈sp− 1〉s bsv0c
move bwk4c bg + 12
move bwk5c 2
jmp alloc

bg + 12 move 〈wk5 + 0〉h bwk2c
move 〈wk5 + 1〉h 〈wk1 + 1〉h
move bsv0c bwk5c
move bwk0c bg + c+ 16

code
bg + c+ 16 move bsv0c 〈sp− 1〉s

minus bspc bspc 2
jmp 〈sp− 0〉s

]

Figure 8. Compilation of λ-Abstraction

The actual computation of the program is quite simple, because
it merely allocates a closure representing the λ-abstraction and
returns it (just like the example in Section 3.1). The closure consists
of a code pointer (to bg + 6) and an environment pointer, which
is of course just whatever environment was passed to Pabs(p) in
sv0. Whenever the closure is invoked (by jumping to bg + 6), it
first saves the return address (stored in wk0), as well as the callee-
save register sv0, by pushing them on the stack. It then pushes the
argument value bwk2c onto the front of the environment linked-list
headed by 〈wk1 + 1〉h (which requires allocating two new memory
cells), and stores a pointer to this extended environment in sv0

before executing p. Finally, when p returns, it pops the stack twice,
and restores the original contents of the callee-save sv0, before
jumping to the return address that was stored on the stack.

The compatibility result for Pabs is as follows:

Lemma 2 (Compatibility: Abs).
∆; Γ, x : τ ′ ` p ≈ e : τ =⇒

∆; Γ ` Pabs(p) ≈ λx:τ ′. e : τ ′ → τ

Using Papp, Pabs, and all the other LOW program construc-
tors, we can define a compiler LΓ ` eM in a simple, syntax-directed
fashion, e.g.,

LΓ ` e1 e2M ::= Papp(LΓ ` e1M, LΓ ` e2M)
LΓ ` λx:τ. eM ::= Pabs(LΓ, x:τ ` eM)

and then establish the following compiler correctness result:

Theorem 2 (Compiler Correctness). For ∅; ∆; Γ ` e : τ ,

∆; Γ ` LΓ ` eM ≈ e : τ

The theorem is easily provable by induction on e, using the appro-
priate compatibility lemma in each case.

Finally, we prove the self-modifying awkward program pawk is
equivalent to the high-level awkward program eawk from Figure 2.

Theorem 3. ∅; ∅ ` pawk ≈ eawk : (unit→ unit)→ int

As a corollary, we can see that for any ∅; ∅; ∅ ` e : unit→ unit,
both eawk e and load(A,Papp(pawk, L∅ ` eM)) equi-terminate.
Similarly, for any ∅; ∅; ∅ ` e : ((unit→ unit)→ int)→ τ , both
e eawk and load(A,Papp(L∅ ` eM, pawk)) equi-terminate.

12

Detailed proofs of all these results appear in the companion
technical appendix [15].

8. Related and Future Work
There is a huge body of work on compiler correctness and seman-
tics for low-level code. We focus on the most closely related work.

Compositional Compiler Correctness As explained in the intro-
duction, the overall motivation of our work is very similar to that of
Benton and Hur [5], and our use of logical relations to build an ex-
tensional, compositional notion of equivalence between high- and
low-level languages is inspired directly by their work. However,
there are significant differences between our work and theirs.

First, they define a relation between a purely functional PCF-
like language and an SECD machine, whereas we relate a more
expressive, impure, ML-like high-level language to an assembly
language that is significantly more low-level and realistic than
SECD. Reasoning about compositional equivalence in our setting
is significantly more complex, not least because we must deal with
reasoning about the heap and the presence of a garbage collector.
We make essential use of Kripke logical relations for this purpose.

That said, there is a sense in which our setting makes the
problem easier. One of Benton and Hur’s goals was to develop
a model of low-level programs that would admit program equiva-
lences (such as commutativity of addition) whose validity depend
on the purely functional nature of the source language. Toward this
end, they related low-level programs to denotations of high-level
programs, so that one could use domain-theoretic reasoning to
establish the purely functional equivalences of interest. These half-
operational, half-denotational relations were of necessity asym-
metric. In particular, they employ biorthogonality—but only on
the low-level side of the relation—as well as step-indexing—but
only in defining one direction of approximation (in the other direc-
tion, they use an admissible closure operation). As a result, proving
in their setting that a high- and low-level program are equivalent
really involves doing two proofs (one for each direction of approx-
imation) using very different technical machinery.

In our work, we sidestep this problem because the ML-like lack
of effect encapsulation in our high-level language causes it to have
a relatively weak equational theory that simply does not admit the
kinds of purely functional equivalences that Benton and Hur were
interested in. Nevertheless, as our motivating example illustrates,
there are still plenty of interesting equivalences in our setting, par-
ticularly involving uses of local state. Moreover, our logical rela-
tions, being entirely operational and defined in language-generic
fashion, are inherently symmetric, making them easier to use.

More recently, Benton and Hur [6] have generalized their tech-
nique to a compiler for a polymorphic (yet still purely functional)
language, but their logical relations are still asymmetric.

Chlipala [11] proposes a syntactic approach to proving compo-
sitional compiler correctness. His idea is to establish a set of criteria
for high-low compilation relations, such that the results of different
compilers can be correctly linked so long as their compilation rela-
tions satisfy these criteria. However, the criteria are still syntactic,
and thus he cannot reason for instance about our motivating ex-
ample, wherein the high-low equivalence depends on semantic rea-
soning about local state. Moreover, Chlipala only considers a fairly
high-level target language that is a CPS version of the source.

Jaber and Tabareau [16] propose an alternative approach to
compositional compiler correctness based on type preservation. In-
stead of proving compiler correctness directly, they prove that the
compiler is type-preserving, but their source language has such a
rich type system (with dependent refinement types) that this effec-
tively implies correctness. Like Benton and Hur, they compile a

purely functional language to an SECD machine, but their correct-
ness result only applies to terminating programs.

None of the aforementioned work considers a target language
that supports garbage collection.

Kripke Logical Relations Our logical relation is based closely
on Dreyer, Neis and Birkedal’s (hereafter, DNB) [14], which was
in turn a refinement and generalization of Ahmed, Dreyer and
Rossberg’s [2]. (Of course, these are but the latest in a long line of
work on Kripke logical relations spanning decades—see loc. cit.,
as well as Pitts and Stark [22], for further pointers to the literature.)

DNB’s main goal was to show how a Kripke model based on
state transition systems could be extended in orthogonal ways to
exploit the absence of certain features, namely higher-order state
and/or control effects. For the HIGH language considered here, in
which there are no control operators, DNB showed how to extend
their baseline model with private transitions (Section 3.5) and
demonstrated the utility of private transitions in reasoning about
a variety of challenging contextual equivalences involving local
state. For our purposes, private transitions have proved useful in
formalizing the “well-bracketing” assumptions about the stack and
callee-save registers, assumptions which indeed rely on the absence
of control operators. Extending the HIGH language with control
operators would thus necessitate a significant change to our Kripke
model, precisely because the compilation strategy for HIGH would
need to change as well. We leave this problem to future work.

Despite the close connection, our logical relation diverges from
DNB’s in several ways. First and foremost, whereas DNB’s relation
was only designed to reason about high-level programs, the whole
point of our model is to allow us to relate high- and low-level pro-
grams. As a result, we have no “fundamental theorem of logical re-
lations” because one cannot even state such a theorem for a relation
between two languages. Instead, we prove a compiler correctness
result, whose proof mirrors that of the usual fundamental theorem.
Our consideration of low-level programs has also led us to make a
clear distinction between programs and computations, and between
the notions of equivalence thereon. This seems to us an interesting
and important distinction that is worth investigating further.

Dealing with low-level programs introduces significant techni-
cal complexity. In order to isolate this complexity, we factor the
presentation of our relation generically w.r.t. a language specifica-
tion “interface” LangSpec. This helps to clarify the structure of
our Kripke logical relation, bringing into relief its essentially sym-
metric high-level structure, as well as the components of the model
that are language-dependent (namely the two implementations of
LangSpec, where most of the complexity lies). Although we have
in this paper only instantiated our model so as to relate HIGH and
LOW programs, one may also instantiate the model to relate HIGH
and HIGH programs, or LOW and LOW programs. The former
model would be largely similar to Dreyer et al.’s; the latter would
enable one to reason about equivalence of low-level programs di-
rectly, which may prove useful in reasoning about correctness of
low-level optimizations, although this remains to be explored.

As far as possible worlds are concerned, although ours are
largely similar to DNB’s, we have extended their worlds in one
relatively straightforward way: in addition to local invariants (ex-
pressed in our possible worlds by islands), our worlds also permit
one to express a global invariant. We exploit this added functional-
ity to encode the allocator’s invariant that all reachable data are live
(Sections 3.6 and 6).

Lastly, as far as the high-level structure of the logical relation
is concerned, ours is also quite similar to DNB’s, except that our
interpretation of reference types is somewhat different. Various
approaches to interpreting reference types have been proposed in
the literature; our present interpretation is in a more “extensional”
style than either DNB’s or Ahmed et al.’s [2], in the sense that

13

it avoids dependence on too many details of how possible worlds
are structured. This enables us to present it, as we have, in a more
“world-generic” fashion. Among existing accounts, our present for-
mulation is fairly close to the denotational one given by Birkedal,
Støvring and Thamsborg [7], but the jury is still out on which of
these formulations is most felicitous.

Although the primary benefit of presenting our logical relation
language- and world-generically is to clarify its (admittedly com-
plex) structure, it also enables us to prove a few “structural” lem-
mas generically as well, most notably monotonicity. (That we can
prove monotonicity generically should not be surprising, given that
it is essentially baked into the logical relation via the quantification
over future worlds in certain cases and the use of the � operator
in others.) Most of the interesting theorems, however, cannot be
stated, let alone proven, without talking about the details of the
LangSpec’s for HIGH and LOW.

Garbage Collection Torp-Smith et al. [24] prove the correctness
of a Cheney copying collector using separation logic. They specify
the behavior of a correct garbage collector in terms of an isomor-
phism between the reachable portions of the initial and final heaps.
Our specification is broadly similar in that we express the reach-
able portion of the heap in our logical memories. We construct our
entire LangSpec for LOW around these logical memories.

Building on the work of Torp-Smith et al., McCreight et al. [20]
develop a garbage collector interface that is general enough to
characterize a variety of different collectors, including incremen-
tal copying collectors with read and write barriers. They prove
in Coq that various collectors implement this interface, and that
various mutator programs respect it. In more recent work, Mc-
Creight et al. [19] extend Leroy’s Compcert compiler [18] with
support for garbage collection, by building the mutator-collector
interface into the design of a new intermediate language, GCminor.
They prove semantics preservation (mostly) for a compiler from a
purely functional, typed language—Dminor—to GCminor, but (as
in Compcert) not compositional correctness.

Self-Modifying Code Cai et al. [9] provide one of the only formal
accounts of how to verify self-modifying code. They use Hoare-
style separation-based reasoning to enable local reasoning about
modifications to code, in much the same way that standard sep-
aration logic enables local reasoning about the heap. We adopt a
similar approach, using possible worlds to impose local invariants
on—and, more generally, to establish local state transition systems
governing—both the heap and the code segment. Ours is the first
relational model for reasoning about (compositional) equivalence
of self-modifying programs.

Future Work Given our ability to reason about self-modifying
code, one direction for future work is to adapt this functionality
to reason about more practical applications, such as a just-in-time
compiler or a dynamic linker/loader.

We have shown compositionality of our high-low relation by
showing that it is closed under the linking constructs expressible
at the level of our HIGH language, such as function application.
In future work, we would like to prove that our relation is also
compositional w.r.t. a more realistic linking language.

The concrete logical relation we have presented here assumes
a uniform data representation. It is possible in principle to define
the meaning of language forms like pair(v1,v2) in a non-uniform
way—e.g., to enable flattening—but it is not currently possible in
our language-generic framework to define such language forms in
a type-specialized manner. We leave a serious examination of this
issue to future work.

Lastly, it is unclear how to scale our techniques to reason about
compositional correctness of a multi-phase compiler because the
step-indexed logical relations we define are not obviously transi-

tive. This is a well-known problem with step-indexed logical rela-
tions [1], and it seems a fresh idea is needed to circumvent it.

Acknowledgments
We would like to thank Jacob Thamsborg for pointing out a very
subtle technical oversight in an earlier draft of this paper.

References
[1] A. Ahmed. Step-indexed syntactic logical relations for recursive and

quantified types. In ESOP, 2006.

[2] A. Ahmed, D. Dreyer, and A. Rossberg. State-dependent representa-
tion independence. In POPL, 2009.

[3] A. Appel and D. McAllester. An indexed model of recursive types for
foundational proof-carrying code. TOPLAS, 23(5):657–683, 2001.

[4] A. Appel, P.-A. Melliès, C. Richards, and J. Vouillon. A very modal
model of a modern, major, general type system. In POPL, 2007.

[5] N. Benton and C.-K. Hur. Biorthogonality, step-indexing and com-
piler correctness. In ICFP, 2009.

[6] N. Benton and C.-K. Hur. Realizability and compositional compiler
correctness for a polymorphic language. Technical Report MSR-TR-
2010-62, Microsoft Research, Apr. 2010.

[7] L. Birkedal, K. Støvring, and J. Thamsborg. A relational realizability
model for higher-order stateful ADTs. Submitted for publication,
2010.

[8] N. Bohr. Advances in Reasoning Principles for Contextual Equiv-
alence and Termination. PhD thesis, IT University of Copenhagen,
2007.

[9] H. Cai, Z. Shao, and A. Vaynberg. Certified self-modifying code. In
PLDI, 2007.

[10] A. Chlipala. A certified type-preserving compiler from lambda calcu-
lus to assembly language. In PLDI, 2007.

[11] A. Chlipala. Syntactic proofs of compositional compiler correctness,
2009. Submitted for publication.

[12] A. Chlipala. A verified compiler for an impure functional language.
In POPL, 2010.

[13] Z. Dargaye. Vérification formelle d’un compilateur pour langages
fonctionnels. PhD thesis, Université Paris 7 Denis Diderot, July 2009.

[14] D. Dreyer, G. Neis, and L. Birkedal. The impact of higher-order state
and control effects on local relational reasoning. In ICFP, 2010.

[15] C.-K. Hur and D. Dreyer. Technical appendix for this paper, 2010.
URL: http://www.mpi-sws.org/~dreyer/papers/lrmlasm/.

[16] G. Jaber and N. Tabareau. Krivine realizability for compiler correct-
ness. In LOLA, 2010.

[17] J.-L. Krivine. Classical logic, storage operators and second-order
lambda-calculus. Annals of Pure and Applied Logic, 68:53–78, 1994.

[18] X. Leroy. A formally verified compiler back-end. Journal of Auto-
mated Reasoning, 43(4):363–446, 2009.

[19] A. McCreight, T. Chevalier, and A. Tolmach. A certified framework
for compiling and executing garbage-collected languages. In ICFP,
2010.

[20] A. McCreight, Z. Shao, C. Lin, and L. Li. A general framework for
certifying garbage collectors and their mutators. In PLDI, 2007.

[21] A. Pitts. Typed operational reasoning. In B. C. Pierce, editor,
Advanced Topics in Types and Programming Languages, chapter 7.
MIT Press, 2005.

[22] A. Pitts and I. Stark. Operational reasoning for functions with local
state. In HOOTS, 1998.

[23] E. Sumii. A complete characterization of observational equivalence in
polymorphic lambda-calculus with general references. In CSL, 2009.

[24] N. Torp-Smith, L. Birkedal, and J. C. Reynolds. Local reasoning
about a copying garbage collector. TOPLAS, 30(4), 2008.

14

	Introduction
	Contributions

	HIGH and LOW
	The Key Ideas
	A Motivating Example
	Discussion of the Motivating Example
	Kripke Logical Relations and State Transition Systems
	State Transition Systems for the Motivating Example
	Well-Bracketed State Changes and Private Transitions
	Reasoning in the Presence of Garbage Collection

	A Language-Generic Kripke Logical Relation
	Language Specifications
	World Specifications
	Kripke Logical Relation

	Implementing the Specifications
	Assumptions About the Memory Allocator
	Compositional Program Equivalence
	Equivalence of HIGH and LOW Programs
	Compiler Correctness and Other Technical Results

	Related and Future Work

