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Abstract
For ARMv8 and RISC-V, there are concurrency models in
two styles, extensionally equivalent: axiomatic models, ex-
pressing the concurrency semantics in terms of global prop-
erties of complete executions; and operational models, that
compute incrementally. The latter are in an abstract microar-
chitectural style: they execute each instruction in multiple
steps, out-of-order and with explicit branch speculation. This
similarity to hardware implementations has been important
in developing the models and in establishing confidence,
but involves complexity that, for programming and model-
checking, one would prefer to avoid.
We present new more abstract operational models for

ARMv8 and RISC-V, and an exploration tool based on them.
The models compute the allowed concurrency behaviours
incrementally based on thread-local conditions and are sig-
nificantly simpler than the existing operational models: exe-
cuting instructions in a single step and (with the exception of
early writes) in program order, and without branch specula-
tion. We prove the models equivalent to the existing ARMv8
and RISC-V axiomatic models in Coq. The exploration tool
is the first such tool for ARMv8 and RISC-V fast enough
for exhaustively checking the concurrency behaviour of a
number of interesting examples. We demonstrate using the
tool for checking several standard concurrent datastructure
∗Work done while at Seoul National University.
†Hur is the corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6712-7/19/06. . . $15.00
https://doi.org/10.1145/3314221.3314624

and lock implementations, and for interactively stepping
through model-allowed executions for debugging.
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1 Introduction
Writing relaxed-memory concurrent software is notoriously
hard. To make matters worse, testing alone cannot give high
confidence: the behaviour is highly non-deterministic and
certain relaxed behaviours are only observed very rarely, e.g.
only once in thousands or millions of executions, sometimes
only on particular hardware, sometimes not currently observ-
able at all but allowed by the specification (and so perhaps
exhibited with future compiler generations or hardware).

Therefore, precise semantics of the concurrency behaviour
and tool support for checking software correctness are highly
desirable. More specifically, to safely write such software —
typically concurrency library implementations — it is useful
to have (i) a clear and precise semantics, ideally helping pro-
grammers avoid most bugs in the first place, (ii) exhaustive
exploration tools, to find concurrency bugs or show their
absence in bounded executions, and (iii) interactive explo-
ration tools, helping to pin down the source of unexpected
behaviours of the program.

https://doi.org/10.1145/3314221.3314624
https://doi.org/10.1145/3314221.3314624
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While such libraries are mostly written in higher-level
languages such as C/C++, semantics and tool support at
the assembly level offer several benefits. First, after exten-
sive past research, hardware concurrency models are quite
well-understood. For higher-level languages such as C/C++
[16] only non-atomic accesses and the sequential consis-
tency and release/acquire fragments are well-understood.
High-performance algorithms, however, also involve relaxed
‘atomics’ and ‘consume’ atomics, for which there still is not
an accepted high-level language semantics [15, 27, 29, 38].
Hence, in practice programmers often write code that does
not follow the C/C++ concurrency model, relying instead on
the compiled code to provide stronger guarantees, e.g. Linux
has its own memory model [9, 25]. For example, in C/C++,
often weakening ‘consume’ or ‘acquire’ loads to ‘relaxed’
loads, though unsound in the source language, generates
more efficient code that behaves correctly under the hard-
warememorymodel. Second (and related), inmany cases con-
currency libraries include hand-written assembly modules
or inline assembly, optimised for performance on particular
hardware (requiring a clear understanding of the assembly
semantics). Third, the compiler need not be trusted because
even compiler-introduced bugs can be detected. Fourth, such
tools apply for any source language or memory model: e.g.
C, C++, Rust, or Linux.

Such assembly tools can, for instance, effectively be used
in the following scenario of a code base with custom concur-
rency libraries: the library functions are separately compiled
to assembly, debugged and exhaustively checked (up to some
bounds) by the exploration tools, and then linked at the as-
sembly level with client software of the remaining code base
(in turn perhaps checked/verified using source level tools).

In this paperwe present a semantics and tools aiming to ad-
dress these goals for the widely used ARMv8 processor archi-
tecture [12], that has recently moved to a multicopy-atomic
semantics [20, 39], and for RISC-V, whose community has
recently ratified a very similar memory model [42]. ARMv8
and RISC-V have relaxed memory models that allow the
effects of various processor optimisations to become observ-
able to the programmer: instructions execute out-of-order
and speculatively (past unresolved conditional or computed
branches), speculative writes can be forwarded to program-
order-later reads, processors have store queues and caches
to speed up memory accesses, etc. At the same time, the
architectures give guarantees of coherence, ordering result-
ing from dependencies and memory barriers, and atomicity
of load/store exclusive instructions. The resulting memory
models are subtle, and a clear semantics and tool support are
particularly valuable.

For ARMv8-A and RISC-V there are two existing styles of
semantics and associated tools: axiomatic and operational,
with the latter in an abstract microarchitectural style.

The axiomatic model for ARMv8-A [12, 20, 39] is incor-
porated by the architecture text; it is formalised by Deacon

in herd [11]. The RISC-V model, recently defined by the
RISC-V Memory Model Task Group (chaired by Lustig), is
similar, and is formalised both in Alloy [26] and in herd.
These axiomatic models describe the semantics by directly
stating properties of the legal executions, as axioms about
candidate executions. This makes for abstract and concise
definitions. But they only specify global properties of com-
pleted executions and do not compute the legal outcomes
incrementally. We want to support stepping through exe-
cutions for debugging. Moreover, herd only supports a few
instructions, without a substantial instruction-set architec-
ture (ISA) model, and the Alloy model is a pure memory
model; it cannot run machine instructions.
The existing operational models for ARMv8 and RISC-V

are variants of the Flat operational model, by Pulte, Flur, et
al. [39]. Flat computes the possible executions of a concur-
rent program incrementally, based on the legal traces from
the initial state, where the model transitions enabled in a
given state are subject to thread-local conditions. It features
substantial ISA models for ARM and RISC-V. Moreover it is
integrated into the rmem tool [22, 23, 39–41] that supports
exhaustive and interactive exploration, a web user interface,
debugging facilities, etc. The biggest example exhaustively
checked with Flat so far is a spinlock example from the
Linux kernel. The model has an abstract micro-architectural
flavour. This strengthens confidence in the model, and was
important in developing the model in discussion with hard-
ware architects. However, it makes the model complex. It
enables but also requires a programmer to think in terms
of hardware mechanisms: the model executes instructions
in multiple steps (per instruction) and out-of-order; it has
explicit branch speculation and sometimes needs to restart
instructions to repair mis-speculation.
In this paper we develop a new operational model,

Promising-ARM/RISC-V, and an interactive and exhaus-
tive exploration tool based on it, inspired by the Promising
semantics for C11 of Kang et al. [29]. Our model has the
abstractness of the axiomatic models but computes locally
and incrementally, making it a simpler operational model.
In contrast to Flat, this model executes an instruction in a
single step and — except early writes — in order, and does not
speculate branches. The exploration tool integrates models
for large parts of the user-mode ARMv8 [22] and RISC-V
[13] ISAs written in Sail [13, 24] (the same as those used
by Flat). This provides a significant advantage over the ax-
iomatic models that do not include a substantial ISA model.
By integrating into rmem, our model also benefits from the
infrastructure it offers, including a web UI, debugging facili-
ties, e.g. the ability to set breakpoints, show DWARF debug-
ging information for compiled code, etc. Even without ap-
plying any model checking techniques, our model is the first
such tool for ARMv8 or RISC-V with sufficient performance
for exhaustively checking several loop-bounded standard
concurrent datastructure examples. We also formalise the
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model for a small idealised ISA and prove it equivalent to
the ARMv8/RISC-V axiomatic models for finite executions,
in Coq. To summarise, the contributions are:
• Promising-ARM/RISC-V, a simpler and more abstract
operational model, executing instructions in program
order, not out-of-order and not speculatively (§4, §5).

• A Coq proof of equivalence with the ARMv8 and RISC-V
axiomatic models for a small idealised ISA (§6).

• An interactive and exhaustive exploration tool for
ARMv8 and RISC-V user-mode assembly programs (§7).

• A demonstration of the tool for several concurrent datas-
tructures, written in C++ and Rust, compiled with GCC
or rustc, including the Chase-Lev deque, Michael-Scott
queue, and Treiber stack (§8). We demonstrate using the
tool also in checking agressively relaxed programs that
are unsound in the source memory model but sound in
ARMv8/RISC-V.

For the supplementary material, see [2].

Caveats We do not yet model mixed-size accesses (Flat
does), since their architecturally intended semantics is still
being clarified for ARM and RISC-V. We expect we can cover
them by handling certain memory accesses byte-wise and
with a more fine-grained register dependency handling, anal-
ogously to Flat. We do not yet model read-modify-write
instructions that we expect to work analogously to load/s-
tore exclusive instructions that we do cover. Like Flat, we
only handle user-mode non-vector non-floating-point in-
structions, no systems features or supervisor mode. While
in ARMv8 and RISC-V syntactic dependencies enforce order-
ing, ARM store exclusives are an exception. As a result, like
Flat [39], the ARM model can deadlock (but is nonetheless
equivalent to the axiomatic model). The RISC-V model has
no such deadlocks (again, like Flat), see §4.3 for details.

2 Overview
Our model builds on the work for the C/C++ Promising se-
mantics [29], but has a simpler memory semantics — enabled
by the multicopy atomicity and the simpler notion of depen-
dencies in ARMv8/RISC-V — and a new uniform treatment
of the dependencies and ordering using timestamps. We now
show the main ideas of our model, highlighting the benefits
over Flat, and show a key property of the model that allows
reducing non-determinism by enumerating the possible final
memory states without interleaving reads.

Out-of-order Reads We first show how our model ex-
plains the effects of out-of-order reads though executing
them in order. Consider the following example (for presen-
tation using a simple calculus); assume every location is
initialized to 0. Here Thread 1 (left) writes 37 to x and 42 to
y. The stores are kept in order by a strong barrier dmb.sy.
Thread 2 (right) reads y. If the value read is 42 it reads x ,

otherwise it executes the instructions from д. Despite e in-
troducing a control dependency from d to f , ARMv8/RISC-V
allow executing f before d , due to branch speculation, and
hence the outcome where d reads 42 and f the initial value
x = 0.

(a) store [x] 37; (d) r0 := load [y]; // 42
(b) dmb.sy; (e) if (r0 = 42)
(c) store [y] 42 (f ) r2 := load [x] // 0

(д) else . . .

Following the mechanisms of micro-architecture, Flat al-
lows this execution by branch speculation. In the initial state,
Thread 2 can speculatively fetch and execute either branch
of the conditional. Fetching the “then” part before the branch
condition is resolved (before a and c are propagated) allows
f to read the initial write x = 0. Once a and c are propagated,
d reads from c and resolves the conditional branch. Since the
speculation was correct, f can finish, resulting in the exam-
ple outcome. Instead of fetching f , Thread 2 could have also
fetched the “else” branch, in which case, after readingy = 42,
Thread 2 would have detected the mis-speculation and dis-
carded any already-executed instructions of that branch.
In contrast, our model executes loads in order. It records

the full history of writes propagated so far and allows loads
to read old values. The above execution is allowed as follows.
Executing a, b, and c results in memory [0 : ⟨x := y := 0⟩; 1 :
⟨x := 37⟩; 2 : ⟨y := 42⟩]. Here 0 to 2 are timestamps, list
indices in memory. Then we execute Thread 2 sequentially:
d can read any write to y in memory, either ⟨y := 0⟩ or ⟨y :=
42⟩. After reading the latter, e takes the “if” branch. Now f
can also read either write to x , ⟨x := 0⟩ or ⟨x := 37⟩. This
treatment of loads, executing them in program order, leads to
a simpler model: simplifying the dependency handling and
removing the need to speculate branches and repair incorrect
speculation. Moreover, it reduces non-determinism: resulting
from the out-of-order execution of reads, and the speculative
exploration of possible branch targets — if e was a computed
branch, Flat would have to allow fetching any code location

as a possible successor instruction of e .

Ordering Memory Accesses with Views Changing f in
the previous example to r2 := load [x + r0 − r0] makes f
address-dependent on d and prevents executing f before d .
In the Flat model the dependency prevents executing f early
since the register values involved in computing the location
of f are not available until d is done. In our model this is
handled with views. A view records a timestamp of a memory
write to capture some ordering requirement. After executing
a to c , memory is [0 : ⟨x := y := 0⟩; 1 : ⟨x := 37⟩; 2 : ⟨y :=
42⟩], as before. When d reads ⟨y := 42⟩ it annotates register
r0 with c’s timestamp 2. Since f depends on r0, this constrains
f and prevents reading x = 0, which is “out-of-date” at time
2, due to the previous write ⟨x := 37⟩ at timestamp 1.
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Instantaneous Instruction Execution In the next exam-
ple, PPOCA [41], the instructions i and j after e write and
read z, and f address-depends on j . Assume d reads 42 and j
reads from i . In ARMv8 and RISC-V, control dependencies
prevent early execution of writes, and so i cannot propagate
to memory before d . Even though f depends on j, which
reads from i , f can execute before d , and hence the outcome
where f reads x = 0 is allowed, because i can forward to j
(without i propagating). In Flat this is as follows: as before,
Thread 2 speculatively executes the “then” branch; i cannot
propagate yet, because e is unresolved; however, i can exe-
cute some intra-instruction steps and determine its location
z and value 51 (in the real ISA this involves several register
reads and arithmetic). In this half-executed state i can for-
ward its value 51 to j , resolving f ’s location, and allowing it
to read x = 0.
(a) store [x] 37; (d) r0 := load [y]; // 42
(b) dmb.sy; (e) if (r0 = 42)
(c) store [y] 42 (i) store [z] 51;

(j) r1 := load [z]; // 51
(f ) r2 := load [x + (r1 − r1)] // 0
(д) else . . .

In our model all instructions execute instantaneously, and
write forwarding is instead explained by views: a read nor-
mally receives a view including the view of the write it read
from; if it reads from a write by its own thread, however,
it acquires a smaller view. Here, after executing a to c the
memory is as shown before; when d reads y := 42 it anno-
tates r0 with timestamp 2; due to the control dependency on
r0, i must write to memory at a timestamp greater than 2
(as explained later). But when j reads from i it can acquire a
smaller view, 0, since it is reading from a write by its own
thread. Hence r1 also has view 0 and f can read x = 0 from
the write history. Executing each instruction in a single step
significantly simplifies the model over Flat: conceptually,
and by reducing the transitions and rules of the model.

Out-of-order Writes In the final example, Thread 1 reads
x and writes y; Thread 2 reads y and writes what it read to x .
The outcome where a and c read non-zero values is allowed,
as b can execute early. And that is how Flat allows it.

(a) r0 := load [x]; // 37 (c) r0 := load [y]; // 37
(b) store [y] 37 (d) store [x] r0

In our model, this is explained using promises. In a given
state S , if a thread could take multiple steps from S se-
quentially (with no steps by other threads) and produce
a write w , then the thread is allowed to promise w in S . A
promise binds the promising thread to later fulfil the promise.
Here, Thread 1 can promise y := 37 in the initial state,
since executing sequentially it could read x = 0 (with a)
and write y := 37 (with b). The promise yields memory
[0 : ⟨x := y := 0⟩; 1 : ⟨y := 37⟩]. Now c can read y = 37 and
d write x := 37. Finally, a can read x := 37, and Thread 1

p ::= s1 | | . . . | | sn program

s ∈ St ::= statement

skip | s1; s2 | if (e) s1 s2 | while (e) s control statements

| r := e assignment

| r := loadxcl,rk [e] load

| rsucc := storexcl,wk [e1] e2 store

| dmb.sy | dmb.st | dmb.ld | isb ARM barriers

| fenceK1,K2 | fence.tso RISC-V barriers

r ∈ Reg = N register

op ∈ O ::= + | − | . . . arithmetic ops.

e ∈ Expr ::= v | r | (e1 op e2) pure expression

xcl ∈ B ::= true | false exclusive or not

rk ∈ RK ::= pln | wacq | acq read kind

wk ∈ WK ::= pln | wrel | rel write kind

K ∈ FK ::= R | W | RW RISC-V fence kind

Figure 1. The language

can execute b and fulfil the promise y := 37. In contrast, due
to the data dependency, in the initial state Thread 2 cannot
promise x := 37: executing sequentially, c must read y = 0,
so d would write x := 0.

As detailed later, dependencies also constrain promises in
another way. When a thread promises a write at timestamp t ,
it is later required to fulfil the promise with a view smaller
than t , effectively preventing writes from being promised
“too early”, using views.

Writes First The example also allows us to illustrate the
key idea for reducing the combinatorial problem of exhaus-
tive enumeration. Naively, exhaustive execution would mean
checking all interleavings of the reads and writes/promises.
However, in our model for every legal trace there exists an
equivalent one in which all promises are done first: for ex-
ample, for the trace “a (reading 0), c (reading 0), b, d” the
same outcome can be reached as follows: promise y := 37
(Thread 1), promise x := 0 (Thread 2), read x = 0with a, read
y = 0 with c . Due to this property, the model can enumerate
all final memory states by exploring only the interleavings
of write transitions, without interleaving reads.
We now define the sequential calculus and informally

explain the model, before giving the precise definition.

3 Language
To focus on the concurrency aspects we consider the small
imperative language of Fig. 1; the executable tool of §7 han-
dles user-mode parts of the real ARMv8 and RISC-V ISAs.
Statements include loads, stores, barriers, register assign-
ment, sequential composition, conditionals, and loops. State-
ments operate on registers, of which we assume we have
an infinite supply. A load or store is annotated with (1) a
boolean indicating whether it is an exclusive access, and (2)
a read or write kind, respectively indicating whether it is
a plain access or has special acquire or release ordering. A
store writes a bit to a register indicating success or failure.
Only store exclusives can fail, non-exclusive stores always
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succeed, but for uniformity of the syntax and the rules, non-
exclusive stores also write the success bit, to an otherwise
unused register, that we omit in the syntax. Following the
ARM ISA, success is indicated by 0 (here called vsucc), and
failure by 1 (vfail). Whenever a load or store command is not
annotated with a memory kind, we mean plain loads and
stores; whenever not annotated to be exclusive, we assume
it is non-exclusive. So r := load [e] is a plain, non-exclusive
load, and store [e1] e2 is a plain, non-exclusive store.1We
treat ‘(if (e) s1 s2); s3’ as equivalent to ‘if (e) (s1; s3) (s2 ; s3)’
(parenthesising for clarity): control flow is not delimited in
assembly programs, and so in our language the instructions
in s3 are control-dependent on expression e . (This matters
for the ordering from control dependencies.) As usual, the
executable model bounds loops.

4 Promising-ARM/RISC-V, Informally
For presentation purposes, we use ARMv8 terminology for
barriers: dmb.sy for full barriers, etc. We describe the seman-
tics for programs with only plain loads and stores and full
barriers. The remaining semantics is a natural extension to
the model, detailed in §A of the supplementary material. We
first explain the out-of-order execution of loads and how
views constrain them in the view semantics. We then illus-
trate how the promising semantics extends it to account for
the out-of-order execution of stores. Finally, we describe how
certification avoids executions with unfulfilled promises.

4.1 View Semantics
The view semantics underlying our model explains the ef-
fects of the out-of-order execution of reads —while executing
programs in order — by recording the full write propagation
history and allowing reading from older writes, not just the
last same-address write [31]. The model state ⟨ ®T ,M⟩ com-
prises the thread pool ®T and the memoryM , where ®T maps
each thread identifier tid to a statement (of type St), and a
thread state, consisting of a register state and more com-
ponents that we introduce as we proceed. We call a thread
the pair of a statement and a thread state. We do not model
dynamic thread creation; hence, the model transitions do
not change the domain of the thread pool. (For reference, §5
has the formal definition of types and rules.)

Memory Memory is a list of writes, in the order they were
propagated. A write (message)w , written ⟨x := v⟩tid , records
the location w .loc = x , value w .val = v , and originating
thread identifierw .tid = tid. Initially, memory is the empty
list [], which we treat as holding an initial value 0 for all lo-
cations. Executing a store generates a write that is appended
at the end of memory.
1RISC-V has a load-reserve acquire-release and store-conditional acquire-
release: instructions with (strong) acquire and release ordering combined.
For simplicity of the presentation we omit this, but the executable model
handles it. We plan on adding this to the Coq formalisation as well.

Consider the following Message Passing (MP) example
test, with instruction names a – e , and comments added
for presentation; to easily distinguish, values are written in
blue, thread identifiers brown, and (later) timestamps green.
In this test, Thread 1 writes 37 to memory location x , and,
after a strong dmb.sy barrier, writes 42 to y; Thread 2 reads
y and then x . To focus on the out-of-order execution of
loads, we inserted the barrier b between a and c to prevent
their reordering. The execution of interest here is that where
Thread 2 reads y = 42, and then the initial value x = 0.
This is allowed in ARMv8/RISC-V because the (independent)
loads on Thread 2 are allowed to execute out of order.

(a) store [x] 37; (d) r1 := load [y]; // 42
(b) dmb.sy; (e) r2 := load [x] // 0
(c) store [y] 42

r1 = 42 ∧ r2 = 0 allowed

In our model, executing a, b, c leads to the following tran-
sitions (b does not change memory):

⟨ ®T , []⟩
(a)
⇒ ⟨®T ′, [⟨x := 37⟩1]⟩

(b)
⇒ ⟨®T ′′, [⟨x := 37⟩1]⟩
(c)
⇒ ⟨®T ′′′, [⟨x := 37⟩1; ⟨y := 42⟩1]⟩

Now d can read y = 42. Then, since loads can read not only
from the last same-address write but also older writes in
memory or the initial state, e can read the initial x = 0.

Views Memory barriers restore stronger ordering. Placing
a dmb.sy barrier between the loads of Thread 2 orders them
and prevents the behaviour where the load of x reads 0 after
d reads 42. Our model handles this ordering using views:
r1 A timestamp t ∈ T = N is a natural number index of
a write in the message history or 0, where list indices
for memory start from 1 and timestamp 0 indicates the
initial writes. A view ν ∈ V = T is simply a timestamp,
indicating that the write at position ν and its predecessors
in the message history have been “seen”.

Before executing a load or store i , its pre-view is computed.
The pre-view captures the dependencies and ordering re-
quirements constraining the execution of i . For loads this
constrains the values it can read from, for a store (in the later
promising semantics) how “early” its write can be promised.
r2 A view constrains loads: a thread can read from the
most recent and older writes, but no older than the view
allows — it must not read from writes overwritten by
newer “seen” same-address writes.

After executing i , its post-view is computed. It captures the
constraints i imposes on instructions ordered with i .
r3 The post-view of a load is the maximum of its pre-view
and the read-view. In the examples we consider first, the
read-view is simply the timestamp of the write the load
reads from; we later refine this to handle forwarding. The
post-view of a store is the timestamp of its write message
(which is always strictly greater than its pre-view).
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We gradually introduce how the pre-view of loads and stores
is computed.

Memory Barriers Returning to the example, we model the
effects of memory barriers using views:
r4 Each thread state maintains views vrOld, vwOld, vrNew,
vwNew : V. Initially, all views are 0.

r5 vrOld and vwOld, respectively, are the maximal post-view
of all loads and stores executed so far by the thread.

r6 vrNew and vwNew, respectively, contribute to the pre-
view of all future loads and stores.

r7 dmb.sy updates both vrNew and vwNew to the maximum
of vrOld and vwOld: all future loads and stores program-
order-after the barrier are constrained by the post-views
of those program-order-before the barrier.

Intuitively, dmb.sy orders loads and stores before it with
those after it; it is the strongest form of barrier. Other barriers
update these two views in a similar but weaker way.

(a) store [x] 37; (d) r1 := load [y]; // 42
(b) dmb.sy; (e) dmb.sy;
(c) store [y] 42 (f) r2 := load [x] // 0

r1 = 42 ∧ r2 = 0 forbidden

In the example, after executing a,b, c , the memory is
[1: ⟨x := 37⟩1; 2: ⟨y := 42⟩1], with timestamps 1 and 2 shown
explicitly for presentation. Now, if Thread 2 reads 42, d’s
post-view is 2. This is recorded in vrOld. Executing e includes
vrOld into vrNew and vwNew: (just showing Thread 2)

⟨vrOld = 0, vrNew = 0, . . .⟩
(d )
⇒ ⟨vrOld = 2, vrNew = 0, . . .⟩
(e)
⇒ ⟨vrOld = 2, vrNew = 2, . . .⟩

When executing f in the resulting state, f is constrained by
a pre-view that includes vrNew = 2. Since ⟨x := 37⟩1 is seen
with view 2, f must not read from a write older than that.

While dmb.sy provides strong ordering, it comes at a per-
formance cost. Concurrent ARM programs also rely on or-
dering resulting from dataflow dependencies.

Address Dependencies The next example replaces the
dmb.sy between the loads of Thread 2 with a syntactic ad-
dress dependency from the first load (d) to the second (e).
Register r1 holding the return value of d is used to compute
the address “x + (r1 − r1)” of load e , which is enough to or-
der d before e , even though the value does not depend on
what d read. Similarly to the dmb.sy, the ordering from the
syntactic dependency means that if d reads 42, then e must
read 37.

(a) store [x] 37; (d) r1 := load [y]; // 42
(b) dmb.sy; (e) r2 := load [x + (r1 − r1)] // 0
(c) store [y] 42

r1 = 42 ∧ r2 = 0 forbidden

Our model accounts for this using register views:
r8 The register state regs : Reg → (Val × V) of a thread
maps each register of the thread not only to a value, but

also to an associated view (of type V). We write v@ν for
a value-view pair.

r9 When an instructionwrites a register it also updates this
view, to specify which writes have to have been seen in
order to produce the value. For any arithmetic instruction,
the view of the output register is the maximum of the
views of its input registers; for a load it is the post-view
(the maximum of its pre-view and read view).

r10 Finally, the pre-view of a load or store is the maximal
view of its input registers (for loads the registers in the
“address expression”, for stores also that of the data) and
the vrNew or vwNew view, respectively.

This will later be refined to handle more dependencies and
weaker barriers, release/acquire, and exclusives.

Assuming the previous order a,b, c , when d reads y = 42,
Thread 2 executes as follows:

⟨regs = {r1 7→ 0@0, . . . }, vrOld = 0, vrNew = 0⟩
(d )
⇒⟨regs = {r1 7→ 42@2, . . . }, vrOld = 2, vrNew = 0⟩

Now, while vrNew = 0, the pre-view of e is 2, because r1 is
one of its input registers. Therefore e is constrained by view
2, and thus cannot read the initial value x = 0.

Coherence Accessing the same location multiple times also
induces constraints. Consider the following example, which
adds a later, independent, load f to x to Thread 2. While f
is not ordered with d , the execution where d reads y = 42, e
reads x = 37 and f reads x = 0 is forbidden, since it violates
the principle of coherence: a is ordered after the implicit
initial x = 0 in memory. So if e has read x = 37, the program-
order-later f must not read the coherence-superseded x = 0.
(a) store [x] 37; (d) r1 := load [y]; // 42
(b) dmb.sy; (e) r2 := load [x + (r1 − r1)]; // 37
(c) store [y] 42 (f) r3 := load [x] // 0

r1 = 42 ∧ r2 = 37 ∧ r3 = 0 forbidden

To account for the architectural coherence requirements:
r11 Each thread state maintains the coherence view coh :
Loc → V. It maps a location x to the maximal post-view
of all loads and stores on x executed so far by that thread.

r12 A load or store on x is constrained not only by its
pre-view, but also the coherence view coh(x).
Since d reads y = 42 at timestamp 2, the register view of

r1 is 2, and so is the post-view of e . Thus, after e , the thread
state is ⟨coh = {x 7→ 2, . . . }, . . . ⟩. Then, although the pre-
view of f is 0, f is also constrained by coh(x) = 2, and thus
cannot read the initial x = 0.

Store Forwarding However, while a load has to read from
a write respecting coherence order, it does not have to effec-
tively happen in order. Consider the next example, where
Thread 1 is unchanged, but where Thread 2 now contains an
earlier read d from y, followed by a write e of 51 to y, before
the basic block of a read f from y followed by a read д from
x with an address dependency on f . Assume d reads y = 42,
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and f reads y = 51. While д is ordered after f by the address
dependency, д is still allowed to read the initial x = 0: a load
can “finish” before a same-thread store it reads from by for-

warding when address and data of the store are determined,
and so f can execute and resolve д’s dependency before e
and even d .

(a) store [x] 37; (d) r0 := load [y]; // 42
(b) dmb.sy; (e) store [y] 51;
(c) store [y] 42 (f) r1 := load [y]; // 51

(д) r2 := load [x + (r1 − r1)] // 0
r0 = 42 ∧ r1 = 51 ∧ r2 = 0 allowed

For d to read y = 42, our model must execute in the order
a,b, c,d and then e , leading to memory [1: ⟨x := 37⟩1; 2: ⟨y :=
42⟩1; 3: ⟨y := 51⟩2]. If f nowwere to ready = 51 at timestamp
3 its post-view would become 3, and so would the view of
register r1; this would not allow д to read the initial x = 0,
since it would be constrained by pre-view 3 due to r1. To
allow this behaviour, each thread state records information
about the thread’s own writes, and the definition of the read-
view specially handles the case in which a load reads from
a write by its own thread, to allow it to obtain a smaller
post-view than the write’s timestamp:
r13 Each thread state has a forward bank fwdb : Loc →

⟨time : T, view : V, xcl : B⟩ holding for each location x a
record about the last write to x propagated by the thread:

r14 Whenever a thread executes a store to x it updates
fwdb(x) to record the timestamp of the write (time), the
maximal view of the store’s input registers (view), and
whether it was a write exclusive (xcl). I.e. view captures
its address and data dependencies.

r15 Initially, fwdb(x) is ⟨time = 0, view = 0, xcl = false⟩
for any location x .

r16 The read-view of a load to some location x is re-
fined as follows: if the read message’s timestamp equals
fwdb(x).time (i.e. the load reads the last write at x by
its thread), its read-view is the associated forward view
fwdb(x).view. Otherwise it is the read message’s time-
stamp, as before.

Since the post-view of a load includes the read-view, the
latter means that when reading by forwarding the post-view
contains the address and data dependencies of the write
instead of the write’s timestamp. The xcl is only for exclusive
instructions (§A.2).
In the example above, d reads y = 42 at timestamp 2, up-

dating coh(y) to 2; e writes y = 51 at timestamp 3, updating
coh(y) to 3 and fwdb(y) to ⟨time = 3, view = 0, xcl = false⟩,
since e has no input register; f reads y = 51 at timestamp 3,
with pre-view 0, read-view 0 and post-view 0, since the for-
ward view of the write y = 51 is fwdb(y).view = 0, thereby
setting the view of r1 to 0; finally, д can read the initial x = 0
with pre-view 0, since its sole input register, r1, has view 0.

It is important to note that, as seen in this example, in
general the coherence view coh(x) on a location x is never

merged into any other views such as pre-views, post-views
and register-views, so that its effect is limited to loads and
stores on location x only.

4.2 Promising Semantics
In ARMv8/RISC-V, stores can be executed out of order, too.
Promising-ARM/RISC-Vmodels such behaviours by adding
the notion of promises on top of the view semantics presented
so far. As a motivating example, consider the next program.
Here Thread 1 reads from x , and writes the value it reads
to y; Thread 2 reads from y, and writes 42 to x . So far, we
have not introduced any mechanism that would allow both
a and c to read values different from 0: at least one of a and
c would have to have executed first in the initial memory,
and therefore would have to read 0.

(a) r1 := load [x]; // 42 (c) r2 := load [y]; // 42
(b) store [y] r1 (d) store [x] 42

r1 = r2 = 42 allowed

However, since d is independent of c , in ARMv8/RISC-V
it is allowed to execute early, and so both a and c can read
42, which corresponds to an execution order d,a,b, c .

Promises To model out-of-order execution of writes, we
add the notions of promise and fulfilment.

r17 Each thread state maintains a set of timestamps prom :
set T, called its promise set, which records the timestamps
of the outstanding promised writes of the thread.

r18 A thread with ID tid is allowed to promise a write
x = v , which appends ⟨x := v⟩tid to memory and adds the
timestamp t of the write message ⟨x := v⟩tid to prom, but
does not otherwise change the thread state. As far as other
threads are concerned, this write is no different from other
writes in memory (prom is thread-local information).

r19 The thread is required to fulfil this promise x = v
at timestamp t at a later stage by executing a store in-
struction, removing the promise from prom. Specifically,
the store must generate a write x = v whose pre-view
and coherence view coh(x) are strictly smaller than the
promise timestamp t .

r20 We split the execution of a write into a promise and
its fulfilment. A normal write that is not executed early is
accounted for by promising it just before a store fulfils it.

(We explain later exactly how executions with unfulfilled
promises are prevented and how the executable model com-
putes the possible promises in a given state.)
Note that the timestamp of a write is always bigger than

its pre-view because it is appended at the end of memory
with a fresh timestamp and immediately fulfilled.

The pre-view of a store essentially constrains promises by
constraining the fulfilment: a promise cannot be made “too
early”, because it cannot be fulfilled if its timestamp is not
strictly larger than its pre-view. With only these rules added
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to the underlying view semantics, in what follows, we show
how promises capture the out-of-order execution of stores.

Out-of-order Execution of Writes The behaviour in the
previous example is explained as follows. Thread 2 first
promises write x = 42 at timestamp 1, resulting in promise
set prom = {1} and memory [1: ⟨x := 42⟩2]. Now, on
Thread 1 a can read x = 42 and write y = 42 (by a nor-
mal write), resulting in memory [1: ⟨x := 42⟩2, 2: ⟨y := 42⟩1].
Then, c can read y = 42, and d can fulfil the promise x = 42
at timestamp 1, yielding prom = {}; d’s pre-view and coh(x)
are 0, strictly smaller than the promise timestamp 1, as re-
quired.

Memory Barriers Placing a barrier on Thread 2 prevents
the out-of-order execution of writes.

(a) r1 := load [x]; // 42 (c) r2 := load [y]; // 42
(b) store [y] r1 (d) dmb.sy;

(e) store [x] 42
r1 = r2 = 42 forbidden

The model handles this using views. As before, consider the
state after Thread 2 promised x = 42 and Thread 1 executed
a,b, resulting in memory [1: ⟨x := 42⟩2, 2: ⟨y := 42⟩1]. Here,
c is not allowed to read y = 42, because Thread 2 would not
be able to fulfil the promise at timestamp 1. Suppose c does
read y = 42 at timestamp 2. Then Thread 2 has vrOld = 2
after c and vwNew = 2 by dmb.sy after d . Then the pre-view
of e is 2 due to vwNew, which is not smaller than the promise
timestamp 1. If, instead, c reads the initial y = 0, e can fulfil
the promise.

Coherence Also, replacing d by r3 := load [x + (r2 − r2)]
constrains e by coherence and forbids the same behaviour. To
illustrate, suppose we execute up to c as before. Since c reads
y = 42 and thus r2 holds 42@2, d is constrained by pre-view
2 and must read x = 42 at timestamp 1. Now although r2 and
r3 are not used by e , e still cannot fulfil its promise of x = 42
at timestamp 1 since d updated coh(x) to its post-view 2 and
e is constrained by coh(x) = 2 ≮ 1.

Address and Data Dependencies Replacing the barrier
on Thread 2 by a dependency from the load to the store —
whereby the address or data of the store depends on the
result of the load — also prevents the behaviour. Similarly to
before, consider the execution in which Thread 2 promises
x = 42 at timestamp 1, a reads x = 42, b writes y = 42 at
timestamp 2, and c reads y = 42, thereby setting r2’s register
view to 2. Here d’s pre-view includes r2’s register view 2,
and so d cannot fulfil the promise at timestamp 1. Changing
d to ‘store [x] (42 + (r2 − r2))’ leads to the same behaviour.

(a) r1 := load [x]; // 42 (c) r2 := load [y]; // 42
(b) store [y] r1; (d) store [x + (r2 − r2)] 42

r1 = r2 = 42 forbidden

Control and Address-po Dependencies While in ARMv8
and RISC-V loads are allowed to execute speculatively past
conditional branches, stores are not. Control dependencies
order writes with respect to reads affecting the control flow.
Similarly, stores wait for the address of all program-order-
earlier memory accesses to be determined (address-po depen-
dency). Placing a conditional branch depending on c’s return
value before the write of x also prevents promising it early:
the behaviour in which both a and c read 42 is forbidden in
the example below, due to the control dependency of e on c .

(a) r1 := load [x]; // 42 (c) r2 := load [y]; // 42
(b) store [y] r1 (d) if ((r2 − r2) = 0)

(e) store [x] 42
r1 = r2 = 42 forbidden

To capture such dependencies we introduce the view vCAP.

r21 Each thread state has a view vCAP : V, initially set 0.
r22 Whenever a thread executes a conditional branch, the
maximal view of the branch’s input registers is merged
into vCAP. Similarly, when a load or store is executed, the
maximal view of the input registers used to compute the
address is merged into vCAP.

r23 Finally, the pre-view of a store instruction is refined
to include vCAP (i.e. the pre-view is the maximal view of
the input registers and vwNew and vCAP).

Assume again an execution in which x = 42 is promised
at timestamp 1 by Thread 2, a reads x = 42, b writes
y = 42 at timestamp 2, and c reads y = 42, thereby set-
ting r2’s view to 2. Then d merges r2’s view (2) into vCAP
since r2 is used to compute the branch condition. In case d is
store [z + (r2 − r2)] 0, register r2’s view is also merged into
vCAP since r2 is used to compute the address. Then e’s pre-
view includes vCAP = 2, and thus e cannot fulfil the promise
at timestamp 1. Replacing d by an address-dependent load
or store to an otherwise unused memory location z (e.g.
store [z + (r2 − r2)] 0) introduces the same ordering and
also forbids the behaviour.

Release/Acquire, Weaker Barriers, Load/Store Exclu-

sives In addition to the full dmb.sy barriers ARMv8 and
RISC-V also have a number of weaker barriers; both also have
release/acquire instructions, so-called half-barriers. More-
over, ARMv8 and RISC-V have load/store exclusive instruc-
tions (called load reserve and store conditional in RISC-V)
that provide inter-thread atomicity guarantees: when a load
exclusive r pairs with a program-order-later store exclusive
w from the same thread and to the same location, the archi-
tectures guarantee exclusive access to this location to the
thread if the store exclusive succeeds; otherwise the store
fails.

For space reasons we omit the details on these instructions
in §5. The instructions are natural extensions to the model
and the supplementary material (§A) contains the full model
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definition including these; the Coq formalisation and proof,
and the executable model both handle these instructions.

4.3 Certification
Our description so far has focussed on the thread steps and
has assumed consistent traces, traces in which all promises
are fulfilled. Indeed, the semantics given by traces of these
thread steps, restricted to consistent traces, precisely models
the legal behaviours of ARMv8/RISC-V (i.e., is equivalent to
the axiomatic model): (combining Theorems 6.1 and 6.2).
However, we have not yet discussed how the model en-

sures threads only take consistent steps (steps of consistent
executions). Rather than merely discarding traces with unful-
filled promises at the end of the execution, directly prevent-
ing inconsistent thread steps is desirable for two reasons:
(1) The model works incrementally in terms of thread-local
conditions, thereby also improving interactive exploration.
(2) It removes unnecessary non-determinism resulting from
promises that eventually are unfulfilled, for executability
and exhaustive exploration.

We now show how such inconsistent thread steps can be
prevented. To this end, we first define what it means for a
thread to execute sequentially. It means that the thread ex-
ecutes alone (no other threads executing) and every new
promise is immediately followed by its fulfilment (effectively
doing all writes in program-order). The model then prevents
inconsistent thread steps using a simple, thread-local defini-
tion of certification, allowing any given thread step only if it
leads to a certified thread configuration.

r24 A thread configuration ⟨T ,M⟩, consisting of a thread
stateT and memory stateM is certified if there exists a se-
quential execution from ⟨T ,M⟩ to another thread configu-
ration ⟨T ′,M ′⟩ such that T ′ has no outstanding promises.

Restricting thread steps to steps certified as above, is sound,
not preventing any consistent executions (See Theorem 6.2).
For RISC-V, this definition is also precise, preventing any
inconsistent executions (Theorem 6.3).
In ARMv8, however, it is not precise. Whereas generally,

syntactic dependencies create memory ordering, in ARMv8,
dependencies from a store exclusive’s status register write
are an exception. The consequence in our model is the fol-
lowing: if a thread t makes a promise that relies on some
store exclusive s succeeding, it can do this even before s is
propagated. If s later turns out to conflict with the write of
another thread and fails, t cannot fulfil its promises. The cer-
tification definition above does not prevent this, for the same
reasons that Flat suffers from such deadlocks [39]. The sup-
plementary material (§C.2) details these issues and discusses
a prototype extension of the model with locks and a more
sophisticated certification that takes locking into account to
prevent deadlocks.
The above definition provides a simple executable check

for whether a thread configuration is certified. However,

the executable tool of §7 has to be able to compute for any
given thread state which promises should be allowed: which
promises lead to such certified configurations.

For the sake of the executablemodel, we give an equivalent
algorithmic definition, called find_and_certify, that we
proved correct in Coq (Theorem 6.4). To enumerate which
promises a thread tid in configuration ⟨T ,M⟩ is allowed to
do, the algorithm works as follows:
1. Enumerate all possible traces of tid executing sequen-

tially: this thread executing alone under currentmemory.
(For programs with infinite loops the user can bound
the depth.)

2. Discard the traces in which the final state of tid has
unfulfilled promises.

3. For any remaining trace t : any write done during t is a
legal promise step if its store’s pre-view and coherence-

view (at its location) are less than or equal to the maximal
timestamp of the currentmemoryM (thememory before
the start of the certification).

Section B of the supplementary material gives an example
for this algorithm.

5 The Model, Formally
Fig. 2 defines the types, Fig. 3 the rules of the model. For sim-
plicity, values and addresses are mathematical integers. Note
that some of the types are not used by the rules shown here,
but used by the full definition of §A of the supplementary
material that handles weaker barriers, release/acquire, and
load/store exclusive instructions. For the common instruc-
tions, ARM and RISC-V only differ in acquire and exclusive
instructions. The description cross-references the §4 rules.

Auxiliaries The expressions interpretation function (sec-
ond and third line) takes an expression and a register state
m, and returns the expression’s value and view. Constants
have view 0; registers are looked up inm; the view for an
arithmetic expression merges the arguments’ views (r9).
read(M, l, t) gives the result of reading location l at time-
stamp t in memoryM : for t = 0 the initial value vinit, here 0;
otherwise either the value of the message inM at timestamp
t if its location is l or none. read-view(a, rk, f , t) returns ei-
ther the timestamp t of the read message or the forward view
of the message f in the forward bank (r13 – r16). Now we
define thread-local steps, which do not change memory.

Thread-local Steps T ,M [t ]
→tidT

′

fulfil. This transition is annotated with the timestamp
t of the promise that is being fulfilled. (Other thread-local
steps do not have the timestamp annotation.) The definition
starts with the pre-condition (from top to bottom). First eval-
uate address and data expressions. Since we assume writes
always promise first and then fulfil, this step requires the
write to have been promised. Rules r10, r6, r21 describe
the components contributing to the pre-view. The pre-view
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l ∈ Loc
def

= Val v ∈ Val
def

= Z tid ∈ TId
def

= N t ∈ T
def

= N ν ∈ V
def

= T

w ∈ Msg
def

= ⟨loc :Loc; val :Val; tid :TId⟩ ⟨x := v⟩tid
def

= ⟨loc=x ; val=v ; tid= tid⟩ M ∈ Memory
def

= list Msg

ts ∈ TState
def

=

〈
prom : set T ; regs : Reg → Val × V;
coh : Loc → V ; vrOld, vwOld, vrNew, vwNew, vCAP, vRel : V ;
fwdb : Loc → ⟨time : T; view : V; xcl : B⟩;
xclb : option ⟨time : T; view : V⟩

〉
T ∈ Thread

def

= St × TState
®T ∈ TPool

def

= TId → Thread

⟨ ®T ,M⟩ ∈ Machine
def

= TPool ×Memory

Figure 2. Types in the semantics

c ? ν1 : ν2
def

= if c then ν1 else ν2 c ? ν
def

= c ? ν : 0 ν1 ⊔ ν2
def

= max(ν1,ν2) v@ν
def

= ⟨v,ν⟩ : Val × V
J(−)1K(−)2 : Expr → (Reg → Val × V) → Val × V

JvKm
def

= v@0 JrKm
def

=m(r ) Je1 op e2Km
def

= (v1 JopKv2)@(ν1⊔ν2) with Je1Km =v1@ν1, Je2Km =v2@ν2

read(M, l, t) : option Val
def

= if t = 0 then vinit else (if M(t).loc = l thenM(t).val else none)

read-view(a, rk, f , t)
def

= (f .time = t) ? f .view : t

T ,M [t ]
→tidT

′

(read)
l@νaddr = JeKts.regs read(M, l, t) = v νpre = νaddr ⊔ ts.vrNew
∀t ′. t < t ′≤(νpre⊔ts.coh(l)) =⇒ M(t ′).loc , l
νpost = νpre ⊔ read-view(a, rk, ts.fwdb(l), t)

ts
′= ts

[
regs(r ) 7→ v@νpost, coh(l) 7→ ts.coh(l) ⊔ νpost,
vrOld 7→ ts.vrOld ⊔ νpost, vCAP 7→ ts.vCAP ⊔ νaddr

]
⟨r := loadfalse,rk [e], ts⟩,M →tid ⟨skip, ts′⟩

(fulfil)
Je1Kts.regs = l@νaddr Je2Kts.regs = v@νdata t ∈ ts.prom
M(t) = ⟨l := v⟩tid νpre = νaddr ⊔ νdata ⊔ ts.vwNew ⊔ ts.vCAP
νpre ⊔ ts.coh(l) < t νpost = t

ts
′= ts


prom 7→ ts.prom \ {t}, coh(l) 7→ ts.coh(l) ⊔ νpost,
vwOld 7→ ts.vwOld ⊔ νpost, vCAP 7→ ts.vCAP ⊔ νaddr,
fwdb(l) 7→ ⟨time=t ; view=νaddr⊔νdata; xcl=false⟩


⟨rsucc := storefalse,wk [e1] e2, ts⟩,M

t
→tid ⟨skip, ts

′⟩

(dmb)
ν = ts.vrOld ⊔ts.vwOld

ts
′ = ts

[
vrNew 7→ ts.vrNew ⊔ν,
vwNew 7→ ts.vwNew ⊔ν

]
⟨fenceK1,K2, ts⟩,M →tid ⟨skip, ts′⟩

(register)
ts
′ = ts

[
regs(r ) 7→ JeKts.regs

]
⟨r := e, ts⟩,M →tid ⟨skip, ts′⟩

(branch)
JeKts.regs = v@ν
ts
′ = ts[vCAP 7→ ts.vCAP ⊔ ν ]

⟨if (e) s1 s2, ts⟩,M →tid ⟨v , 0 ? s1 : s2, ts′⟩

(skip)

⟨skip; s, ts⟩,M →tid ⟨s, ts⟩

(seq)
⟨s1, ts⟩,M →tid ⟨s ′1, ts

′⟩

⟨s1; s2, ts⟩,M →tid ⟨s ′1; s2, ts
′⟩

(while)
s ′ = if (e) (s; while (e) s) skip

⟨while (e) s, ts⟩,M →tid ⟨s ′, ts⟩

⟨T ,M⟩
seq
−→

tid ⟨T
′,M ′⟩

(seq-exec)
T ,M →tid T

′

⟨T ,M⟩
seq
−→

tid ⟨T
′,M⟩

(seq-write)

⟨T ,M⟩
t
→tid ⟨T

′,M ′⟩

T ′,M ′ t
→tidT

′′

⟨T ,M⟩
seq
−→

tid ⟨T
′′,M ′⟩

⟨T ,M⟩
[t ]
→tid

⟨T ′,M ′⟩

(execute)
T ,M →tid T

′

⟨T ,M⟩ →tid ⟨T ′,M⟩

(promise)
w .tid = tid t = |M | + 1 ts

′ = ts[prom 7→ ts.prom ∪ {t}]

⟨⟨s, ts⟩,M⟩
t
→tid ⟨⟨s, ts

′⟩,M ++ [w]⟩

⟨ ®T ,M⟩ →

⟨®T ′,M ′⟩

(machine-step)
⟨ ®T [tid],M⟩ →tid ⟨T ′,M ′⟩ ⟨T ′,M ′⟩ certified

⟨ ®T ,M⟩ → ⟨®T [tid 7→ T ′] ,M ′⟩

⟨T ,M⟩ certified
def

= ∃T ′,M ′.

⟨T ,M⟩
seq
−→

∗

tid
⟨T ′,M ′⟩ ∧

T ′.prom = {}

Figure 3. Formal definition of the model, including Thread-local steps, thread steps, and machine steps

and coherence view have to be less than t (r19); the post-
view is the timestamp t (r3). The post-condition removes
the promise (r19) and updates the coherence view to include
t (r11), certain views (r5, r22); the forward bank (r14). O
read also starts with the pre-condition (from top to bot-
tom). First evaluate the address l ; in order to read v it must
be v = read(M, l, t) as described above. The pre-view cal-
culation is described in r10, r6. The pre-view (r2) and the

coherence view (r12) constrain the read. The post-view is
defined in r3, r16. The post-condition updates the register
with value and post-view (r9); coherence with post-view as
in rule r11; and views as in r5, r22.
dmb is the rule for strong barriers (dmb.sy in ARMv8 and
fenceRW ,RW in RISC-V). It updates vrNew and vwNew, to in-
clude vrOld and vwOld according to the intuition given in r5,
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r6. The definition matches rules r5 – r7. registerA regis-
ter assignment updates the register with the expressions and
view from the evaluation of its expression (r9). branch:
The pre-condition evaluates the condition, branches as de-
termined by this value, and updates vCAP (r22). skip, seq,
and while: mostly as expected.

Thread Steps ⟨T ,M⟩
[t ]
→tid ⟨T

′,M ′⟩

execute lifts a thread-local step that does not change mem-
ory to a thread step. promise allows promising any write
message, appending this write to memory and recording its
timestamp in prom. As thread-local steps, thread steps can
be annotated with a timestamp t ; this is used for the steps
for promising and for promise fulfilment. While thread steps
allow unconstrained promises, machine steps only allow cer-
tified promises. Note that “normal writes” are modelled as
promises immediately followed by fulfilment.

Machine Steps ⟨ ®T ,M⟩ → ⟨®T ′,M ′⟩

Lifts certified thread steps (r24).

6 Proof
In Coq, we formally prove equivalence to the ARMv8 and
RISC-V axiomatic models, deadlock freedom for RISC-V, and
correctness of find_and_certify. The former currently as-
sumes known simplifications of the axiomatic models, to
unify ARMv8 and RISC-V for the Coq proof. We call the
unified model Axiomatic (see supplementary material §D).

Theorem 6.1. For a program p, ®R is a final register state of a

legal candidate execution of p in Axiomatic if and only if it is

that of a valid execution of p in Promising-ARM/RISC-V.

Theorem 6.2. Moreover, Promising-ARM/RISC-V is equiva-

lent to Promising-ARM/RISC-V without certification.

Theorem 6.3 (Deadlock freedom). For any machine state in

Promising-RISC-V where every thread state of it is certified,

there exists an execution to a machine state with no promises.

Theorem 6.4 (Correctness of find_and_certify). Assume

the thread configuration ⟨T ,M⟩ is certified, and promising

p leads to ⟨T ′,M ′⟩. Then ⟨T ′,M ′⟩ is certified if and only if

p ∈ find_and_certify⟨T ,M⟩.

7 Executable Tool
Exhaustively enumerating all outcomes of a concurrent pro-
gram is combinatorially challenging. The main optimisation
the executable tool incorporates is based on the following
key property of the model, proved in Coq.

Theorem 7.1. For every Promising trace tr, there exists a

trace tr
′
with same final state such that tr

′
can be split into a

sequence of promise transitions followed by only non-promise

transitions.

The model uses this property as follows: (1) The model
starts in “promise-mode”, exploring all possible interleav-
ings of only promise transitions. (2) Once reaching a state
in which it is possible to continue executing with no further
promises it can enter “non-promise-mode”. Here no promise
transitions are enabled. Since the memory is now fixed, the
remaining execution of the threads is completely indepen-
dent. Hence, the model can compute all outcomes of a given
program by first enumerating all “final memories”, interleav-
ing only promise transitions, and then exploring which final
thread states are possible under this memory without inter-
leaving any reads, greatly reducing the non-determinism.
Another optimisation we implement allows the user to

supply information about which memory locations are
shared between threads and which are purely thread-local.
The model then treats accesses to non-shared locations as
register reads/writes, again reducing the interleavings. In
order to prevent user errors, the model could check that
non-shared locations are accessed by one thread only. (The
model currently does not, but it is an easy addition.) More-
over, we plan to extend the model to automatically derive
this information, using existing mechanisms for promise
certification.

Executable Model The executable model closely follows
the Coq definitions where possible, but differs from it in
two ways. Firstly, the executable model does not use OCaml
code automatically produced by Coq, since interfacing with
the existing rmem and Sail infrastructure would be difficult.
Secondly, while the Coq model formalises the small imper-
ative language, the executable model integrates definitions
for user-mode ARMv8 and RISC-V instructions, meaning it
needs logic for computing the views of loads and stores of
the ISA definitions [13, 22]. (Like Flat, our Sail model does
not yet include ARM’s weaker load acquire LDAPR intro-
duced in ARMv8.3. We do cover its concurrency behaviour in
the Coq model.) We ensured our model also experimentally
agrees with the axiomatic models on suites of around 6,500
litmus tests for ARMv8 and 7,000 for RISC-V (150 RISC-V
tests we cannot run because they have AMO instructions).

8 Tool Use and Evaluation
To evaluate the exploration tool, we test several standard
datastructure and lock implementations, for ARMv8. We first
demonstrate the use of the tool for one of the examples and
then give a summary of all results and run times. The code
of all examples is in the supplementary material.

Example Use Case We consider theMichael & Scott queue,
a queue allowing concurrent enqueueing and dequeueing
[36] that we implement in C++. To the code for the actual
data structure we add test code: three threads running in
parallel, each doing enqueue and dequeue operations while
recording which data they enqueue and dequeue. The source
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altogether has 215 lines of C++ code, which we compile using
a standard GCC 6.3.0 cross compiler with -O3, obtaining 472
lines of assembly code. We then run a script that maps the
assembly into the litmus format used by herd and rmem: our
tool does not support dynamic thread creation yet; the litmus
format allows writing the code directly as a parallel thread
composition. Another limitation is that our tool does not yet
support dynamic memory allocation, which we “fake” here
with a very naive malloc as part of the source code (see code).
We are planning to add dynamic thread creation andmemory
allocation, which just requires additional engineering.
Running our model exhaustively, integrated into rmem,

outputs the list of possible final outcomes and allows us to
check whether the code has behaved correctly. For a version
in which Thread 1 enqueues once and Threads 2 and 3 each
try to dequeue once the tool finishes in 9 seconds, reporting
no incorrect state. We also try other versions (see Table 2),
finding no incorrect states.

When implementing the queue, we initially chose conser-
vative acquire/release ordering for all but two C++ atomic
accesses. Investigating the assembly shows the assembly
code under ARM’s memory model provides stronger guar-
antees than required. We experiment with relaxing some of
the atomics and run the tool again. After roughly two min-
utes it reports an incorrect state: one in which the enqeue
operation succeeded, the queue is empty, but neither of the
dequeueing threads has read the data. The tool also provides
a witnessing trace, that allows interactively stepping through
the execution for debugging. (Table 2 shows numbers for
an optional optimisation, but for which the model currently
does not produce fine-grained interactive traces; this just
requires additional engineering.)
In this case, we see the following behaviour. The first

transitions are all promising transitions by the enqueueing
thread, Thread 1, partly for initialising the queue. The queue
is implemented as a linked list. Each queue element is a
struct with two fields, data and next, a pointer to the
next element. The queue contains an initial dummy element,
Init, and fields head and tail pointing to start and end
of the queue. Thread 1 sets these up: it writes Init with
data = 0 and next = null, and points head and tail to
Init. Thread 1 also does the first enqueue operation, of an
element e . The steps are, in program order:

1. create the new element e , with next = null and data
(in this case) set to 1,

2. and enqueue e: find the tail of the queue, here Init,
and set its next field to point to e .

In this trace, the problematic behaviour occurs in the third
transition: Thread 1 writes Init’s next field to point to e ,
before having written e’s data (executing step 2 before step
1). Thus, later, when Thread 2 dequeues e , it can read the
initial value 0 for e’s data, even though 1 would be correct.

Here the bug is easily fixed, by making the above two steps
execute in program-order. We fix the issue by making the

Table 1. LOC = assembly lines, Ts = number of threads

Test Lang LOC Ts Test Lang LOC Ts

SLA ARMv8 44 2 TL C++ 120 3
SLC C++ 51 3 STC C++ 366 3
SLR Rust 84 3 STR Rust 393 3
PCS C++ 69 2 DQ C++ 247 3
PCM C++ 130 3 QU C++ 473 3

write of the next field in step 2 a release write, preventing
“publishing” the new element before its data has beenwritten.
The resulting code is unsound in C++ but still sound in ARM.

Tested Examples and Results We give an overview of the
tests we ran in Table 1.We test, from simple to complex: three
different spinlock variants, implemented in assembly (SLA),
C++ (SLC), and Rust (SLR), where Linux-Spinlock (SLA) is an
example taken from a Linux kernel spinlock implementation
[25, 33], which was also used by Pulte et al. [39] for demon-
strating Flat2 (their other test, spin_unlock_wait, requires
mixed-size support); single-producer-single-consumer (PCS)
and single-producer-multiple-consumers (PCM) circular
queues; a ticket lock (TL); Treiber stack [17], separately im-
plemented in C++ (STC) and Rust (STR); Chase-Lev dequeue
(DQ) [28, 32]; and the aforementioned variants of theMichael
& Scott queue (QU). In addition, for the last four examples
we also try versions optimised for ARMv8. Table 2 shows
selected results, more in the supplementary material (§E).
All programs in C++ and Rust are compiled with GCC 6.3.0
and RUSTC 1.30 with optimization level 3. All numbers are
from a standard desktop machine, Ubuntu 16.04 Intel Core
i7-7700 at 3.60GHz, 8GB memory.
The names mean the following. For the spinlock tests:

spinlock-n means n loop unrollings on all threads; PCM-n-n-
n: Thread 1 producing n times, Threads 2 and 3 consuming
n times; PCS-n-n the same for Thread 1 producing, Thread 2
consuming; TL-n: threads spinn times to acquire lock; STC/R-
abc-def-ghi: Thread 1 pushing a times, popping b times, and
again pushing c times, and analogously for Thread 2with def
and Thread 3 with ghi; DQ/(opt)-abc-d-e: Thread 1 pushes
a times, pops b times, and pushes c times, Thread 2 steals
d times, and Thread 3 steals e times; QU/(opt)-abc-def-ghi:
Thread 1 enqueues a times, dequeues b times, and enqueues
c times again, analogously with def for Thread 2 and ghi for
Thread 3.

We tried running the examples on herd, but all but the
spin and ticket locks (SLC,SLR,TL) require instructions un-
supported by herd. For SLC and TL, we ran the tests on
herd:
• SLC-1: 14.72 sec, (Promising: 3.21 sec)
• SLC-2: stack overflow in 123.51 sec, (Promising: 4.69 sec)
• TL-1: 31.04 sec, (Promising: 10.16 sec)

2We change mixed-size loads in the example to same-size and confirmed
that performance is unaffected.
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Table 2. Run times in seconds. ooT = more than four hours.

Test Promising Flat

SLA-7 0.61 9108.53
SLC-3 6.58 1472.74
SLR-3 4.88 52.52
PCS-3-3 1.36 249.26
PCM-3-3-3 71.12 ooT
TL/(opt)-3 18.08 / 20.13 ooT / ooT
STC/(opt)-100-010-010 0.42 / 0.42 2144.52 / 5943.50
STC/(opt)-100-100-010 8.70 / 8.70 ooT / ooT
STC/(opt)-210-011-000 615.41 / 637.98 ooT / ooT
STR-100-010-010 0.39 77.21
STR-100-100-010 7.30 8940.03
STR-210-011-000 522.19 ooT
DQ/(opt)-100-1-0 0.30 / 0.30 2.93 / 2.97
DQ/(opt)-110-1-0 0.44 / 0.44 1042.88 / 1114.39
DQ/(opt)-211-2-1 28.55 / 111.54 ooT / ooT
QU/(opt)-100-000-000 1.34 / 2.95 2983.11 / ooT
QU/(opt)-100-010-000 2.55 / 5.66 ooT / ooT
QU/(opt)-110-100-010 2108.12 / ooT ooT / ooT

• TL-2: 2370.23 sec, (Promising: 13.72 sec)
The results show that the Promising model scales much

better than Flat for the tested examples. However, we be-
lieve, we may further improve performance significantly
over the current results by studying existing model checking
techniques. For instance, for certain litmus tests Promising
does not perform as well as Flat: tests with a large number
of writes whose interleaving does not matter. In such tests,
Promising explores all interleavings of the writes, and each
interleaving leads to a different memory state, even if the
order of some writes does not affect the possible final out-
comes. Here we believe partial-order reduction techniques
[21] can help improve performance.

Where data is available, the results also show the Promis-
ing model performs much better than herd. The comparison
here is less clear: on the one hand herd does not accurately
capture the full ISA behaviour, meaning it has to do less
work during the exhaustive search; on the other hand herd
is not designed primarily to be a fast model checker, and it
is not clear how the axiomatic approach compares to ours
in search complexity. Herd computes the set of allowed be-
haviours in two steps: first, herd enumerates the set of all
possible candidate executions, concrete executions given by a
program-order unfolding, write values for the reads, and re-
lations capturing the concurrency behaviour satisfying only
minimal well-formedness conditions; then, herd discards ex-
ecutions violating the model’s axioms. A naive generation of
the set of candidate executions is expensive. However, it may
be possible to efficiently generate candidate executions us-
ing an approach similar to the promise-first enumeration de-
scribed here, or adapt the model checker of Kokologiannakis
et al. [30] based on axiomatic models to ARMv8/RISC-V.

9 Related Work
Models The reference axiomatic memory model, written
in herd, and the Flat model have already been discussed. We
build on extensive past research on ARMv8 and Power con-
currency [6, 7, 10, 11, 18, 19, 22–24, 34, 35, 39–41]. The main
inspiration for Promising-ARM is the promising semantics
of Kang et al. for C/C++ 11 [29]. As described in the intro-
duction, Promising-ARM uses the same concepts: views,
promises, and certification, but leverages them in a different
way: (1) Views consist of a single timestamp, and timestamps
at different locations are comparable, reflecting multicopy
atomicity. Messages do not carry views, and barriers work
purely thread-locally. (2) In order to capture the semantic
dependencies, Promising C11 uses future-memory quantifi-

cation for certification, which makes exhaustive execution
hard. Here, dependencies are purely syntactic, captured by
associating timestamps to registers. (3) The key property of
write-first execution (Theorem 7.1) does not hold for Promis-
ing C11. The I2E models [14, 43, 44] aim to provide simple
models in which instructions execute in order and atomically.
However, I2E does not allow load-store reordering, allowed
in ARMv8/RISC-V.

Model Checking As demonstrated, our tool can be used
for exhaustive state exploration for small instances of con-
currency libraries for ARMv8/RISC-V. Since the tool is sound
and complete, listing precisely the architecturally allowed
behaviours, checking such small instances can already be
a useful tool for checking the library code: providing confi-
dence in the correctness without generating false positives.

There are a number of existing concurrency model check-
ing tools, none of which, however, apply to ARMv8 or RISC-V.
Alglave et al. [8] develop a model checking tool based on
axiomatic models for some weaker models including RMO
and Power, but not ARMv8, and it does not integrate a sub-
stantial ISA model. Abdulla et al. [3–5] describe efficient
model-checking algorithms for hardware models (TSO, PSO,
and Power), proved sound for Power. They do not handle
ARMv8; for their Nidhugg tool, ARM support is called “par-
tial”, under-approximating the behaviours [1], and they do
not handle a (Power or ARM) ISA model, but a simple calcu-
lus. CDSChecker [37] tackles model checking for a variant
of C/C++ 11 that allows load buffering. Kokologiannakis et al.
[30] develop an efficient algorithm for a variant of C/C++ 11
that forbids load buffering.

10 Conclusion and Future Work
We have presented an operational model for ARMv8 and
RISC-V concurrency, in a different style from the existing
ones. The model applies the concepts of promises and views
from the Promising C11 semantics to hardware concurrency,
to enable a simpler and more abstract operational model.
Promising-ARM/RISC-V offers the attractive mental model
of instructions executing incrementally, instantaneously, and
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mostly in program order, which we hope can make the subtle
concurrency behaviour of ARMv8 and RISC-V more accessi-
ble to both researchers and programmers.

Themodel enables an executable tool for exhaustive check-
ing and interactive debugging. The experimental results
show significant performance improvements over the Flat
and herd models in exhaustive search. In the future we plan
more work on this — exploring improvements enabled by the
model’s abstractness and by applying knownmodel checking
techniques. We believe Promising-ARM/RISC-V can serve
as a basis for other research on hardware concurrency, for
formal reasoning about ARMv8/RISC-V concurrent software
and for testing and analysis tools.
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A Full Model
We continue the informal description of the model from §4 to extend the model with release/acquire instructions, weaker
barriers, and load/store exclusive instructions before giving the full model definition including these.

A.1 Release/Acquire Accesses and Weak Barriers
In addition to the full dmb.sy barriers and dependencies, ordering can also be created in ARMv8/RISC-V using weaker barriers:

• Release and acquire are “half-barriers” that introduce ordering in one direction: a store release is ordered with respect to
all program-order previous memory accesses, and a load acquire with all program-order later ones. Moreover, a strong
load acquire (acq, not wacq) is ordered with respect to all program-order-earlier strong store releases (rel, not wrel). Only
RISC-V features weak releases.

• dmb.ld orders any program-order earlier loads with any program-order later memory access.
• dmb.st creates ordering from any program-order earlier store to any program-order later store.
• isb orders any load i before any program-order later store i ′, if there is a conditional branch between i and i ′ whose
condition depends on i , or if there is a memory access between i and i ′ whose address depends on i .

• The RISC-V equivalent of dmb.sy, dmb.ld, and dmb.st are fenceRW,RW, fenceR,RW, and fenceW,W, respectively. isb has no
equivalent in RISC-V: the fence fence.i does not consider control and address-po dependencies. Since we do not model
self-modifying code, fence.i would be a no-op in this model. RISC-V has some additional barriers, such as fenceW,R and
fence.tso, which work analogously to the ARMv8 barriers seen so far (see §A.3).

(a) store [x] 37; (c) r1 := loadacq [y]; // 42
(b) storerel [y] 42 (d) r2 := load [x] // 0

r1 = 42 ∧ r2 = 0 forbidden

Release/Acquire We return to the earlier MP example. Turning b into a release write orders b after a. Making c an acquire
load orders d after c . Together, this forbids the behaviour in which c reads 42 and d 0. Assume Thread 1 promises y = 42 before
x = 37, at timestamp 1. Executing a places x = 37 at timestamp 2, and sets vwOld = 2.

ρ1 A store release includes in its pre-view the view of all previous memory accesses, captured by vrOld and vwOld.

Therefore, after a, the pre-view of b is 2, and it cannot fulfil the promise at timestamp 1. So, in the example, when c reads
y = 42, memory must instead be [1: ⟨x := 37⟩1, 2: ⟨y := 42⟩1] thereby setting c’s post-view to 2.

ρ2 The load acquire, symmetrically to the store release, merges its post-view into vrNew and vwNew, affecting the pre-view of
all future loads and store.

Therefore, c sets vrNew and vwNew to 2. Since in this state d is constrained by timestamp vrNew = 2 and the initial x = 0 is
superseded by the write at timestamp 1 ≤ 2, the behaviour where d reads x = 0 is forbidden.
In addition, ARMv8/RISC-V enforces ordering from strong store releases to program-order later strong load acquires. To

model this ordering:

ρ3 The thread state maintains a view vRel : V containing the maximal post-view of all strong releases executed so far.
ρ4 The pre-view of any later strong load acquire includes vRel, enforcing the memory ordering.

The rules for barriers follow the same principle:

ρ5 dmb.st updates vwNew to include vwOld.
ρ6 dmb.ld updates vrNew and vwNew to include vrOld.
ρ7 isb updates vrNew to include vCAP.

A.2 Load/Store Exclusive Instructions
The previously discussed instructions can only introduce intra-thread ordering. Exclusive instructions (called load reserve/store
conditional in RISC-V) make it possible to provide inter-thread atomicity guarantees. If a load exclusive a and a store exclusive
b are paired and the store exclusive b is successful, then the writew ′ of b is guaranteed to be the immediate coherence successor
of the writew that a reads from, apart from writes by the same thread (i.e. there are no writes from other threads to the same
address betweenw andw ′ in memory).
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(a) r1 := loadex [x]; // 37 (c) store [x] 37;
(b) r2 := storeex [x] 42 (d) store [x] 51;

(e) r3 := load [x] // 42
r1 = 37 ∧ r2 = vsucc ∧ r3 = 42 forbidden

In this example, if a reads x = 37 from c , and b succeeds, then the write x = 51 by d is not allowed to come between the
writes of c and b, and memory is not allowed to be [1: ⟨x := 37⟩2, 2: ⟨x := 51⟩2, 3: ⟨x := 42⟩1] (although different-address
writes and non-exclusive writes to x from Thread 1 are allowed in between the load exclusive and the store exclusive). A store
exclusive is only allowed to be paired with the most recent program-order earlier load exclusive (whether at the same location
or not), and only if there has been no interposing (successful or unsuccessful) store exclusive, independent of their locations.

To capture the pairing of load and store exclusives:
ρ8 Each thread maintains an exclusives bank xclb : option ⟨time : T; view : V⟩, initially set to none, containing information
about the last load exclusive when there has been no other store exclusive in that thread since then. Specifically,
ρ9 xclb is set to ⟨time = t ; view = ν⟩ (we omit some for simplicity) whenever a load exclusive reads from timestamp t with
post-view ν .
ρ10 xclb is set to none whenever a store exclusive (successful or not) is executed.
Consider an execution of the previous example, where c writes x = 37 at timestamp 1 and a reads the write x = 37 and

sets xclb to ⟨time = 1, view = 1⟩. Now if d writes x = 51 at timestamp 2, b cannot write to x exclusively and must fail by the
following rule:
ρ11 A store exclusive to location z at timestamp t succeeds only if xclb is not none and, in case the message at xclb.time is
also z (so the load exclusive was to the same location), every message to z in memory between xclb.time and t is written by
this thread.
ρ12 When the store exclusive succeeds it writes to a register indicating its success. The associated view in the success case is
its post-view in RISC-V, and 0 in ARMv8. This means in RISC-V if another write depends on the success of a store exclusive,
this write can only be promised after that of the store exclusive. In contrast, in ARMv8 this ordering is not preserved. This is
the source of the deadlocks discussed in §4.3, for which we present a solution in §C.
Specifically, in Thread 1, xclb.time is 1 and d should write x = 42 at timestamp 3, but then the write x = 51 in the middle is
written by Thread 2, which violates the above rule. Thus in order for b to be successful, b should be executed before d resulting
in memory [1: ⟨x := 37⟩2, 2: ⟨x := 42⟩1, 3: ⟨x := 51⟩2] after d . Then e is constrained by coh(x) = 3, which is due to d , and thus
should read 51.
In addition to this atomicity guarantee, exclusives provide some ordering guarantees: the architectures guarantee that

certain loads — load acquires in ARMv8, all loads in RISC-V — cannot read from a store exclusive by thread-internal forwarding.
To capture this:
ρ13 Recall, the forward bank fwdb : Loc → option [time : T; view : V; xcl : B] records in the xcl field whether the write
in the forward bank is an exclusive write. The model then prevents a load acquire on ARM, and any load in RISC-V, from a
location z from obtaining the smaller forward view fwdb(z).view if fwdb(z).xcl is set.
RISC-V additionally guarantees ordering of the store exclusive with the paired load-exclusive even if the load and the store are
to different addresses.3 To this end:
ρ14 Recall that the exclusives bank xclb : option ⟨time : T; view : V⟩ records the post-view of the load exclusive in the view
field. In RISC-V, this view xclb.view is included in the paired store exclusive’s pre-view.

A.3 Formal Model
Fig. 4 summarises the types used by the model that were introduced in §4. For simplicity, values and addresses are mathematical
integers. Promising-ARM and Promising-RISC-V use the same definitions, with an architecture flag a switching between
ARM and RISC-V behaviour. This only affects the treatment of store exclusive instructions, in the store and load rules. However,
not all instructions exist in both architectures: RISC-V has more barriers, and a weak store release. Fig. 5 gives the formal
definition of the steps of the semantics, cross-referenced with the relevant rules in §4. First, we define auxiliary definitions.

Expression Interpretation The function (second and third line) takes an expression and a register statem, and returns the
expression’s value and view. Constants have view 0; registers are looked up inm; the view for an arithmetic expression merges
the views of the arguments (r9).
3In the case of ARMv8 the architecture specifies “constrained unpredictable” behaviour; this is still being clarified.
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a ∈ Arch ::= ARM | RISC-V l ∈ Loc
def

= Val v ∈ Val
def

= Z tid ∈ TId
def

= N t ∈ T
def

= N ν ∈ V
def

= T

w ∈ Msg
def

= ⟨loc :Loc; val :Val; tid :TId⟩ ⟨x := v⟩tid
def

= ⟨loc=x ; val=v ; tid= tid⟩ M ∈ Memory
def

= list Msg

ts ∈ TState
def

=

〈
prom : set T ; regs : Reg → Val × V;
coh : Loc → V ; vrOld, vwOld, vrNew, vwNew, vCAP, vRel : V ;
fwdb : Loc → ⟨time : T; view : V; xcl : B⟩;
xclb : option ⟨time : T; view : V⟩

〉
T ∈ Thread

def

= St × TState
®T ∈ TPool

def

= TId → Thread

⟨ ®T ,M⟩ ∈ Machine
def

= TPool ×Memory

Figure 4. Types in the semantics

read read(M, l, t) gives the result of reading location l at timestamp t in memoryM . For t = 0, this is the initial value vinit,
here 0; otherwise either the value of the message inM at timestamp t if its location is l , otherwise none.

read-view read-view(a, rk, f , t) returns either the timestamp t of the read message or the forward view of the message f in
the forward bank, subject to certain constraints on the architecture a and read kind rk (r13, r14, r15, r16, ρ13).

atomic atomic(M, l, tid, tr , tw ) checks whether an exclusive write to l at timestamp tw by thread tid can become successful,
and so atomic with respect to its earlier exclusive read with read message at timestamp tr in the current memoryM (ρ8, ρ9,
ρ11).
Now we define thread-local steps T ,M [t ]

→tidT
′, which do not change the memory.

exclusive-failure A store exclusive that has not been executed is always allowed to fail. It sets rsucc to vfail (here 1) to
signal failure, with 0 timestamp, and sets xclb to none (ρ10).

fulfil starts with the pre-condition (from top to bottom). First evaluate address and data expressions. Rule ρ11 explains the
condition for exclusive writes. Since we assume writes always promise first and then fulfil, this step requires the write to have
been promised.

Rules r10, r6, r21, ρ1, ρ14 describe the components contributing to the pre-view. The pre-view and coherence view have
to be less than t (r19); the post-view is the timestamp t (r3). ρ12 explains the view νsucc placed on the register write indicating
the success. The post-condition removes the promise (r19); writes vsucc (here 0) to the “success register” (ρ12); and updates
the coherence view to include t (r11), certain views (r5, r22, ρ3); the forward bank (r14, ρ13); and the exclusives bank (ρ8,
ρ10).

read also starts with the pre-condition (from top to bottom). First evaluate the address l ; in order to read v it must be
v = read(M, l, t) as described above. The pre-view calculation is described in r10, r6, ρ4. The pre-view (r2) and the coherence
view (r12) constrain the read. The post-view is defined in r3, r16. The post-condition updates the register with value and
post-view (r9); coherence with post-view as in rule r11; views as in r5, ρ2, r22; and exclusives bank as in ρ9.

fence This defines a single rule for all other ARMv8 and RISC-V fences in a format matching RISC-V’s fence instruction.
fenceK1,K2 has two arguments: K1 indicates whether the fence creates ordering with respect to program-order preceding
reads (R), writes (W ), or both (RW ); similarly K2 indicates which program-order later instructions are ordered with it (R,W ,
or RW ). It then updates vrNew and/or vwNew (depending on K2), to include vrOld and/or vwOld (depending on K1) according to
the intuition given in r5, r6. We define ARMv8’s full barrier dmb.sy = fenceRW ,RW , its load barrier dmb.ld = fenceR,RW , its
store barrier dmb.st = fenceW ,W , and moreover RISC-V’s “TSO fence” as
fence.tso = fenceR,R ; fenceRW ,W . With these definitions, the behaviour of the ARM barriers is as explained with rules r5,
r6 r7, ρ5, ρ6.

register A register assignment updates the register with the expressions and view from the evaluation of its expression
(r9).

branch The pre-condition evaluates the condition, branches as determined by this value, and updates vCAP (r22).

isb Executes an isb by merging vCAP into vrNew (ρ7).

skip, seq, and while Mostly as expected. while is expressed using a branch.
We can then define thread steps ⟨T ,M⟩

[t ]
→tid ⟨T

′,M ′⟩.

execute lifts a thread-local step that does not change memory to a thread step. promise allows promising any write message,
appending this write to memory and recording its timestamp in prom. While thread steps allow unconstrained promises,
machine steps only allow certified promises. Finally, machine steps just lift certified thread steps (r24).
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c ? ν1 : ν2
def

= if c then ν1 else ν2 c ? ν
def

= c ? ν : 0 ν1 ⊔ ν2
def

= max(ν1,ν2) v@ν
def

= ⟨v,ν⟩ : Val × V
J(−)1K(−)2 : Expr → (Reg → Val × V) → Val × V

JvKm
def

= v@0 JrKm
def

=m(r ) Je1 op e2Km
def

= (v1 JopKv2)@(ν1⊔ν2) with Je1Km =v1@ν1, Je2Km =v2@ν2

read(M, l, t) : option Val
def

= if t = 0 then vinit else if M(t).loc = l thenM(t).val else none

read-view(a, rk, f , t)
def

= if (f .time = t ∧ (f .xcl ⇒ (a = ARM ∧ rk ⊑ pln))) then f .view else t

atomic(M, l, tid, tr, tw)
def

= M(tr).loc = l =⇒ ∀t ′. (tr< t
′< tw ∧M(t ′).loc = l) =⇒ M(t ′).tid = tid

T ,M [t ]
→a,tidT

′

(exclusive-failure)
xcl=true ts

′= ts
[
regs(rsucc) 7→vfail@0, xclb 7→none

]
⟨rsucc :=storexcl,wk[e1]e2, ts⟩,M →a,tid ⟨skip, ts′⟩

(read)
l@νaddr = JeKts.regs
read(M, l, t) = v
νpre = νaddr ⊔ ts.vrNew ⊔ (rk ⊒ acq ? ts.vRel)
∀t ′. t < t ′≤(νpre⊔ts.coh(l)) =⇒ M(t ′).loc , l
νpost = νpre ⊔ read-view(a, rk, ts.fwdb(l), t)

ts
′= ts



regs(r ) 7→ v@νpost,
coh(l) 7→ ts.coh(l) ⊔ νpost,
vrOld 7→ ts.vrOld ⊔ νpost,
vrNew 7→ ts.vrNew ⊔ (rk ⊒ wacq ? νpost),
vwNew 7→ ts.vwNew ⊔ (rk ⊒ wacq ? νpost),
vCAP 7→ ts.vCAP ⊔ νaddr,
xclb 7→xcl ? ⟨time=t ; view=νpost⟩ : ts.xclb


⟨r := loadxcl,rk [e], ts⟩,M →a,tid ⟨skip, ts′⟩

(fulfil)
Je1Kts.regs = l@νaddr Je2Kts.regs = v@νdata
xcl =⇒ ts.xclb,none ∧ atomic(M,l,tid,ts.xclb.time,t)
t ∈ ts.prom M(t) = ⟨l := v⟩tid
νpre = νaddr ⊔ νdata ⊔ ts.vwNew ⊔ ts.vCAP ⊔

(wk ⊒ wrel ? (ts.vrOld ⊔ ts.vwOld)) ⊔
((a = RISC-V ∧ xcl) ? ts.xclb.view)

(νpre ⊔ ts.coh(l)) < t
νpost = t νsucc = (a = RISC-V ? νpost : ⊥)

ts
′= ts



prom 7→ ts.prom \ {t},
regs(rsucc) 7→ xcl ? vsucc@νsucc : ts.regs(rsucc),
coh(l) 7→ ts.coh(l) ⊔ νpost,
vwOld 7→ ts.vwOld ⊔ νpost,
vCAP 7→ ts.vCAP ⊔ νaddr,
vRel 7→ ts.vRel ⊔ (wk ⊒ rel ? νpost),
fwdb(l) 7→ ⟨time=t ; view=νaddr⊔νdata; xcl=xcl⟩
xclb 7→ xcl ? none : ts.xclb


⟨rsucc := storexcl,wk [e1] e2, ts⟩,M

t
→a,tid ⟨skip, ts

′⟩

(fence)
ν1 = (R⊑K1 ? ts.vrOld) ⊔

(W⊑K1 ? ts.vwOld)
ts
′ = ts

[
vrNew 7→ ts.vrNew ⊔ (R⊑K2 ?ν1),
vwNew 7→ ts.vwNew ⊔ (W⊑K2 ?ν1)

]
⟨fenceK1,K2, ts⟩,M →a,tid ⟨skip, ts′⟩

(register)
ts
′ = ts

[
regs(r ) 7→ JeKts.regs

]
⟨r := e, ts⟩,M →a,tid ⟨skip, ts′⟩

(branch)
JeKts.regs = v@ν ts

′ = ts[vCAP 7→ ts.vCAP ⊔ ν ]

⟨if (e) s1 s2, ts⟩,M →a,tid ⟨v , 0 ? s1 : s2, ts′⟩

(isb)
ts
′ = ts [vrNew 7→ ts.vrNew ⊔ ts.vCAP]

⟨isb, ts⟩,M →a,tid ⟨skip, ts′⟩

(skip)

⟨skip; s, ts⟩,M →a,tid ⟨s, ts⟩

(seq)
⟨s1, ts⟩,M →a,tid ⟨s ′1, ts

′⟩

⟨s1; s2, ts⟩,M →a,tid ⟨s ′1; s2, ts
′⟩

(while)
s ′ = if (e) (s; while (e) s) skip

⟨while (e) s, ts⟩,M →a,tid ⟨s ′, ts⟩
⟨T ,M⟩

seq
−→a,tid ⟨T

′,M ′⟩

(seq-exec)
T ,M →a,tid T

′

⟨T ,M⟩
seq
−→a,tid ⟨T

′,M⟩

(seq-write)

⟨T ,M⟩
t
→a,tid ⟨T

′,M ′⟩

T ′,M ′ t
→a,tidT

′′

⟨T ,M⟩
seq
−→a,tid ⟨T

′′,M ′⟩

⟨T ,M⟩
[t ]
→a,tid
⟨T ′,M ′⟩

(execute)
T ,M →a,tid T

′

⟨T ,M⟩ →a,tid ⟨T ′,M⟩

(promise)
w .tid = tid t = |M | + 1 ts

′ = ts[prom 7→ ts.prom ∪ {t}]

⟨⟨s, ts⟩,M⟩
t
→a,tid ⟨⟨s, ts

′⟩,M ++ [w]⟩

⟨ ®T ,M⟩ →a

⟨ ®T ′,M ′⟩

(machine-step)
⟨ ®T [tid],M⟩ →a,tid ⟨T ′,M ′⟩ ⟨T ′,M ′⟩ certified

⟨ ®T ,M⟩ →a ⟨ ®T [tid 7→ T ′] ,M ′⟩

⟨T ,M⟩ certified
def

= ∃T ′,M ′.

⟨T ,M⟩
seq
−→

∗

a,tid ⟨T
′,M ′⟩ ∧

T ′.prom = {}

Figure 5. Thread-local steps, thread steps, and machine steps
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B Algorithm
In the following, we describe the algorithm used by the executable model of §7 to implement the certification and promise
enumeration: a function that enumerates the legal next (promise or non-promise) steps of a thread. The certification algorithm
has to handle two tasks. Given a thread state and the current memory state, first it has to decide which of the possible next
instructions steps of the thread allow fulfilling the promises the thread has already made. Second, it has to enumerate the
possible new promises the thread should be allowed to make. These promises have to correspond to feasible writes by store
instructions of this thread but also be compatible with the set of promises the thread has already “committed to”. The main
challenge in developing the certification algorithm is in the latter, computing the new promise steps that should be enabled in
the current thread configuration.

The model of §5 (and §A.3) allows adding arbitrary new promises during the certification. Doing the same in the executable
model would make promise enumeration and certification computationally infeasible.
• The algorithm therefore forbids early promises during certification (i.e. only allows “normal writes”), using the fact that
this does not change the model behaviour.

Moreover, in general, given an arbitrary program, fulfilling a promise may take arbitrarily many steps by this thread, in
particular in the presence of loops whose execution is not statically bounded. For the sake of executability, the executable
model necessarily bounds these, and the certification algorithm takes a fuel argument, limiting the number of thread steps the
certification is allowed to take. The idea of the algorithm is then to enumerate all legal traces of this thread in isolation under
current memory, of a length bounded by this argument, that lead to a state in which all of this thread’s promises have been
fulfilled. Then:
1. Any such trace’s first (non-promise) step is immediately certified.
2. Moreover, any normal write done by this thread on such a trace corresponds to a legal promise step if it has the pre-view

and coherence-view (at its location) less than or equal to the maximal timestamp of current memory (the memory before
the start of the certification).

(a) r1 := load [w];
(b) store [x] 1; . . .
(c) storerel [y] 1;
(d) store [z] r1

To illustrate the algorithm, consider the above (partial) program. Assume that the memory is [1: ⟨w := 1⟩2, 2: ⟨z := 1⟩1],
that the promise set of Thread 1 is prom = {2}, and that Thread 1 has not yet executed a. The certification algorithm first
enumerates all traces of Thread 1 leading to states in which all its promises have been fulfilled. Here, there is only one such
trace:
• a reads 1 fromw : otherwise d would write z = 0, which cannot fulfil the outstanding promise 2: ⟨z := 1⟩1.
• b writes x = 1 at timestamp 3 with pre-view 0 and coherence-view 0, leading to post-view 3.
• c writes y = 1 at timestamp 4 with pre-view 3 and coherence-view 0: as a store release c’s pre-view includes b’s post-view,
via vwOld.

• And d fulfils 2: ⟨z := 1⟩1.
Therefore:
1. The next-instruction step in which a reads 1 fromw is a certified step for Thread 1. (The one where a reads 0 is not, due

to the outstanding promise 2: ⟨z := 1⟩1.)
2. Promising the write x = 1 at timestamp 3 is also certified: it is a possible write by Thread 1 on a path fulfilling its promises,

and with a pre-view and coherence view both less than or equal to the current maximal timestamp 2 in memory (before
the certification run).

3. Promising the write y = 1, however, is not a certified step, since c’s pre-view in the only possible certification trace is
3 ̸≤ 2.

C Certification with ARMv8 Store Exclusives
In §4.3 and §5 we introduced a simple certification definition to avoid model executions in which not all promises are fulfilled.
This certification is sound for RISC-V and ARMv8, and precise for RISC-V programs and for ARMv8 programs without store
exclusives. In the presence of ARMv8 store exclusive instructions, however, it is imprecise: matching ARMv8’s architecturally
intended weak semantics of store exclusive instructions in Promising-ARM leads to executions in which the model gets
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stuck due to unfulfilled promises, of a similar sort as those present in the Flat model [39]. In this section, we extend the
model’s machine state with locks and a certification that takes the locking into account to prevent these executions and make
certification sound and precise for ARMv8 programs even with store exclusives, and makes the model deadlock-free.

C.1 The Challenge of Certification with ARMv8 Store Exclusives
One of the main simplifications of the recent revision of ARMv8 was that, where the architecture previously distinguished
between notions of “true” and “false” dependencies, it now makes no such distinction. Now syntactic dependencies of the
right kind induce memory ordering, with no consideration of whether the result of the register computation varies as a
function of its input or not. Therefore, in the revised ARMv8, it is not always sound to replace an expression by another
expression that performs the same register computation. However, ARMv8’s specification of store exclusives intends to
allow processors to treat a load/store exclusive pair as a single atomic operation that is guaranteed to succeed, e.g. treating
r1 := loadex [x]; r2 := storeex [x] (r1 + 1) as r1 := fetch-and-add [x]; r2 := 0. Now, r2 still has to be set to indicate success
(vsucc), but does not syntactically depend on the store. Therefore, in ARMv8, a dependency on r2 in the program above does not
induce ordering (and Promising-ARM sets its associated view to 0). But the value of r2 after the store exclusive still depends
on the success of the store exclusive!

This leads to surprising behaviours: in the following program despite the dependency from b to c they can be reordered. In
particular, Thread 1may (1.) execute a and read the initial value 0 (so r1 = 0) and, (2.) assume the success of b (so r2 = vsucc = 0)
and write p = 1 with c , before b is in memory: the architecture allows that d reads p = 1 and f reads x = 0 after the barrier e .
(While in RISC-V the dependency from b to c means b propagates before c , forbidding this behaviour.)

a : r1 := loadex [x]; d : r3 := load [p]; // 1 д : store [x] 2
b : r2 := storeex [x] (r1 + 1); e : dmb.sy;
c : store [p] (1 − r1 − r2) f : r4 := load [x] // 0

r3 = 1 ∧ r4 = 0 allowed

This means whereas in all other cases a store may propagate to memory only when all its dependencies are “fixed”,
dependencies on the success of a store exclusive are special. In order to allow the above re-ordering of b and c , an operational
model has to do extra work, since it has to ensure the success of b and therefore its atomicity with respect to the write a read
from, until b is done. For the simple case above, mimicking the behaviour of a processor and replacing r1 := loadex [x]; r2 :=
storeex [x] (r1 + 1) with r1 := fetch-and-add [x]; r2 := 0 is easy. However, handling the dependency relaxation in its full
generality (without deadlocks) is difficult.
This problem manifests in Promising-ARM in the following way: in the initial state Thread 1 is allowed to promise p = 0.

Since c can produce a write p = 0 only if a reads x = 0 and b succeeds, the ability of Thread 1 to fulfil the promise now depends
b’s success, and so on whether b’s write can enter memory as the next write to location x (after the initial write x = 0). If,
however, д now writes to x , b will fail and the model gets stuck, with c unfulfilled. Since c’s early promise has to be allowed
to match ARMv8 semantics, the model must instead prevent д from writing until b’s write, since д would break Thread 1’s
promise.

The certification definition presented in §4 and 5 works thread-locally: it takes into account only a thread’s state and current
memory in order to decide whether a thread step should be allowed or not. But whether д’s write should be allowed cannot be
determined based only on the state of Thread 3 and on the list of messages in memory: it is Thread 1’s promises due to which
д must not write. So a precise certification algorithm for ARMv8 needs to take into account some information about other
threads. In this example, Thread 1 effectively requires “locking” location x , to constrain the behaviour of the other threads. We
leverage this intuition of a thread locking a location and extend memory with a lock state, in order to still allow certifying a
thread by taking into account only its own state and the (extended) memory state.

C.2 Extended Certification, Take 1
The example indicates a pattern: in the problematic execution a thread’s ability to fulfil its promises depends on both, a read
exclusive, and the success of a paired write exclusive that has been promised. More precisely, the state in which a Thread n
requires a lock on a location x is the following:

• Thread n depends on a load exclusive l to location x . This is if:
– Thread n has already executed l , or
– Thread n has an outstanding promise whose fulfilment depends on l due to register dataflow or due to coherence or
view requirements.

• And Thread n relies on the success of the write of a store exclusive s to x that is paired with l : Thread n has an outstanding
promise whose fulfilment depends on s via register dataflow.



PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA C. Pulte, J. Pichon-Pharabod, J. Kang, S.-H. Lee, and C.-K. Hur

• And the writew ′ that l read from is already in memory, whereas the write of s is not.
If the above holds, Thread n’s dependency on l “fixes” the writew ′ that l reads from, and due to the success dependency on s
requires the write of s to succeed and be atomic with respect tow ′.
The idea underlying the extended model is to precisely detect cases when this condition holds, and to then lock x for

Thread n in memory for as long as the condition holds and prevent other threads from writing to locked locations. The main
challenge here is in detecting the above condition. The model handles this by extending the certification and generalising the
views of the thread state. During the certification the model tracks dependencies from load and store exclusive instructions to
other stores, in order to detect when the fulfilment of a write promise by some store depends on such load/store exclusive
pairs as described in the condition. To this end, the extended certification uses views that in addition to timestamps carry
taints that keep track of the load/store exclusive instruction dependencies, including information about their memory location
and pairing.

In the example above, in the state after Thread 1 has read x = 0 with a and promised p = 1 with c , the extended certification
will work as follows:

• the only certifying execution of Thread 1 alone under current memory is one where a reads x = 0, and b succeeds. In
this execution:

• a taints r1 to indicate it is from a load exclusive a to location x reading from a value in memory.
• b taints r2 to indicate it is from a successful store exclusive to location x whose write is not in memory yet and that is
paired with a.

• when fulfilling p = 0 with c , c’s pre-view includes a taint with information about both a and b: a and b are paired and to
location x ; a reads at timestamp 0, so from a write in memory; b is not propagated yet.

• Therefore Thread 1 requires locking x .
The information returned by the certification is then, which locations have to be locked in order to guarantee a thread can
fulfil its promises, and a machine step is only allowed if the step is compatible with the current lock state in memory: not
writing to a location locked by another thread, and not locking already-locked locations.

The taint tracking introduces complexity to the certification. Importantly however, during “normal” execution the extended
model’s views are simple timestamps just as before (§5), and taints are not persistent but local to the certification.

C.3 Extended Certification, Take 2
As the following example illustrates, unfortunately the ideas on certification above are still insufficient. In this example
Thread 1’s store d depends on the load exclusive b to x , and the “success register write” of the store exclusive c to location x .
New here is that c has release ordering, and so c is ordered after the write a to y. Symmetrically in Thread 2 h depends on the
load and store exclusive instructions f and д to y, and д is a store exclusive release ordered after a store e to x .

a : store [y] 1; e : store [x] 1;
b : r1 := loadex [x]; f : r3 := loadex [y];
c : r2 := storeex,rel [x] 1; д : r4 := storeex,rel [y] 1;
d : store [p] (1 − r1 − r2) h : store [q] (1 − r3 − r4)

Now assume an execution in which Thread 1 promises p = 1. Since this depends on b reading x = 0 and c eventually
successfully writing x = 1, our extended certification requires a lock on x for Thread 1 to prevent Thread 2 from breaking its
promise. Now Thread 2 could analogously promise q = 1, after which the model also locks location y for Thread 2, which
does not contradict Thread 1 locking x . But now the model is stuck again: Thread 1 cannot execute a, since y is locked by
Thread 2; c’s write x = 1 would release the lock on x , but since c is a store release, this requires first promising a. Thread 2 in
turn cannot execute e due to the lock on x , and cannot promise д’s y = 1 (and unlock y) before executing e .

In order to avoid such executions, the extended certification has to be improved to take into account some information about
the thread-internal ordering requirements in order to prevent model deadlocks. To this end, the extended model’s taints carry
additional information about stores preceding store exclusive release instructions and the lock state captures rely-guarantee
style lock information per thread; a machine step is then only allowed if the rely-guarantee lock information of all thread
states is consistent. Then in the previous bad execution:

• For the promise p = 1 the certification returns information of the form ([y];x), meaning that for this step Thread 1
requires a lock on x , and that it relies on being able to write to y before releasing the lock on x . Promising p = 1 adds
this to the memory’s lock state.

• Since there are no other locks, Thread 1 can promise.
• In the following state, for the promise q = 1 by Thread 2, symmetrically, the certification returns the information ([x],y).
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• Now ([x],y) is incompatible with ([y], x) due to the cyclic rely-guarantee dependency. Thus Thread 2 is not allowed to
promise q = 1.

Moreover, certain sequences of multiple such store exclusive release instructions can lead to nesting of these rely-guarantee
locks, making the consistency checking difficult. In particular, our current algorithm for checking the consistency is exponential
in the nesting depth. We believe, in practice, sequences with nesting depth greater than 1 do not occur “naturally”. Hence, for
the purpose of exhaustive state space exploration, the executable model approximates the lock information and consistency
checking up to depth one. The model may then still get stuck in cases requiring depth more than 1, but consistency checking
becomes linear in the size of the lock information. (Irrespective, the model remains sound.)

For lack of space we omit the details of the extended certification and refer the interested reader to the Coq formalisation in
the supplementary material.

D Equivalence with the Reference Axiomatic Memory Model
The argument arch switches between ARMv8 and RISC-V. For simplicity of the formalisation, the barriers here are dmb.rw,
dmb.rr, dmb.wr, dmb.ww. All others are just “macros”: combinations of these. For example: ARMv8’s dmb.ld = dmb.rw; dmb.rr.
AQ is for strong read acquire, AQpc for the weak read acquire, RL for the strong write release, RLpc for the weak write release.

let obs = rfe | fr | co

let dob = addr | data

| (addr | data); rfi
| (ctrl | (addr ; po)); [W ]

| (ctrl | (addr ; po)); [isb]; po; [R]
let aob = [range(rmw)]; rfi;
(if arch = RISC-V then [R] else [AQ |AQpc])
let bob = [R]; po; [dmb.rr]; po; [R]

| [R]; po; [dmb.rw]; po; [W ]

| [W ]; po; [dmb.wr]; po; [R]
| [W ]; po; [dmb.ww]; po; [W ]

| [RL]; po; [AQ]
| [AQ |AQpc]; po
| po; [RL|RLpc]
| if arch = RISC-V then rmw

let ob = obs | dob | aob | bob

acyclic po -loc | fr | co | rf as internal
acyclic ob as external
empty rmw & (fre; coe) as atomic

Figure 6. ARMv8 and RISC-V axiomatic memory models

The revised ARMv8 has an official axiomatic concurrency model, written in herd [11], by Will Deacon [20]. RISC-V has an
axiomatic model closely following ARM’s, produced by the RISC-V Memory Model Task Group, chaired by Daniel Lustig. The
models work in a two-step process. The models first enumerate the set of all candidate executions. Each candidate execution is
one potential full execution of the program, specified by relations on its memory accesses ⟨po, co, rf, rmw⟩.
• po (program order) is a control flow unfolding of the threads of the program.
• co is the coherence order, the sequencing of writes to the same address in memory.
• rf is the reads-from relation, relating a write accessw with a read access r that reads fromw .
• rmw relates a read and write access of successfully paired load and store exclusive instructions.

In the second step the model checks each candidate execution for whether it satisfies its axioms, and only allows such legal

executions that do. Typically the axioms require the acyclicity of certain relations of the full candidate executions.
In ARMv8 there are three axioms: a standard coherence axiom and an axiom concerning the atomicity guarantees of

load/store exclusive instructions, and the “main” axiom. For the main axiom, the relation obs describes the interaction between
memory accesses of different threads (using reads-from and coherence), and the relation ob describes the thread-local ordering
due to dependencies and barriers every execution must preserve. The main axiom requires that the interaction between threads
is compatible with this thread-internal ordering, by requiring the acyclicity of the relations. For RISC-V, the axiomatic herd
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model [42] is similar. The proof currently assumes known simplifications of the axiomatic models to unify them in the Coq
formalisation. We call this model Axiomatic for both cases, ARM or RISC-V (see supplementary material for the definitions).

We now define two variants of the Promising semantics. To this end, first define a valid execution as an execution in which
the threads in the final state have no outstanding promises. Then we call Promising the model as defined in §A.3 accepting
only such valid executions. Second, as an intermediate model for the proof, we define Global-Promising to be the same as
Promising, except where machine-step requires no certification. These Promising model variants are equivalent. Moreover
Promising for RISC-V has no deadlocks (i.e. every execution is valid).
The following statements all assume finite executions.

Theorem D.1. For a program p, ®R is a final register state of a legal candidate execution of p in Axiomatic if and only if it is that

of a valid execution of p in Global-Promising.

Proof. Proved in Coq (for both ARM and RISC-V). �

Theorem D.2. For a program p, ®R is a final register state of a valid execution of p in Global-Promising if and only if it is that of

a valid execution of p in Promising.

Proof. Proved in Coq (for both ARM and RISC-V). �

Theorem D.3 (Dead-lock freedom for RISC-V). For every certified state in Promising for RISC-V, either it is a final state with no

outstanding promise, or there exists a step to another certified state.

Proved in Coq.

E Full Evaluation Results
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Table 3. Runtimes in seconds. ooT = more than four hours.

Test Promising Flat

SLA-1 0.27 0.41
SLA-2 0.30 3.38
SLA-3 0.33 21.57
SLA-4 0.39 110.18
SLA-5 0.44 526.76
SLA-6 0.52 2277.72
SLA-7 0.61 9108.53
SLA-8 0.73 ooT
SLA-9 0.86 ooT
SLA-10 1.01 ooT

SLC-1 3.21 8.63
SLC-2 4.69 121.98
SLC-3 6.58 1472.74

SLR-1 2.47 3.70
SLR-2 3.50 17.51
SLR-3 4.88 52.52

PCS-1-1 0.26 0.33
PCS-2-2 0.40 10.33
PCS-3-3 1.36 249.26

PCM-1-1-1 0.30 23.58
PCM-2-2-2 1.70 ooT
PCM-3-3-3 71.12 ooT

TL/(opt)-1 10.16 / 10.28 456.12 / 1180.33
TL/(opt)-2 13.72 / 14.54 2202.12 / 7115.31
TL/(opt)-3 18.08 / 20.13 ooT / ooT

STC/(opt)-100-010-000 0.36 / 0.36 35.26 / 104.57
STC/(opt)-100-010-010 0.42 / 0.42 2144.52 / 5943.50
STC/(opt)-100-100-010 8.70 / 8.70 ooT / ooT
STC/(opt)-110-011-000 7.64 / 8.13 ooT / ooT
STC/(opt)-110-100-010 21.84 / 22.48 ooT / ooT
STC/(opt)-200-020-000 7.16 / 7.12 ooT / ooT
STC/(opt)-210-011-000 615.41 / 637.98 ooT / ooT

STR-100-010-000 0.35 4.61
STR-100-010-010 0.39 77.21
STR-100-100-010 7.30 8940.03
STR-110-011-000 6.55 ooT
STR-110-100-010 18.09 ooT
STR-200-020-000 5.80 11325.87
STR-210-011-000 522.19 ooT

DQ/(opt)-100-1-0 0.30 / 0.30 2.93 / 2.97
DQ/(opt)-110-1-0 0.44 / 0.44 1042.88 / 1114.39
DQ/(opt)-110-1-1 0.66 / 0.65 ooT / ooT
DQ/(opt)-111-1-1 1.76 / 2.44 ooT / ooT
DQ/(opt)-211-1-1 9.51 / 37.10 ooT / ooT
DQ/(opt)-211-2-1 28.55 / 111.54 ooT / ooT

QU/(opt)-100-000-000 1.34 / 2.95 2983.11 / ooT
QU/(opt)-100-010-000 2.55 / 5.66 ooT / ooT
QU/(opt)-100-010-010 4.53 / 10.00 ooT / ooT
QU/(opt)-100-100-010 712.57 / 4984.94 ooT / ooT
QU/(opt)-110-011-000 589.50 / ooT ooT / ooT
QU/(opt)-110-100-010 2108.12 / ooT ooT / ooT
QU/(opt)-200-010-010 531.41 / ooT ooT / ooT
QU/(opt)-200-020-000 286.99 / 10585.10 ooT / ooT
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