
Sequential Reasoning for Optimizing Compilers
under Weak Memory Concurrency

Minki Cho
∗

Seoul National University

Korea

minki.cho@sf.snu.ac.kr

Sung-Hwan Lee
∗

Seoul National University

Korea

sunghwan.lee@sf.snu.ac.kr

Dongjae Lee

Seoul National University

Korea

dongjae.lee@sf.snu.ac.kr

Chung-Kil Hur

Seoul National University

Korea

gil.hur@sf.snu.ac.kr

Ori Lahav

Tel Aviv University

Israel

orilahav@tau.ac.il

Abstract
We formally show that sequential reasoning is adequate

and sufficient for establishing soundness of various com-

piler optimizations under weakly consistent shared-memory

concurrency. Concretely, we introduce a sequential model

and show that behavioral refinement in that model entails

contextual refinement in the Promising Semantics model, ex-

tended with non-atomic accesses for non-racy code. This is

the first work to achieve such result for a full-fledged model

with a variety of C11-style concurrency features. Central to

our model is the lifting of the common data-race-freedom

assumption, which allows us to validate irrelevant load in-

troduction, a transformation that is commonly performed by

compilers. As a proof of concept, we develop an optimizer

for a toy concurrent language, and certify it (in Coq) while

relying solely on the sequential model. We believe that the

proposed approach provides useful means for compiler de-

velopers and validators, as well as a solid foundation for the

development of certified optimizing compilers for weakly

consistent shared-memory concurrency.

CCS Concepts: • Theory of computation → Concur-
rency; Operational semantics; • Software and its engi-
neering→ Semantics; Compilers.

Keywords: Relaxed Memory Concurrency; Operational Se-

mantics; Compiler Optimizations

∗
The first two authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

PLDI ’22, June 13–17, 2022, San Diego, CA, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9265-5/22/06.

https://doi.org/10.1145/3519939.3523718

ACM Reference Format:
Minki Cho, Sung-Hwan Lee, Dongjae Lee, Chung-Kil Hur, and Ori

Lahav. 2022. Sequential Reasoning for Optimizing Compilers under

Weak Memory Concurrency. In Proceedings of the 43rd ACM SIG-
PLAN International Conference on Programming Language Design
and Implementation (PLDI ’22), June 13–17, 2022, San Diego, CA,
USA. ACM, New York, NY, USA, 20 pages. https://doi.org/10.1145/
3519939.3523718

1 Introduction
Weakly consistent shared-memory semantics (a.k.a. weak,

or relaxed, memory models) aim to support a wide range

of source-to-source compiler optimizations. These optimiza-

tions provide indispensable means for improving perfor-

mance, especially the optimizations involving memory ac-

cesses intended to be non-racy (“non-atomics” in C/C++),

which are more frequent and allow more optimizations com-

pared to synchronization accesses (“atomics” in C/C++).

The soundness of compiler optimizations is a contextual

refinement property—the transformed piece of code should

behave as prescribed by the semantics of its source under any

context. For certain optimizations, mostly access reorderings

and redundant access eliminations, soundness was estab-

lished under multiple concrete weak memory models of dif-

ferent kinds [4, 6, 7, 14, 15, 18, 22, 32, 34, 38, 40, 41]. These re-

sults, however, require delicate and fragile arguments that de-

pend on the full underlying complex memory model, which

is often very different than standard operational semantics.
1

This poses a significant challenge for compiler optimization

developers, especially in the context of certified optimizing

compilers, notably CompCert [23, 24], whose simulation-

based approach for the soundness of each optimization pass

cannot accommodate complex concurrency semantics.

In this paper, we study an alternative approach to estab-

lishing soundness of compiler optimizations under a weak

memory model that is easier to use by compiler developers

and is well-suited for integration within a certified compiler.

1
Informal and pen-and-paper arguments often resulted in detecting mis-

compilation bugs due to subtle unexpected interaction between language

features; see e.g., [8, Remark 7], [6, §2.2], and [5, 30].

https://orcid.org/0000-0002-6684-0921
https://orcid.org/0000-0003-0783-7033
https://orcid.org/0000-0003-2576-1220
https://orcid.org/0000-0002-1656-0913
https://orcid.org/0000-0003-4305-6998
https://doi.org/10.1145/3519939.3523718
https://doi.org/10.1145/3519939.3523718
https://doi.org/10.1145/3519939.3523718

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Minki Cho, Sung-Hwan Lee, Dongjae Lee, Chung-Kil Hur, and Ori Lahav

The idea is to rely solely on sequential reasoning, and our

main contribution is a novel sequential (i.e., single-threaded)
semantics that can be safely used for analyzing thread-local

optimizations under a full-fledged weak memory model.

The proposed approach goes hand in hand with the fact

that compiler writers’ intuition for thread-local optimiza-

tions stems from inspecting sequential code, since, intuitively

speaking, non-racy code behaves just like sequential code. In

fact, validating optimizations that are correct in sequential

programs has been one of the main goals in weak memory

models design. Our results provide a formal justification of

this intuition, and give grounds for development, verification,

and testing of optimizations based on a sequential model.

Example 1.1. As a concrete simple example, consider an

optimization pass that avoids unnecessary reads by locally

applying a simplified “store-to-load forwarding” (SLF) as

captured by the following pattern:

𝑥na := 𝑣 ; 𝑏 := 𝑥na { 𝑥na := 𝑣 ; 𝑏 := 𝑣

where 𝑥 is a shared variable, the na superscript denotes non-

atomic access to memory, 𝑣 is an arbitrary value, and 𝑏 is a

thread local register. In sequential programs this transforma-

tion is clearly sound. We aim to rely on sequential reasoning

for justifying this transformation under weak memory. △

While the idea of using sequential semantics to assist

reasoning on concurrent programs is not new, our results

provide two important advantages. First, while previous

work [9, 10, 16] studied a simple concurrencymodel based on

locks or atomic blocks, the current paper is the first to realize

this idea for a richweakmemorymodel with awide spectrum

of concurrency features, including atomic accesses of sev-

eral kinds. In particular, we demonstrate that the proposed

sequential semantics is sufficiently expressible to validate

certain intricate optimizations of non-atomic accesses across

atomics, which are performed by mainstream compilers (as

we observed on armv8-a clang 11.0.1 and x86-64 GCC 11.2).

Example 1.2. Continuing Example 1.1, a more interesting

SLF pass eliminates reads also across other instructions:

𝑥na := 𝑣 ; 𝛼 ; 𝑏 := 𝑥na { 𝑥na := 𝑣 ; 𝛼 ; 𝑏 := 𝑣

What patterns of synchronization accesses (composed of

C/C++ atomics) may be included in 𝛼 (besides the fact that it

should not containwrites to 𝑥) has been a source of confusion

before [6, §2.2]. As we show below, the model proposed in

this paper allows one to analyze the soundness of this pass

relying solely on a sequential model. △

Second, in contrast to prior work [9, 10, 16], we are not tar-
geting a concurrency model based on the “catch-fire” mecha-

nism, which triggers undefined behavior (UB) for data races

like in C/C++11 [2]. The practical significance of this choice

is that (irrelevant) load introduction is a sound program trans-

formation in our model. In contrast, this transformation

for non-atomics can never be generally sound in a catch-

fire model, since it may introduce data races in the target

program that do not exist in the source. Allowing load in-

troduction is necessary to support optimizations based on

speculation, which are commonly performed by compilers

(clang, in particular), e.g., as a part of loop invariant code

motion, loop unswitching, load-widening or when loading a

vector while only a subset of elements is needed.
2
(In fact,

the “freeze” instruction recently introduced in LLVM is a tool

to support branching on a possibly undefined value, which

is often a result of load introduction [21].)

Example 1.3. Consider an optimization pass performing

loop invariant code motion (LICM) following the pattern:

while 𝐵 do { 𝛼 ; 𝑎 := 𝑥na ; 𝛽 } {
𝑐 := 𝑥na ; while 𝐵 do { 𝛼 ; 𝑎 := 𝑐 ; 𝛽 }

In the case that the loop never executes (when 𝐵 is false),

a possibly racy (irrelevant) load of 𝑥 is introduced. Thus,

this transformation is unsound in catch-fire models. In con-

trast, we aim to validate such transformations, and again

use sequential reasoning for their formal justification (with

appropriate restrictions on 𝛼 and 𝛽 ; see §4). △

To demonstrate that sequential reasoning is adequate for

validating soundness of optimizations under a weak memory

model, we (formally) establish the adequacy of sequential

reasoning for verifying optimizations w.r.t. PS2.1 [8]. The

latter is a recent version of the “promising semantics”, a well-

studied model [18, 22, 36, 37] addressing the infamous “out-

of-thin-air” problem that admits efficient mapping schemes

to modern architectures, as well as several critical program-

ming guarantees. Since this model does not include non-

atomic accesses, we extend it with such accesses. In this ex-

tension, inspired by LLVM [27], to allow load introduction,

which is notoriously hard to support in a relaxed memory

model [?], racy non-atomic reads retrieve “undefined” val-

ues that can be later “frozen” into any non-deterministic

value [21] (rather than invoking UB as in C/C++11).

All in all, the contributions of this paper are:

1) We develop a sequential model, called SEQ, instrument-

ing a standard sequential memory with additional mecha-

nisms to reason about program transformations under a

weak memory model (§2). The sequential model abstracts

away complicated interference of other threads, by, in partic-

ular, tracking permissions to perform non-atomic accesses on

certain locations which are non-deterministically gained and

dropped with acquire/release atomic accesses. We present

two notions of behavioral refinement in SEQ that ensure

refinement under weak memory with arbitrary concurrent

context: a simple one (§2) that suffices for the vast major-

ity of optimizations (including all those involving solely

2
See https://llvm.org/docs/Passes.html [Accessed Nov-21].

https://llvm.org/docs/Passes.html

Sequential Reasoning for Optimizing Compilers under Weak Memory Concurrency PLDI ’22, June 13–17, 2022, San Diego, CA, USA

non-atomics), and a more refined one (§3) needed for cer-

tain transformations involving a non-atomic write and a

release/relaxed atomic access. We note that typical program-

mers need not know about the the sequential model SEQ,

which is only needed for compiler developers.

2) We develop a certified optimizer for a small C-like con-

current language (§4). The optimizer performs four passes of

thread-local optimizations: store-to-load forwarding, load-to-

load forwarding, dead (overwritten) store elimination, and

loop invariant code motion, based on a standard fixpoint

analysis in an abstract semantics representing properties

of the program executions in SEQ. The optimizer is imple-

mented and certified in Coq. Importantly, its correctness

is proved relying solely on simulation in SEQ, without any

reference to the underlying (much more complex) promising

model. Thus, we view this optimizer as a proof of concept

demonstrating the applicability of our approach to verify

optimization passes, possibly as an extension of CompCert.

3) We extend PS2.1 with non-atomics, with UB for write-

write races and undefined value for write-read races (§5).

All results for PS2.1 in [8] are ported to PS
na
, the extended

model. We believe that PS
na

can be useful as a model for an

intermediate representation (IR) language, such as LLVM. In

turn, defensive programmers may rely on one of the data-

race freedom (DRF) guarantees of the model (see [8]), each

of which ensures certain stronger and simpler semantics

provided that certain races are avoided.

4) We prove an adequacy theorem allowing one to derive

the correctness of optimizations in PS
na

from (simple or

refined) behavioral refinement in SEQ (§6).

Our results are fully mechanized in Coq, building on top

of the existing formalization of PS2.1. Our development is

available in the artifact accompanying this paper.

2 The Sequential Permission Machine
We introduce a sequential model, which we denote by SEQ,

and present a notion of behavioral refinement between se-

quential programs that we will show to be adequate for rea-

soning about optimizations of concurrent programs under

weak memory consistency: if a target program behaviorally

refines a source program, then the source program can be re-

placed by the target program under any concurrent context

assuming weak memory semantics (specifically, PS
na
).

To understand the intuitions behind SEQ it is important

to keep in mind the optimizations we aim to validate. First,

since non-atomics are not meant for synchronization, all

optimizations allowed in sequential code, including load

introduction, should be validated on code involving solely

non-atomics. The important exception here is unused store

introduction, which is sound in sequential code (although

existing compilers avoid this transformation, possibly due

to security reasons—we would not want to expose secrets

in memory), but trivially unsound in concurrent code, as an

unused store of one thread may be read by others.

In contrast, we do not aim to allow optimizations on atomic

accesses and fences. Understanding optimizations on syn-

chronization code (via atomics) via sequential reasoning is

unnatural, and, even if possible, it will significantly com-

plicate our sequential model. Also, since atomic accesses

are relatively rare in concurrent programs and often con-

fined in libraries that are manually optimized by experts,

the possible performance gain is rather limited. Although

these optimizations were extensively studied (especially for

C/C++11 [11, 38]), to the best of our knowledge, existing

compilers do not perform such optimizations.

Finally, we also aim to allow optimizations of non-atomics

across atomics. As mentioned in the introduction, these are

performed by mainstream compilers and have been a source

of confusion before. We will also validate reorderings of

relaxed accesses and non-atomics, as well as roach-motel re-

orderings (one-sided reordering of release/acquire and non-

atomics) [33], which are not performed by current main-

stream compilers but are naturally supported in SEQ.

Concurrency constructs. We assume that shared mem-

ory locations are divided into atomic locations (Locat) and
non-atomic locations (Locna), and there is no mixing of

atomic and non-atomic accesses to the same location.
3
To

simplify the presentation in the paper, we only present a

fragment of the model consisting of non-atomics and re-

lease/acquire and relaxed reads and writes. Our Coq devel-

opment includes more features: atomic read-modify-writes

(RMWs), release sequences, fences (including sequentially

consistent fences), strong relaxed accesses (which do not al-

low “load buffering” behaviors), and system calls. This covers

all C/C++11 features as in [20], except for sequentially con-

sistent accesses which are not supported by the promising

semantics.

Program representation in the paper. To keep the pre-

sentation abstract, rather than introducing a concrete pro-

gramming language syntax, we assume that the program-

ming language is represented as a labeled transition system

(LTS), with transitions labeled with the action that is per-

formed. Below we use 𝜎 to denote the program state, which
stores the rest of the program to run and the current local

register file. Transitions take one of the following forms:

• 𝜎 −→ 𝜎 ′
: silent transitions that do not communicate with

the memory (e.g., conditionals and local assignments).

• 𝜎
choose(𝑣)
−−−−−−−−→ 𝜎 ′

: transitions resolving a non-deterministic

choice (Remark 3 in §6 explains why we need to expose

these transitions).

3
The problem in supporting such mixing is the lower step of PS

na
that

modifies values of outstanding promises. We describe in [1, Appendix E],

why the lower operation is needed for validating certain compiler transfor-

mations and the challenge it creates for adequacy of sequential reasoning.

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Minki Cho, Sung-Hwan Lee, Dongjae Lee, Chung-Kil Hur, and Ori Lahav

(silent)

𝜎 −→ 𝜎 ′

⟨𝜎, 𝑃, 𝐹,𝑀⟩ −→ ⟨𝜎 ′, 𝑃, 𝐹 , 𝑀⟩

(choice/relaxed)

𝜎
𝑒−→ 𝜎 ′

𝑒 ∈ {choose(𝑣), Rrlx (𝑥, 𝑣), Wrlx (𝑥, 𝑣)}

⟨𝜎, 𝑃, 𝐹,𝑀⟩ 𝑒−→ ⟨𝜎 ′, 𝑃, 𝐹 , 𝑀⟩

(na-read)

𝜎
Rna (𝑥,𝑣)
−−−−−−−→ 𝜎 ′ 𝑥 ∈ 𝑃

𝑣 = 𝑀 (𝑥)
⟨𝜎, 𝑃, 𝐹, 𝑀⟩ −→ ⟨𝜎 ′, 𝑃, 𝐹 , 𝑀⟩

(na-write)

𝜎
Wna (𝑥,𝑣)
−−−−−−−→ 𝜎 ′ 𝑥 ∈ 𝑃

𝐹 ′ = 𝐹 ∪ {𝑥} 𝑀 ′ = 𝑀 [𝑥 ↦→ 𝑣]
⟨𝜎, 𝑃, 𝐹,𝑀⟩ −→ ⟨𝜎 ′, 𝑃, 𝐹 ′, 𝑀 ′⟩

(racy-na-read)

𝜎
Rna (𝑥,undef)
−−−−−−−−−−−→ 𝜎 ′ 𝑥 ∉ 𝑃

⟨𝜎, 𝑃, 𝐹,𝑀⟩ −→ ⟨𝜎 ′, 𝑃, 𝐹 , 𝑀⟩

(racy-na-write)

𝜎
Wna (𝑥,_)
−−−−−−−→ _ 𝑥 ∉ 𝑃

⟨𝜎, 𝑃, 𝐹, 𝑀⟩ −→ ⟨⊥, 𝑃, 𝐹 , 𝑀⟩

(acq-read)

𝜎
Racq (𝑥,𝑣)
−−−−−−−→ 𝜎 ′

𝑃 ⊆ 𝑃 ′ dom(𝑉) = 𝑃 ′ \ 𝑃

𝑀 ′ = 𝜆𝑥.

{
𝑉 (𝑥) 𝑥 ∈ 𝑃 ′ \ 𝑃
𝑀 (𝑥) otherwise

⟨𝜎, 𝑃, 𝐹, 𝑀⟩
Racq (𝑥,𝑣,𝑃,𝑃 ′,𝐹 ,𝑉)
−−−−−−−−−−−−−−−→ ⟨𝜎 ′, 𝑃 ′, 𝐹 , 𝑀 ′⟩

(rel-write)

𝜎
Wrel (𝑥,𝑣)
−−−−−−−→ 𝜎 ′

𝑃 ′ ⊆ 𝑃 𝑉 = 𝑀 |𝑃

⟨𝜎, 𝑃, 𝐹,𝑀⟩
Wrel (𝑥,𝑣,𝑃,𝑃 ′,𝐹 ,𝑉)
−−−−−−−−−−−−−−−→ ⟨𝜎 ′, 𝑃 ′, ∅, 𝑀⟩

Figure 1. Transitions of SEQ

• 𝜎
R𝑜R (𝑥,𝑣)
−−−−−−→ 𝜎 ′

with 𝑜R ∈ {na, rlx, acq}: reads value 𝑣 from
location 𝑥 with mode 𝑜R (non-atomic, relaxed, or acquire).

• 𝜎
W𝑜W (𝑥,𝑣)
−−−−−−→ 𝜎 ′

with 𝑜W ∈ {na, rlx, rel}: writes value 𝑣 to

location 𝑥 with mode 𝑜W (non-atomic, relaxed, or release).

We assume that programs terminate in states of the form

𝜎 = return(𝑣), which denote normal termination with 𝑣

being the final value that is externally observable, or in an

“error state”, 𝜎 = ⊥, denoting UB (e.g., when dividing by 0).

In our examples we use standard code snippets in a toy lan-

guage to denote programs, and their reading as LTSs should

be clear. We also assume a notion of a (sequential) program

context 𝐶 [·], which is a program with a hole allowing one

to plug in programs, e.g., 𝐶 [𝑥na := 1]. This notation, which
we do not formally specify, is meant for intuitive under-

standing of our examples. In our Coq formulation, programs

are represented using interaction trees [44], which provide a

convenient formalism supporting this operation.

Values. We assume a parametric set Val of values. To
support racy non-atomic reads, Val should contain a dis-

tinguished element, called “undefined value” and denoted

by undef. In the refinement notions below, we allow the

target program to return any value if the source returns

undef. For this matter, a partial order ⊑ on Val is defined by:
𝑣 ⊑ 𝑣 ′ ⇔ 𝑣 = 𝑣 ′ ∨ 𝑣 ′ = undef. This order is lifted to (partial)

functions to Val pointwise.

Remark 1. We follow LLVM assuming that branching on

undef invokes UB. A “freeze” instruction can be used to non-

deterministically choose a defined value for undef,4 which
is captured by a choose(𝑣) transition in the LTS.

States of SEQ. In addition to the current program state 𝜎 ,

each state 𝑆 = ⟨𝜎, 𝑃, 𝐹,𝑀⟩ of SEQ keeps track of:

4
See https://llvm.org/docs/LangRef.html#undefined-values and https://llvm.
org/docs/LangRef.html#freeze-instruction [Accesses Nov-21].

• Permission set: a set 𝑃 ⊆ Locna of non-atomic locations

that may be safely accessed. Intuitively, if 𝑥 ∉ 𝑃 , then the

access to 𝑥 is racy.

• Written (non-atomic) locations set: a set 𝐹 ⊆ Locna of
non-atomic locations that were written to by the thread. We

track this set in the states (and later use in the definition

of behavior refinement) in order to ensure that non-atomic

write introduction is unsound in SEQ.

• Memory: a function𝑀 : Locna → Val assigning a value

to every non-atomic location. Since we are not aiming to sup-

port optimizations on atomics, there is no need to keep the

values of the atomic locations in the memory. (In the refine-

ment notions below, we require that the sequence of atomic

accesses generated by the source and the one generated by

the target match.)

Transitions of SEQ. The transitions are given in Fig. 1.

Each transition 𝑆
(𝑒)
−−→ 𝑆 ′ dictates its preconditions (which

always require a corresponding program step), the way the

different components of the state are updated, and possibly

the label 𝑒 recorded in the trace when the transition is in-

voked. The latter is essential for the definition of refinement,

which imposes conditions relating the traces (i.e., sequences
of transition labels) of SEQ generated by the source program

to those generated by the target program.

Concretely, silent and choice/relaxed transitions have

no additional preconditions and, except for the program

component, do not modify the state. The choice/relaxed

transitions are recorded in the transition label as they need

to match in traces of the source and of the target.

Non-atomics are handled differently depending on the

permission set: when the program performs a non-atomic

read from location 𝑥 , it loads from the memory if 𝑥 is in the

permission set (na-read); or loads undef otherwise (racy-
na-read). In turn, when the program performs a non-atomic

write to 𝑥 , it writes to memory and adds 𝑥 to the set of

written locations if 𝑥 is in the permission set (na-write), or

invokes UB (by setting the program state to ⊥) otherwise

https://llvm.org/docs/LangRef.html#undefined-values
https://llvm.org/docs/LangRef.html#freeze-instruction
https://llvm.org/docs/LangRef.html#freeze-instruction

Sequential Reasoning for Optimizing Compilers under Weak Memory Concurrency PLDI ’22, June 13–17, 2022, San Diego, CA, USA

(racy-na-write). Invoking UB is in accordance with the

fact that we aim to invalidate (unused) store introduction.

Note that the steps related to non-atomic accesses have no

effect on the generated trace, allowing different sequences

of non-atomic accesses between the source and the target.

Acquire and release accesses are used for synchroniza-

tion in the underlying concurrency model. Although they

provide more fine grained control than locks, it is helpful

to understand an acquire read as a lock acquisition, and a

release write as a lock release.
5
In SEQ, these steps non-

deterministically update the permission set and the memory,

which, intuitively speaking, accounts for any possible inter-

action with the concurrent environment.

Concretely, acq-read non-deterministically (𝑖) gains per-
missions for some set of locations (intuitively, these permis-

sions are acquired from other threads), and (𝑖𝑖) gets new val-

ues (recorded in a partial function 𝑉 : Locna ⇀ Val) for the
locations in this set. Dually, rel-write non-deterministically

loses permissions for some set of locations (intuitively, they

are released to other threads). The rel-write transition also

resets the written locations set 𝐹 . Thus, 𝐹 tracks written

non-atomic locations since the last release, which is needed

in order to ensure that (possibly racy) writes cannot be in-

troduced after a release, even if the location was written to

(by the source) before the release (see Example 2.10).

In addition, acq-read and rel-write record in the trace

(i.e., on their transition labels) the permission set before and

after the transition, the written locations set, and the current

memory (its updated part in acq-read and “(potentially)

released” memory in rel-write). All these are needed for

having sufficiently expressive traces that allow us to define

an adequate refinement notion.

Behavioral refinement. We first define what constitutes

a behavior in SEQ.

Definition 2.1. A behavior (in SEQ) is a pair of the form

⟨tr, 𝑟 ⟩, where tr is a finite sequence of transition labels, and 𝑟

is either trm(𝑣, 𝐹, 𝑀) denoting normal termination returning

𝑣 with written flags set 𝐹 and memory𝑀 , prt(𝐹) denoting
a partial (ongoing) execution with current written flags set

𝐹 , or ⊥ denoting erroneous termination. We write 𝑆 ⇓ ⟨tr, 𝑟 ⟩
to mean that a state 𝑆 generates the behavior ⟨tr, 𝑟 ⟩, which
is inductively defined as follows:

𝑟 =


trm(𝑣, 𝐹, 𝑀) 𝜎 = return(𝑣)
⊥ 𝜎 = ⊥
prt(𝐹) otherwise

⟨𝜎, 𝑃, 𝐹,𝑀⟩ ⇓ ⟨𝜖, 𝑟 ⟩

𝑆 −→ 𝑆 ′

𝑆 ′ ⇓ ⟨tr, 𝑟 ⟩
𝑆 ⇓ ⟨tr, 𝑟 ⟩

𝑆
𝑒−→ 𝑆 ′

𝑆 ′ ⇓ ⟨tr, 𝑟 ⟩
𝑆 ⇓ ⟨𝑒 · tr, 𝑟 ⟩

We use standard notations for traces: 𝜖 for the empty trace,

tr1 · tr2 for appending traces, and 𝛼 ∈ tr for occurrence of a

5
Lock acquisition requires an acquire RMW, which is included in our Coq

development but elided here to simplify the presentation.

label in a trace. We identify a label 𝑒 with a trace of length

one when writing expressions like 𝑒 · tr .
Example 2.2. For a program state 𝜎 that corresponds to

𝑥rlx := 1 ; 𝑦na := 2 ; return(3), the state 𝑆 = ⟨𝜎, 𝑃, ∅, 𝑀⟩
with 𝑦 ∈ 𝑃 has the following behaviors in SEQ: ⟨𝜖, prt(∅)⟩,
⟨Wrlx (𝑥, 1), prt(∅)⟩, ⟨Wrlx (𝑥, 1), prt({𝑦})⟩, and the termi-

nating behavior ⟨Wrlx (𝑥, 1), trm(3, {𝑦}, 𝑀 [𝑦 ↦→ 2])⟩. If 𝑦 ∉

𝑃 , then ⟨Wrlx (𝑥, 1),⊥⟩ is the only terminating behavior. △
Next, we present the (first) notion of behavioral refine-

ment between programs in SEQ. As standard, one may start

by requiring that every behavior ⟨tr tgt, 𝑟tgt⟩ of the target pro-
gram is also a behavior of the source program. However,

to support various optimizations, naive inclusion does not

suffice. Instead, we allow the source to generate a matching

behavior ⟨trsrc, 𝑟src⟩ that is “less committed” than ⟨tr tgt, 𝑟tgt⟩
(denoted ⟨tr tgt, 𝑟tgt⟩ ⊑ ⟨trsrc, 𝑟src⟩): the source may return

undef when the target returns a normal value (𝑣tgt ⊑ 𝑣src),

end with “less defined” memory (𝑀tgt ⊑ 𝑀src), and write

to more non-atomic locations (𝐹tgt ⊆ 𝐹src). The same holds

along the trace: for values recorded in atomic writes, for

memories recorded in release writes, and for written loca-

tions sets recorded in acquire and release accesses. Finally,

UB by the source allows any continuation by the target. All

these are formally captured by the next definition:

Definition 2.3. The relation ⊑ on transition labels, traces,

and behaviors is given by:

1. Transition labels:

𝑒 ⊑ 𝑒

𝑣tgt ⊑ 𝑣src

Wrlx (𝑥, 𝑣tgt) ⊑
Wrlx (𝑥, 𝑣src)

𝐹tgt ⊆ 𝐹src

Racq (𝑥, 𝑣, 𝑃, 𝑃 ′, 𝐹tgt,𝑉) ⊑
Racq (𝑥, 𝑣, 𝑃, 𝑃 ′, 𝐹src,𝑉)

𝑣tgt ⊑ 𝑣src 𝐹tgt ⊆ 𝐹src 𝑉tgt ⊑ 𝑉src

Wrel (𝑥, 𝑣tgt, 𝑃, 𝑃 ′, 𝐹tgt,𝑉tgt) ⊑ Wrel (𝑥, 𝑣src, 𝑃, 𝑃 ′, 𝐹src,𝑉src)

2. Traces: 𝑒1
tgt
· ... ·𝑒𝑛

tgt
⊑ 𝑒1

src
· ... ·𝑒𝑛

src
⇔ ∀𝑘. 𝑒𝑘

tgt
⊑ 𝑒𝑘

src

3. Behaviors:

trtgt ⊑ trsrc 𝑣tgt ⊑ 𝑣src 𝐹tgt ⊆ 𝐹src 𝑀tgt ⊑ 𝑀src

⟨trtgt, trm(𝑣tgt, 𝐹tgt, 𝑀tgt)⟩ ⊑ ⟨trsrc, trm(𝑣src, 𝐹src, 𝑀src)⟩

trtgt ⊑ trsrc 𝐹tgt ⊆ 𝐹src

⟨trtgt, prt(𝐹tgt)⟩ ⊑ ⟨trsrc, prt(𝐹src)⟩
trtgt ⊑ trsrc

⟨trtgt · tr, 𝑟 ⟩ ⊑ ⟨trsrc,⊥⟩

Definition 2.4. We write 𝑆tgt ⊑ 𝑆src if 𝑆tgt ⇓ ⟨tr tgt, 𝑟tgt⟩
implies that 𝑆src ⇓ ⟨trsrc, 𝑟src⟩ for some behavior ⟨trsrc, 𝑟src⟩
such that ⟨tr tgt, 𝑟tgt⟩ ⊑ ⟨trsrc, 𝑟src⟩. A program state 𝜎tgt be-
haviorally refines a program state 𝜎src, denoted by 𝜎tgt ⊑ 𝜎src,

if ⟨𝜎tgt, 𝑃, 𝐹 , 𝑀⟩ ⊑ ⟨𝜎src, 𝑃, 𝐹 , 𝑀⟩ for every 𝑃, 𝐹,𝑀 .

Next, we present a sequence of examples demonstrating

several subtleties in the above definitions. In these exam-

ples, when writing prog
src
{ prog

tgt
for two code snippets

prog
src

and prog
tgt
, we mean that for any (sequential) context

𝐶 , the state 𝜎tgt that corresponds to 𝐶 [progtgt] (with some

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Minki Cho, Sung-Hwan Lee, Dongjae Lee, Chung-Kil Hur, and Ori Lahav

initial register file) behaviorally refines the state 𝜎src that

runs𝐶 [prog
src
] (with the same initial register file). We write

prog
src
{̸ prog

tgt
for the negation of prog

src
{ prog

tgt
.

Remark 2. Our results that are formalized in Coq also ad-

dress reasoning about program transformations in SEQ. In

particular, they allow one to lift local refinement properties

(such as the ones listed in the examples below) to any sequen-

tial context 𝐶 . Concretely, we define a simulation relation

between SEQ states and prove that it admits certain congru-

ence properties. Then, by establishing simulation between

prog
src

and prog
tgt
, we can derive prog

src
{ prog

tgt
as de-

fined above. Since these techniques are fairly standard in

compiler verification, and our main focus is to reduce rea-

soning about concurrent code to reasoning about sequential

code, we omit these details from the paper. In the example

below, we intend to give the right intuitions, rather than

precise refinement arguments.

Example 2.5 (Reordering of non-atomics). Non-atomic ac-

cesses to different locations can be freely reordered in SEQ,

e.g., 𝑎 := 𝑥na ; 𝑦na := 𝑣 { 𝑦na := 𝑣 ; 𝑎 := 𝑥na where 𝑥 ≠ 𝑦.

Consider a general context 𝐶 , and let 𝜎src and 𝜎tgt be the

program states that correspond to 𝐶 [𝑎 := 𝑥na ; 𝑦na := 𝑣] and
𝐶 [𝑦na := 𝑣 ; 𝑎 := 𝑥na], respectively, with the same initial

register file. Suppose that ⟨𝜎tgt, 𝑃, 𝐹 , 𝑀⟩ ⇓ ⟨tr tgt, 𝑟 tgt⟩. Then,
by executing two steps in the source (a read from 𝑥 followed

by a write to 𝑦) at the time the target executes its write to 𝑦,

one can show that ⟨𝜎src, 𝑃, 𝐹 , 𝑀⟩ ⇓ ⟨tr tgt, 𝑟 tgt⟩. In particular,

after the target performs the read, the source and the target

reach the same program state.

On the other hand, reordering of non-atomics to the same
location is disallowed, e.g., the reordering of a load followed

by a store 𝑎 := 𝑥na ; 𝑥na := 1 {̸ 𝑥na := 1 ; 𝑎 := 𝑥na. Indeed,

for the context 𝐶 = · ; return(𝑎), we have ⟨𝜎tgt, 𝑃, 𝐹 , 𝑀⟩ ⇓
⟨𝜖, trm(1, 𝐹 ∪ {𝑥}, 𝑀 [𝑥 ↦→ 1])⟩ starting from a state with

𝑥 ∈ 𝑃 and 𝑀 (𝑥) = 2. However, the only terminating be-

havior that is generated by the source program from this

state is ⟨𝜖, trm(2, 𝐹 ∪ {𝑥}, 𝑀 [𝑥 ↦→ 1])⟩. △

Example 2.6 (Eliminations of non-atomics). Behavioral re-

finement holds for the following pairs, in which a non-atomic

access is eliminated:

(𝑖) 𝑥na := 𝑣 ; 𝑥na := 𝑣 ′ { 𝑥na := 𝑣 ′

(𝑖𝑖) 𝑥na := 𝑣 ; 𝑎 := 𝑥na { 𝑥na := 𝑣 ; 𝑎 := 𝑣

(𝑖𝑖𝑖) 𝑎 := 𝑥na ; 𝑏 := 𝑥na { 𝑎 := 𝑥na ; 𝑏 := 𝑎

(𝑖𝑣) 𝑎 := 𝑥na ; 𝑥na := 𝑎 { 𝑎 := 𝑥na

Note that for the read-before-write elimination ((𝑖𝑣) above),
the written locations set in the final state of the source may

be a strict superset of the one of the target (𝐹tgt ⊂ 𝐹src),

which is allowed in the definition above. Conceptually, the

optimized program may avoid writes to some locations that

are performed by the source.

In contrast, the introduction of a write after a read is

unsound due to the conditions on the written locations set

𝐹 . For example:

𝑎 := 𝑥na ; if 𝑎 ≠ 𝑣 then 𝑥na := 𝑣 {̸ 𝑎 := 𝑥na ; 𝑥na := 𝑣

In this example, starting from 𝐹 = ∅ and permission to access

𝑥 , the target ends its execution with 𝐹tgt = {𝑥}, while the
source has 𝐹src = ∅.
In turn, the other introductions of non-atomics obtained

as converses of (𝑖)-(𝑖𝑖𝑖) above provide additional instances of
refinements in SEQ. This intuitively corresponds to the fact

that non-atomics are cannot induce synchronization. △

Example 2.7 (Reordering across loops). Reordering a non-
atomic write before a possibly infinite local computation is

unsound, as it introduces a write if the loop never terminates:

while (...) do {...} ; 𝑥na := 𝑣 {̸ 𝑥na := 𝑣 ; while (...) do {...}

In SEQ, when starting without permission on 𝑥 (𝑥 ∉ 𝑃), the

target program generates the behavior ⟨𝜖,⊥⟩, but the source
may not be able to generate a matching behavior if the loop

is not terminating.

A variant of this example demonstrates why we have to

match partial traces with the condition that 𝐹tgt ⊆ 𝐹src:

𝑎 := 𝑥na ;

if 𝑎 ≠ 1 then 𝑥na := 1 ;

while (...) do {...} ; 𝑥na := 2

{̸
𝑎 := 𝑥na ;

if 𝑎 ≠ 1 then 𝑥na := 1 ;

𝑥na := 2 ; while (...) do {...}

If the target invokes UB and generates ⟨𝜖,⊥⟩, then it must

be the case that we started without permission on 𝑥 , and the

source may invoke UB and generate ⟨𝜖,⊥⟩ as well. Thus, in
order to obtain a behavior of the target that is not matched by

a behavior of the source, in case the loop is non-terminating,

we must consider behaviors before termination ⟨_, prt(𝐹)⟩.
Indeed, when starting with permission on 𝑥 and𝑀 (𝑥) = 1,

the target generates ⟨𝜖, prt({𝑥})⟩, but, if the loop does not

terminate, the only behavior of the source is ⟨𝜖, ∅⟩.
In contrast, reads may be reordered with possibly non-

terminating local computation:

while (...) do {...} ; 𝑎 := 𝑥na { 𝑎 := 𝑥na ; while (...) do {...}

Indeed, in partial traces only the written locations set 𝐹 has

to match, and this set is the same in executions of the two

programs. △

Example 2.8 (Unused load elimination and introduction).
The transformations that eliminate/introduce an unused load

𝑎 := 𝑥na { skip and skip { 𝑎 := 𝑥na trivially correspond

to behavioral refinements in SEQ. For the latter, we need that

a non-atomic read without permission does not invoke UB.

We note that in the paper presentation, we have to assume

that 𝑎 does not occur in the context. Nevertheless, our Coq

formalization that uses interaction trees can easily express a

computation that reads a value and does not return the result

to its continuation. This computation is interchangeable with

a no-op under any context. △

Sequential Reasoning for Optimizing Compilers under Weak Memory Concurrency PLDI ’22, June 13–17, 2022, San Diego, CA, USA

Example 2.9 (Reordering of atomics and non-atomics). Re-

ordering of atomic and non-atomic accesses follows the

“roach-motel” principle. The following are forbidden:

(𝑖) 𝑎 := 𝑥acq ; 𝑦na := 𝑣 {̸ 𝑦na := 𝑣 ; 𝑎 := 𝑥acq

(𝑖𝑖) 𝑦na := 𝑣 ′ ; 𝑥rel := 𝑣 {̸ 𝑥rel := 𝑣 ; 𝑦na := 𝑣 ′

(𝑖𝑖𝑖) 𝑎 := 𝑥acq ; 𝑏 := 𝑦na {̸ 𝑏 := 𝑦na ; 𝑎 := 𝑥acq

(𝑖𝑣) 𝑎 := 𝑦na ; 𝑥rel := 𝑣 {̸ 𝑥rel := 𝑣 ; 𝑎 := 𝑦na

In (𝑖), starting without permission on 𝑦 (𝑦 ∉ 𝑃), the tar-

get invokes UB, thus generating the behavior ⟨𝜖,⊥⟩. The
source, however, has to perform the acquire read before in-

voking UB, thus generating terminating behaviors of the

form ⟨Racq (_),⊥⟩ only.
In (𝑖𝑖), if the release write to 𝑥 loses the permission on

𝑦 (transitioning from a state with 𝑦 ∈ 𝑃 to a state with

𝑦 ∉ 𝑃), then the target program invokes UB, generating a

behavior of the form ⟨_,⊥⟩. However, since we start with
𝑦 ∈ 𝑃 , the source does not invoke UB, and cannot generate

any behavior of the form ⟨_,⊥⟩.
In (𝑖𝑖𝑖), for the context 𝐶 = · ; return(𝑏), if a permission

on 𝑦 is gained by the acquire read from 𝑥 , and we start with

𝑦 ∉ 𝑃 (and 𝑀 (𝑦) ≠ undef), the target generates a behav-

ior of the form ⟨Racq (𝑥, _, 𝑃, 𝑃 ∪ {𝑦}, _, _), trm(undef, _, _)⟩,
whereas the source cannot perform racy read on 𝑦.

In (𝑖𝑣), for the context 𝐶 = · ; return(𝑎), if we start with
𝑦 ∈ 𝑃 , and this permission is lost by the release write, the

target generates a behavior of the form ⟨_, trm(undef, _, _)⟩,
whereas the source cannot perform racy read on 𝑦 at all.

Next, the following converses of the above are validated:

(𝑖 ′) 𝑦na := 𝑣 ; 𝑎 := 𝑥acq { 𝑎 := 𝑥acq ; 𝑦na := 𝑣

(𝑖𝑖𝑖 ′) 𝑏 := 𝑦na ; 𝑎 := 𝑥acq { 𝑎 := 𝑥acq ; 𝑏 := 𝑦na

(𝑖𝑣 ′) 𝑥rel := 𝑣 ; 𝑎 := 𝑦na { 𝑎 := 𝑦na ; 𝑥rel := 𝑣

For (𝑖 ′) we use the fact that acquire transitions of the target
can be matched by acquire transitions of the source anno-

tated with 𝐹tgt ⊆ 𝐹src (since we may have 𝑦 ∈ 𝐹src but not

𝑦 ∈ 𝐹tgt when performing the acquire), as well as the fact

that the source may invoke UB earlier than the target (in

particular, ⟨Racq (_),⊥⟩ ⊑ ⟨𝜖,⊥⟩). In turn, (𝑖𝑖𝑖 ′) and (𝑖𝑣 ′)
demonstrate the need in allowing the source to return undef
when the target returns a defined value. This is needed, for

instance, if the acquire read in (𝑖𝑖𝑖 ′) gains permission on 𝑦.

Finally, despite being a valid roach-motel reordering, the

converse of (𝑖𝑖) is disallowed by the current behavior refine-

ment. It is supported by the more refined notion in §3. △

Example 2.10. Stores cannot be introduced even if they

already occur before a release write:

𝑥na := 𝑣 ; 𝑦rel := 1 {̸ 𝑥na := 𝑣 ; 𝑦rel := 1 ; 𝑥na := 𝑣

Intuitively, if a write is protected by a lock, another one

should not be introduced after the lock is released. Formally,

since release writes reset the written locations set, the tar-

get’s terminating behavior has 𝑥 ∈ 𝐹 , while the source ends

with 𝐹 = ∅. In contrast, the transformation is validated with

rlx instead of rel above. △
Example 2.11 (Store-to-load forwarding across atomics).
Reads can be eliminated after writes across atomics:

𝑥na := 𝑣 ; 𝛼 ; 𝑏 := 𝑥na { 𝑥na := 𝑣 ; 𝛼 ; 𝑏 := 𝑣

where 𝛼 ∈ {𝑎 := 𝑦rlx, 𝑦rlx := 𝑣 ′, 𝑎 := 𝑦acq, 𝑦rel := 𝑣 ′}. If we
start with 𝑥 ∉ 𝑃 , the source raises UB, and generates ⟨𝜖,⊥⟩,
which matches any target behavior. Otherwise, the relevant

write step of the source sets 𝑀 (𝑥) = 𝑣 , and 𝑀 (𝑥) is not al-
tered by 𝛼 (in particular, it is important here that an acquire

read can only modify values of locations that gained permis-

sion). Thus, either 𝑣 is read by 𝑏 := 𝑥na, or, if 𝛼 corresponds

to a release write that transferred the permission on 𝑥 , the

source will read undef, and we have 𝑣 ⊑ undef. In any case,

the source matches every behavior of the target. △
Example 2.12. Reads cannot be eliminated after writes

across release-acquire pairs:

𝑥na := 𝑣 ; 𝑦rel := 𝑣 ′ ; 𝑎 := 𝑧acq ; 𝑏 := 𝑥na {̸
𝑥na := 𝑣 ; 𝑦rel := 𝑣 ′ ; 𝑎 := 𝑧acq ; 𝑏 := 𝑣

Intuitively, another thread may safely access 𝑥 between the

release and the acquire and change its value. To see this in

SEQ, consider the execution of the target program when

permission to 𝑥 is lost by the release write, and regained by

the acquire read. The updated portion of the memory 𝑉 , in-

cluding a new (non-deterministic) value for 𝑥 , is recorded on

the acquire transition in the trace. To match the behavior of

the target, the source program has to have the same updated

memory in its acquire transition, and when 𝑉 (𝑥) ≠ 𝑣 , the

source will not be able to later read 𝑣 from 𝑥 . This example

demonstrates the need in updating the values in memory

(for locations that gained permission) in acquire steps. △

3 Advanced Behavior Refinement
As we show in §6, the above notion of behavioral refine-

ment in SEQ is adequate for reasoning about optimizations

in the promising semantics. As shown above, it is also precise

enough to verify a variety of optimizations. However, opti-

mizations including both an atomic access and a non-atomic

write are beyond its power: although they are meant to be

sound (and they are sound in the promising semantics), the

above notion invalidates them. In this section, we discuss this

issue that stems from two different reasons, and then present

a more refined notion of behavioral refinement (implied by

the simple one above) that addresses this challenge. We note

that, since our result in §6 provides contextual refinement,

one may mix and match—prove most optimization passes

using the simple notion in §2, and use the one of this section

for several more involved program transformations.

Late UB. A simple example of a sound optimization that

is invalidated by the above notion is the following:

𝑎 := 𝑥rlx ; 𝑦na := 𝑣 { 𝑦na := 𝑣 ; 𝑎 := 𝑥rlx

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Minki Cho, Sung-Hwan Lee, Dongjae Lee, Chung-Kil Hur, and Ori Lahav

Indeed, the reasoning in Example 2.9 (𝑖) that shows why
an acquire read followed by a non-atomic write cannot be

reordered applies as is in this case as well: starting without

permission on𝑦 (𝑦 ∉ 𝑃), the target program invokes UB, thus

generating the behavior ⟨𝜖,⊥⟩. The source, however, has to
perform the relaxed read before invokingUB, thus generating

terminating behaviors ⟨trsrc,⊥⟩ with trsrc consisting of a

Rrlx label. Intuitively, however, this should not matter since

the source program anyway invokes UB, in which case the

target’s behavior is immaterial. Thus, we would like to allow

to match any behavior ⟨tr tgt, 𝑟tgt⟩ of the target program by

any UB behavior ⟨trsrc,⊥⟩ of the source. Nevertheless, for
two reasons, this solution requires extra care.

First, it essentially allows reordering of any access with

an operation that invokes UB, e.g., 𝛼 ; 𝑎 := 1/0 { 𝑎 := 1/0 ; 𝛼 .
As the next example shows, in concurrent settings this re-

ordering must be invalidated if 𝛼 contains an acquire read.

Example 3.1. Consider the following optimizations:

𝑎 := 𝑥rlx ;

if 𝑎 = 1 then
𝑎 := 𝑥acq ;

𝑏 := 1/0
else 𝑦rlx := 1

{

𝑎 := 𝑥rlx ;

if 𝑎 = 1 then
𝑏 := 1/0 ;
𝑎 := 𝑥acq

else 𝑦rlx := 1

{ ... {

𝑦rlx := 1 ;

𝑎 := 𝑥rlx ;

if 𝑎 = 1 then
𝑏 := 1/0 ;
𝑎 := 𝑥acq

First, we perform the (unsound) reordering of an acquire read

with UB-invoking operation. Then, a sequence of standard

optimizations (start with 𝑏 := 1/0 { 𝑦rlx := 1 ; 𝑏 := 1/0, then
hoist 𝑦rlx := 1 from both branches of the conditional and

reorder it with 𝑎 := 𝑥rlx) lead to the program on the right.

Now, if the concurrent context consists of another thread

with the code: 𝑐 := 𝑦rlx ; 𝑥rel := 𝑐 , then UB is possible for

the target, but not for the source. △

Thus, to keep invalidating the reordering of an acquire

operation followed by UB, we require that there are not

any acquire accesses in the suffix of the source trace trsrc
(in the source’s path towards UB) that does not match the

target’s trace tr tgt. For instance, this invalidates the trans-
formations 𝑎 := 𝑥acq ; 𝑏 := 1/0 { 𝑏 := 1/0 ; 𝑎 := 𝑥acq and

𝑎 := 𝑥acq ; 𝑦na := 𝑣 { 𝑦na := 𝑣 ; 𝑎 := 𝑥acq: if we start with-

out permission on 𝑦, the target’s behavior ⟨𝜖,⊥⟩ does not
match any source behavior.

Second, it is crucial to make sure that for executing this

suffix, the source does not make assumptions on the envi-

ronment. To see this, consider the following example:

𝑎 := 𝑥rlx ; if 𝑎 = 1 then 𝑏 := 1/0 ;
while (...) do {...} {̸

𝑏 := 1/0 ; 𝑎 := 𝑥rlx ;

while (...) do {...}
Without additional restrictions, since we allow any behav-

ior of the target to be matched with ⟨Rrlx (𝑥, 1),⊥⟩ of the
source, this transformation, which is clearly unsound (even

in sequential programs), will be validated by SEQ. Intuitively

speaking, what went wrong here is that the source matches

the UB of the target by reading 1 from 𝑥 , whereas a concur-

rent environment may not provide this option.

To address this issue, when we match the UB of the tar-

get by a suffix of source trace that leads to UB we need to

make sure that the source avoids making assumptions on

the concurrent environment. Technically, we achieve this

by assuming that read values of atomic reads, permission

gains and losses, and memory updates (𝑉 on acquire transi-

tions) are dictated by an oracle, which intuitively represents

a possible concurrent environment. We then require that

behavioral refinement holds for any oracle (which has to sat-

isfy certain progress and monotonicity conditions that any

environment satisfies). In particular, in the example above,

the source has to match the target’s UB also for an oracle

that forces the source to read 𝑥 ≠ 1, in which case the source

cannot invoke UB. In contrast, in the earlier example for the

need in late UB (𝑎 := 𝑥rlx ; 𝑦na := 𝑣 { 𝑦na := 𝑣 ; 𝑎 := 𝑥rlx),

if we start without permission on 𝑦, the source invokes UB

for any oracle as its write is independent of the read.

Writes across release. Roach motel reordering of a re-

lease write followed by a non-atomic write pose an additional

challenge to sequential reasoning:

𝑥rel := 𝑣 ; 𝑦na := 𝑣 ′ { 𝑦na := 𝑣 ′ ; 𝑥rel := 𝑣

Even if we modify behavioral refinement as discussed above,

some behaviors of the target are not matched by the source.

Concretely, starting with permission on 𝑦, the target’s label

Wrel (𝑥, 𝑣, 𝑃, 𝑃 ′, 𝐹tgt,𝑉tgt) must have 𝑦 ∈ 𝐹tgt and 𝑉tgt (𝑦) = 𝑣 ′,
whereas the source is confined by the initial state (which

may have 𝑦 ∉ 𝐹src or 𝑉src (𝑦) ≠ 𝑣 ′). Intuitively, this should
not be a problem: the source is going to write to 𝑦 after the

release, and other threads can observe that write.

To solve this, we need to allow the source to generate

release labels with different written locations set and mem-

ory compared to the target’s labels, provided that later on

the source will write to the non-atomic locations that were

different. Technically, we achieve this by parameterizing be-

havioral refinement with a “commitment set” 𝑅, which is a

set of non-atomic locations that the source program must

write to before it terminates or executes an acquire read.

(Fulfilling commitments after an acquire read corresponds

to the disallowed reordering of writes after an acquire read.)

Initially, the commitment set is empty. Then, we modify

(remove fulfilled commitments and add new ones) this set

with every release transition. In the end of the execution

and with every acquire transition, we verify that all commit-

ments were fulfilled. Finally, the non-terminating behaviors

⟨tr, prt(𝐹)⟩ should allow the source program to continue its

execution and fulfill the outstanding commitments.

Advanced behavior refinement. The above solutions

are formalized as follows. First, when checking for refine-

ment between a source program and a target program in

SEQ, we use an oracle to represent the environment of the

thread. To pass only relevant information to the oracle, we

use the following notation for stripping transition labels

Sequential Reasoning for Optimizing Compilers under Weak Memory Concurrency PLDI ’22, June 13–17, 2022, San Diego, CA, USA

(beh-terminal)

𝑣tgt ⊑ 𝑣src 𝐹tgt ∪ 𝑅 ⊆ 𝐹src 𝑀tgt ⊑ 𝑀src

⟨𝜖, trm(𝑣tgt, 𝐹tgt, 𝑀tgt)⟩ ⊑𝑅 ⟨𝜖, trm(𝑣src, 𝐹src, 𝑀src)⟩

(beh-partial)

Racq (_) ∉ trsrc 𝐹tgt ∪ 𝑅 ⊆ 𝐹src ∪
⋃

{𝐹 | Wrel (_, _, _, _, 𝐹 , _) ∈ trsrc}
⟨𝜖, prt(𝐹tgt)⟩ ⊑𝑅 ⟨trsrc, prt(𝐹src)⟩

(beh-failure)

Racq (_) ∉ trsrc
⟨trtgt, 𝑟tgt⟩ ⊑𝑅 ⟨trsrc,⊥⟩

(beh-rlx)

𝑒tgt ⊑ 𝑒src ⟨trtgt, 𝑟tgt⟩ ⊑𝑅 ⟨trsrc, 𝑟src⟩
𝑒tgt = Rrlx (_, _) ∨ 𝑒tgt = Wrlx (_, _)
⟨𝑒tgt · trtgt, 𝑟tgt⟩ ⊑𝑅 ⟨𝑒src · trsrc, 𝑟src⟩

(beh-acq-read)

⟨trtgt, 𝑟tgt⟩ ⊑∅ ⟨trsrc, 𝑟src⟩
𝐹tgt ∪ 𝑅 ⊆ 𝐹src

⟨Racq (𝑥, 𝑣, 𝑃, 𝑃 ′, 𝐹tgt,𝑉) · trtgt, 𝑟tgt⟩ ⊑𝑅
⟨Racq (𝑥, 𝑣, 𝑃, 𝑃 ′, 𝐹src,𝑉) · trsrc, 𝑟src⟩

(beh-rel-write)

𝑣tgt ⊑ 𝑣src ⟨trtgt, 𝑟tgt⟩ ⊑𝑅′ ⟨trsrc, 𝑟src⟩
𝑅′ = (𝑅 \ 𝐹src) ∪ (𝐹tgt \ 𝐹src) ∪ {𝑦 ∈ Locna | 𝑉tgt (𝑦) @ 𝑉src (𝑦)}

⟨Wrel (𝑥, 𝑣tgt, 𝑃, 𝑃 ′, 𝐹tgt,𝑉tgt) · trtgt, 𝑟tgt⟩ ⊑𝑅
⟨Wrel (𝑥, 𝑣src, 𝑃, 𝑃 ′, 𝐹src,𝑉src) · trsrc, 𝑟src⟩

Figure 2. Behavioral refinement up to a commitment set 𝑅 ⊆ Locna

(extended pointwise to traces):

|𝑒 | ≜

Racq (𝑥, 𝑣, 𝑃, 𝑃 ′,𝑉) for 𝑒 = Racq (𝑥, 𝑣, 𝑃, 𝑃 ′, 𝐹 ,𝑉)
Wrel (𝑥, 𝑣, 𝑃, 𝑃 ′) for 𝑒 = Wrel (𝑥, 𝑣, 𝑃, 𝑃 ′, 𝐹 ,𝑉)
𝑒 otherwise

Definition 3.2. An oracle Ω is an LTS over stripped transi-

tion labels such that the following hold:

• Progress: In every state 𝑤 of Ω and for every 𝑥 ∈ Locat,
𝑣 ∈ Val, and 𝑃 ⊆ Locna, transitions choose(_), Rrlx (𝑥, _),
Wrlx (𝑥, 𝑣), Racq (𝑥, _, 𝑃, _, _), and Wrel (𝑥, 𝑣, 𝑃, _) are enabled
for some (valid) values of “_”.

• Monotonicity: If𝑤
𝑒−→Ω 𝑤 ′

and 𝑒 ⊑ 𝑒 ′, then𝑤
𝑒′−→Ω 𝑤 ′

.

The progress condition allows the source to continue its

execution and fulfill its commitments after the target has

terminated. Monotonicity is required to allow the refinement

of undef in the source by any defined value. We say that a

trace tr is allowed by an oracle Ω, denoted by tr ∈ Tr(Ω),
if |tr | is a trace of Ω (i.e., a sequence of symbols that Ω can

execute, starting from its initial state).

Next, the notion of a behavioral refinement up to a commit-

ment set is formulated in Fig. 2. It modifies the one in Def. 2.3

by allowing the source to invoke UB later than the target (in

beh-failure), while tracking and checking the commitment

set 𝑅. Each time a release write Wrel (𝑥, 𝑣, 𝑃, 𝑃 ′, 𝐹tgt,𝑉tgt) is
added to the target’s trace, we compare it to the matching

one by the source Wrel (𝑥, 𝑣, 𝑃, 𝑃 ′, 𝐹src,𝑉src), and set the new

commitment set 𝑅′
to consist of the locations𝑦 that: (𝑖) were

written to by the target but not by the source (𝑦 ∈ 𝐹tgt \ 𝐹src);
(𝑖𝑖) have a value in the target memory that does not refine

the value of the source (𝑉tgt (𝑦) @ 𝑉src (𝑦)); or (𝑖𝑖𝑖) were in-
cluded in the previous commitment set and not written yet

by the source (𝑦 ∈ 𝑅 \ 𝐹src). Upon termination or acquire

read, in addition to 𝐹tgt ⊆ 𝐹src, we require that all outstanding

commitments were fulfilled by the source (𝑅 ⊆ 𝐹src). Finally,

refinement of non-terminating behaviors beh-partial al-

low the source to take more steps (but not acquire reads)

for fulfilling its commitments. Since the written locations

set is reset with every release write, to see what locations

the source has written to, we add all 𝐹 sets in the release

operations in the source’s trace to those in the final 𝐹 set.

With the above definition, the more refined behavioral

refinement notion is stated as follows:

Definition 3.3. A program state 𝜎tgt weakly behaviorally
refines a program state 𝜎src, denoted by 𝜎tgt ⊑w 𝜎src, if for ev-

ery oracle Ω, if ⟨𝜎tgt, 𝑃, 𝐹 , 𝑀⟩ ⇓ ⟨tr tgt, 𝑟tgt⟩ and tr tgt ∈ Tr(Ω),
then ⟨𝜎src, 𝑃, 𝐹 , 𝑀⟩ ⇓ ⟨trsrc, 𝑟src⟩ for some ⟨trsrc, 𝑟src⟩ such
that ⟨tr tgt, 𝑟tgt⟩ ⊑∅ ⟨trsrc, 𝑟src⟩ and trsrc ∈ Tr(Ω).

Proposition 3.4. 𝜎tgt ⊑ 𝜎src ⇒ 𝜎tgt ⊑w 𝜎src.

Example 3.5 (Overwritten store elimination across atomics).
Consider the elimination of a write after another write to

the same location across an atomic access:

𝑥na := 𝑣 ; 𝛼 ; 𝑥na := 𝑣 ′ { 𝛼 ; 𝑥na := 𝑣 ′

where 𝛼 ∈ {𝑏 := 𝑦rlx, 𝑦rlx := 𝑣𝑦, 𝑏 := 𝑦acq, 𝑦rel := 𝑣𝑦}. The
three cases except for 𝛼 = 𝑦rel := 𝑣𝑦 are easily validated by

the simple behavioral refinement in SEQ (here it is needed

that the source may have larger 𝐹 sets).

The case that 𝛼 is a release write should be also consid-

ered sound,
6
since, roughly speaking, other threads that can

observe 𝑥na := 𝑣 can always also observe 𝑥na := 𝑣 ′ instead.
(In particular, this optimization is sound in the promising

semantics.) Nevertheless, the simple refinement notion in

§2 invalidates this optimization (𝜎tgt @ 𝜎src): starting with

permission on 𝑥 , the memory recorded in release writes in

the source is confined to have 𝑀 (𝑥) = 𝑣 , while the target

has the value of the initial memory. In turn, we do have

𝜎tgt ⊑w 𝜎src. In particular, consider the empty context, and

let rel(𝑃, 𝑃 ′, 𝐹 ,𝑢) ≜ Wrel (𝑦, 𝑣𝑦, 𝑃, 𝑃 ′, 𝐹 , 𝑀 [𝑥 ↦→ 𝑢]). If we
start with permission on 𝑥 and do not release it, then for

𝑟 = trm(unit, {𝑥}, 𝑀 [𝑥 ↦→ 𝑣 ′]),
⟨rel({𝑥}, {𝑥}, {𝑥}, 𝑣), 𝑟 ⟩ ⊑∅ ⟨rel({𝑥}, {𝑥}, ∅, 𝑀 (𝑥)), 𝑟 ⟩

follows from ⟨𝜖, 𝑟 ⟩ ⊑{𝑥 } ⟨𝜖, 𝑟 ⟩. If we start with permission

on 𝑥 and release it, then

⟨rel({𝑥}, ∅, {𝑥}, 𝑣),⊥⟩ ⊑∅ ⟨rel({𝑥}, ∅, ∅, 𝑀 (𝑥)),⊥⟩
follows from ⟨𝜖,⊥⟩ ⊑{𝑥 } ⟨𝜖,⊥⟩. If we start without permis-

sion on 𝑥 , then, using beh-failure, we have:

⟨rel(∅, ∅, {𝑥}, 𝑣),⊥⟩ ⊑∅ ⟨𝜖,⊥⟩. △
6
Currently, it is not performed bymainstream compilers (checked for armv8-

a clang 11.0.1 and x86-64 GCC 11.2).

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Minki Cho, Sung-Hwan Lee, Dongjae Lee, Chung-Kil Hur, and Ori Lahav

Domain: D ∈ Loc → { ◦(𝑣), •(𝑣),⊤ }
Ordering: ∀𝑣 . ◦(𝑣) ⊑ •(𝑣) ⊑ ⊤
Transitions: T (𝑥) (𝑥na := 𝑣, _) = ◦(𝑣)

T (𝑥) (𝑦rel := _, ◦(𝑣)) = •(𝑣)
T (𝑥) (_ := 𝑦acq, •(𝑣)) = ⊤
T (𝑥) (_, t) = t otherwise

Figure 3. Store-to-load forwarding analysis

4 A Certified Optimizer
We implemented in Coq a verified optimizer that optimizes

an arbitrary program written in WHILE, a simple C-like lan-

guage, that is interpreted as an interaction trees program, for

which our adequacy theorem in §6 is stated. The optimizer’s

correctness proof relies solely on SEQ, thus showcasing the

applicability of SEQ for compiler verification.
7

The optimizer statically analyzes a given sequential pro-

gram by performing a fixpoint computation in an abstract

semantics and optimizes the program based on the static anal-

ysis. Generally speaking, the analysis result assigns pred-

icates on states of SEQ to each program point. Using the

analysis result, the optimizer transforms the program, for in-

stance, a non-atomic read from 𝑥 into a register assignment

if the analysis ensures that 𝑥 has certain value.

The optimization process consists of four optimization

passes, store-to-load forwarding (SLF), load-to-load forward-

ing (LLF), dead (overwritten) store elimination (DSE), and

loop invariant code motion (LICM), which, on the memory

trace level, are captured as follows:

SLF 𝑥na := 𝑣 ; 𝛼 ; 𝑏 := 𝑥na { 𝑥na := 𝑣 ; 𝛼 ; 𝑏 := 𝑣

LLF 𝑎 := 𝑥na ; 𝛽 ; 𝑏 := 𝑥na { 𝑎 := 𝑥na ; 𝛽 ; 𝑏 := 𝑎

DSE 𝑥na := 𝑎 ; 𝛾 ; 𝑥na := 𝑏 { skip ; 𝛾 ; 𝑥na := 𝑏

LICM

while (...) do { 𝛽1 ; 𝑎 := 𝑥na ; 𝛽2 } {
𝑐 := 𝑥na ; while (...) do { 𝛽1 ; 𝑎 := 𝑐 ; 𝛽2 }

where 𝛼 contains no writes to 𝑥 or release-acquire pairs,

𝛽 , 𝛽1 , 𝛽2 contain no writes to 𝑥 or acquire reads, and 𝛾

contains no reads from 𝑥 or release-acquire pairs.

Next, we focus on the SLF pass and describe the analysis

and optimization in detail. The other passes are described

in [1, Appendix D]. Figure 3 depicts the analysis performed

in the SLF pass, which forwards values written by stores to

later loads, possibly across atomic operations, but not across

a release-acquire pair. At every program point, the analysis

assigns two kinds of information to each shared variable: a

memory value to forward and a flag for detecting a release-

acquire pair after the most recent write. This information is

represented by the following abstract tokens:

• 𝑥 ↦→ ◦(𝑣) indicates that 𝑣 was written to 𝑥 by the most

recent write to 𝑥 and no release write has been executed

after the write;

7
In fact, it was carried out by a student with minimal understanding of

weak memory consistency!

• 𝑥 ↦→ •(𝑣) indicates that 𝑣 was written to 𝑥 by the most

recent write to 𝑥 and a release operation has been executed

while a release-acquire pair has not; and

• 𝑥 ↦→ ⊤ indicates any other case, in particular, the case

when a release-acquire pair has been executed since the

last write to 𝑥 .

The analysis starts with the initial abstract state assigning

⊤ to every location in the initial program point. Then, it

updates line-by-line the abstract state following the transi-

tion function T , which gets the current instruction and the

token to a location 𝑥 and returns the next abstract token to 𝑥 .

Roughly speaking, following the transformers in Fig. 3, the

abstract state of 𝑥 transitions to ◦(𝑣) for a non-atomic write

𝑥na := 𝑣 ; ◦(𝑣) transitions to •(𝑣) for a release write; and •(𝑣)
transitions to ⊤ for an acquire read. To show termination,

we have proved that the analysis reaches a fixpoint in at

most three iterations when analyzing a loop.

Given the analysis result at each program point, SLF trans-

forms a read 𝑎 := 𝑥na into a register assignment 𝑎 := 𝑣 if the

token to 𝑥 is •(𝑣) or ◦(𝑣) at that program point. Intuitively,

having 𝑥 ↦→ •(𝑣) or 𝑥 ↦→ ◦(𝑣) means that no release-acquire

pair has been executed since 𝑣 was written to 𝑥 , thus the

memory value of 𝑥 is still 𝑣 even if the thread has lost the per-

mission to 𝑥 . The transformation is sound since the thread

will read 𝑣 or undef from 𝑥 depending on whether the per-

mission to 𝑥 has been lost or not. Formally, a reachable SEQ

state ⟨𝜎, 𝑃, 𝐹, 𝑀⟩ is related to the analysis result at the rele-

vant program point as follows:

∀𝑥 .
{
𝑥 ∈ 𝑃 ∧ v ⊑ 𝑀 (𝑥) if 𝑥 ↦→ ◦(𝑣)
𝑥 ∈ 𝑃 ⇒ v ⊑ 𝑀 (𝑥) if 𝑥 ↦→ •(𝑣)

Figure 4 describes how the analysis and optimization work

for a concrete program example.

The verification of the passes is executed by (𝑖) establish
the soundness of each analysis; and (𝑖𝑖) from the soundness,

derive a simulation in SEQ between the source and target

codes. The simulation relation in SEQ (given in [1, Appendix

A]) ensures advanced behavioral refinement as defined in

§3.
8
This verification strategy follows the standard approach

of CompCert, and, importantly, the optimizer is fully verified

in Coq relying solely on sequential reasoning.

5 Non-atomics in the Promising Semantics
We present the extension of PS2.1 with non-atomic accesses,

which we denote by PS
na
. At the core of this extension is an

operational race detection, so UB is invoked on write-write

races and undef is read on read-write races. Unlike in SEQ

(§2), we allow the mixing of atomic and non-atomic accesses

to the same location (so we assume one set Loc of locations),
which means that a race may involve only one non-atomic

8
In fact, this is the same simulation used in the adequacy proof (see §6), so

the optimizer correctness argument is independent of behavioral refinement

in SEQ—it goes directly from simulation in SEQ to simulation in PS
na
.

Sequential Reasoning for Optimizing Compilers under Weak Memory Concurrency PLDI ’22, June 13–17, 2022, San Diego, CA, USA

{𝑥 ↦→ ⊤}
𝑥na := 42 ;

{𝑥 ↦→ ◦(42)}
𝑙 := 𝑦acq ;

if 𝑙 = 0 then
{𝑥 ↦→ ◦(42)}
𝑎 := 𝑥na ; { 𝑎 := 42 ;

{𝑥 ↦→ ◦(42)}
𝑦rel := 1

{𝑥 ↦→ •(42)}
{𝑥 ↦→ •(42)}
𝑏 := 𝑥na { 𝑏 := 42

Two loads from 𝑥 are optimized to register assignments. To illustrate the analysis, the code is annotated with

abstract tokens to 𝑥 . The first instruction 𝑥na := 42 induces UB if there is no permission on 𝑥 . Therefore, the

permission on 𝑥 is guaranteed, with the memory value 42 at 𝑥 (which is represented by 𝑥 ↦→ ◦(42)). Since 𝑥
is already permissioned, its value is not updated by the 𝑙 := 𝑦acq, thereby maintaining the abstract state of 𝑥 .

Upon a conditional, we keep analyzing each branch separately, and then join the results. On the then branch,

𝑎 := 𝑥na will load 42 from the memory as the abstract state indicates. For the next instruction, 𝑦rel := 1,

the abstract state of 𝑥 transitions to 𝑥 ↦→ •(42) as the permission on 𝑥 can be dropped by the release write,

while the memory value at 𝑥 is maintained. Finally, the branch is merged and the analysis results are joined

(following the partial order on the abstract tokens). The effect of the last instruction, 𝑏 := 𝑥na, depends on the

permission on 𝑥 . If there is no permission on 𝑥 , undef is read, which can be replaced by 42 by definition. In

turn, the abstract state of 𝑥 tells us 42 must be loaded if there is a permission on 𝑥 . From the above analysis,

we conclude that the two loads can be replaced with register assignments.

Figure 4. An example optimization by SLF including the underlying analysis in SEQ

access. As for SEQ, we only present a simplified fragment of

the full model omitting fences, RMWs, release sequences, and

system calls, which are all covered by our Coq formalization.

Roughly, in the promising model the memory is a set of

timestamped messages capturing all previous writes. Each

thread maintains a view, pointing to the latest message the

thread has observed for each location, used to restrict future

reads/writes of the thread. Promises are used to allow read-

write reordering—a thread may promise to perform a write

in the future and add a message to memory before the write

is being executed. To avoid “causality cycles” (a.k.a. thin-air

behaviors) every step has to be accompanied by certifica-
tion: by running alone the thread has to be able to fulfill its

outstanding promises.

Figure 5 presents the thread configuration steps and the

machine steps. Next, we discuss the new parts, highlighted in

the figure. We refer the reader to [8, 18, 22] for explanations

of the atomics fragment of PS
na
, which is identical to PS2.1.

Thread configuration steps. We add steps for normal

(successful) non-atomic accesses and for racy (both atomic

and non-atomic) accesses.

Normal non-atomic accesses are handled by read and

write transitions. A non-atomic read (read) from 𝑥 behaves

exactly as a relaxed one: reads from a message with times-

tamp 𝑡 that is greater than or equal to the thread’s view of 𝑥 ,

and updates the view to include 𝑡 . In turn, non-atomic writes

(write) require a non-trivial extension. When a thread exe-

cutes a non-atomic write to a location 𝑥 , it may add multiple

arbitrary messages with the bottom view (denoted by ⊥, a
view smaller than any other view) to 𝑥 before adding a mes-

sage with the appropriate value (memory: na-write). In ad-

dition, some of the messages preceding the final one may be

valueless non-atomic messages of the form𝑢 = 𝑥@𝑡 ∈ NAMsg,
which we introduce for detecting races.

9
Writing multiple

messages in one non-atomic write allows the splitting of

non-atomic writes which is needed in order to allow certain

program transformations (see [1, Appendix B]).

9
We assume that 𝑢.view = ⊥ for 𝑢 ∈ NAMsg.

Racy accesses are naturally defined: a non-atomic access

to 𝑥 is racy if the thread is unaware of some message with

location 𝑥 (𝑉 (𝑥) < 𝑚.t), and an atomic access to 𝑥 is racy

if the thread is unaware of some non-atomic message with

location 𝑥 . Using race-helper, a thread reads undef when
performing a racy read (racy-read), and invokes UB on a

racy write (racy-write).

For supporting the compiler transformation that replaces

an undef by a non-undef value, we note that the promise

lowering step in PS
na

(lower), which allows threads to mod-

ify their own promises, also allows to change a non-undef
value of a promise to undef (see [1, Appendix E]).

Machine steps. A machine state, which consists of the

different thread states (T) and a main memory (𝑀), can

take a step by one of the threads taking a sequence of steps

(machine: normal), possibly invoking UB (machine: fail-

ure). Normal steps (machine: normal) require “certifica-

tion”: the thread that passes control to the scheduler has to

show that by running alone it can fulfill all its promises.

Example 5.1. The following demonstrates how promises

and the racy read step work:

𝑎 := 𝑥na ; //undef
𝑦rlx := 1

𝑏 := 𝑦rlx ;

if 𝑏 = 1 then
𝑥na := 1

Here, the left thread may promise 𝑦 = 1, since by running

alone, it is able to execute the read from 𝑥 and fulfill its

promise. Then, the right thread reads 1 from 𝑦 and writes

1 to 𝑥 . (Other messages may be also added to 𝑥 before the

𝑥 = 1 message.) Now, the non-atomic read from 𝑥 of the left

thread is racy since there is a message of 𝑥 with timestamp

larger than the thread’s view of 𝑥 . Thus, the thread reads

undef from 𝑥 and fulfills the promise 𝑦 = 1.

Results. We ported to PS
na

the soundness proofs of all

thread-local transformations and data-race-freedom guar-

antees for PS2.1. In addition, we proved that strengthening

non-atomic accesses to atomic accesses is sound. Since re-

laxed accesses and non-atomics are both compiled to plain

machine accesses, the soundness of mapping schemes to

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Minki Cho, Sung-Hwan Lee, Dongjae Lee, Chung-Kil Hur, and Ori Lahav

𝑣 ∈ Val value

𝑥,𝑦, 𝑧 ∈ Loc location

𝑜R ∈ {na, rlx, acq} read access mode

𝑜W ∈ {na, rlx, rel} write access mode

𝜋 ∈ Tid ≜ {𝜋1, 𝜋2, ...} thread identifier

𝑡 ∈ Time ≜ {0} ∪ Q+
timestamp

𝑉 ∈ View ≜ (Loc → Time) ∪ {⊥} view

𝑚 = ⟨𝑥@𝑡, 𝑣,𝑉 ⟩ ∈ Msg message

𝑢 = 𝑥@𝑡 ∈ NAMsg non-atomic message

𝑀, 𝑃 ⊆ Msg ∪ NAMsg memory/promise set

𝜎 thread-local program state

T = ⟨𝜎,𝑉 , 𝑃⟩ ∈ Lts thread state

⟨T , 𝑀⟩ thread configuration

T : Tid → Lts thread state mapping

⟨T , 𝑀⟩ machine state

(memory: new)

⟨𝑃,𝑀⟩ 𝑚−→ ⟨𝑃,𝑀 ⊎ {𝑚}⟩

(memory: fulfill)

𝑚 ∈ 𝑃

⟨𝑃,𝑀⟩ 𝑚−→ ⟨𝑃 \ {𝑚}, 𝑀⟩

(promise)

𝑚 ∈ Msg ∪ NAMsg

⟨⟨𝜎,𝑉 , 𝑃⟩, 𝑀⟩ −→ ⟨⟨𝜎,𝑉 , 𝑃 ⊎ {𝑚}⟩, 𝑀 ⊎ {𝑚}⟩

(lower)

𝑚 = ⟨𝑥@𝑡, 𝑣,𝑉m⟩ ∈ 𝑃

𝑚′ = ⟨𝑥@𝑡, 𝑣 ′,𝑉 ′
m ⟩ 𝑣 ⊑ 𝑣 ′ 𝑉 ′

m ⊑ 𝑉m
𝑃 ′ = 𝑃 \ {𝑚 } ∪ {𝑚′ } 𝑀 ′ = 𝑀 \ {𝑚 } ∪ {𝑚′ }

⟨⟨𝜎,𝑉 , 𝑃⟩, 𝑀⟩ −→ ⟨⟨𝜎,𝑉 , 𝑃 ′⟩, 𝑀 ′⟩

(memory: na-write)

⟨𝑃,𝑀⟩ 𝑚1−−→ ...
𝑚𝑛−−→ ⟨𝑃𝑛, 𝑀𝑛⟩

𝑚−→ ⟨𝑃 ′, 𝑀 ′⟩ 𝑛 ≥ 0

𝑚1, ... ,𝑚𝑛 ∈ Msg ∪ NAMsg
𝑚1 .loc = ... =𝑚𝑛 .loc =𝑚.loc 𝑡 < 𝑚1.t, ... ,𝑚𝑛 .t < 𝑚.t

𝑚1.view = ... =𝑚𝑛 .view =𝑚.view = ⊥

⟨𝑃,𝑀⟩ 𝑡,𝑚−−→na ⟨𝑃 ′, 𝑀 ′⟩

(write)

𝜎
W𝑜W (𝑥,𝑣)
−−−−−−→ 𝜎 ′ 𝑚 = ⟨𝑥@𝑡, 𝑣,𝑉m⟩ 𝑉 (𝑥) < 𝑡 𝑉 ′ = 𝑉 [𝑥 ↦→ 𝑡]

𝑜W = na ⇒ 𝑉m = ⊥ ∧ ⟨𝑃,𝑀⟩
𝑉 (𝑥),𝑚
−−−−−→na ⟨𝑃 ′, 𝑀 ′⟩

𝑜W = rlx ⇒ 𝑉m = [𝑥 ↦→ 𝑡] ∧ ⟨𝑃,𝑀⟩ 𝑚−→ ⟨𝑃 ′, 𝑀 ′⟩
𝑜W = rel ⇒ 𝑉m = 𝑉 ′ ∧ ⟨𝑃,𝑀⟩ 𝑚−→ ⟨𝑃 ′, 𝑀 ′⟩ ∧ ∀𝑚 ∈ 𝑃 |Msg

𝑥 . 𝑚.view = ⊥
⟨⟨𝜎,𝑉 , 𝑃⟩, 𝑀⟩ −→ ⟨⟨𝜎 ′,𝑉 ′, 𝑃 ′⟩, 𝑀 ′⟩

(read)

𝜎
R𝑜R (𝑥,𝑣)
−−−−−−→ 𝜎 ′ 𝑚 = ⟨𝑥@𝑡, 𝑣,𝑉m⟩ ∈ 𝑀 𝑉 (𝑥) ≤ 𝑡

𝑜R ≠ acq ⇒ 𝑉 ′ = 𝑉 ⊔ [𝑥 ↦→ 𝑡]
𝑜R = acq ⇒ 𝑉 ′ = 𝑉 ⊔ [𝑥 ↦→ 𝑡] ⊔𝑉m

⟨⟨𝜎,𝑉 , 𝑃⟩, 𝑀⟩ −→ ⟨⟨𝜎 ′,𝑉 ′, 𝑃⟩, 𝑀⟩

(race-helper)

𝑚 ∈ 𝑀 \ 𝑃
𝑚.loc = 𝑥 𝑉 (𝑥) < 𝑚.t
𝑜 ≠ na ⇒𝑚 ∈ NAMsg

⟨𝑉 , 𝑃,𝑀⟩ is racy on 𝑥 with 𝑜

(racy-read)

𝜎
R𝑜R (𝑥,undef)
−−−−−−−−−−→ 𝜎 ′

⟨𝑉 , 𝑃,𝑀⟩ is racy on 𝑥 with 𝑜R

⟨⟨𝜎,𝑉 , 𝑃⟩, 𝑀⟩ −→ ⟨⟨𝜎 ′,𝑉 , 𝑃⟩, 𝑀⟩

(racy-write)

𝜎
W𝑜W (𝑥,_)
−−−−−−→ 𝜎 ′

⟨𝑉 , 𝑃,𝑀⟩ is racy on 𝑥 with 𝑜W
∀𝑚 ∈ 𝑃 . 𝑉 (𝑚.loc) < 𝑚.t

⟨⟨𝜎,𝑉 , 𝑃⟩, 𝑀⟩ −→ ⟨⟨⊥,𝑉 , ∅⟩, 𝑀⟩

(silent)

𝜎 −→ 𝜎 ′ 𝜎 ′ ≠ ⊥
⟨⟨𝜎,𝑉 , 𝑃⟩, 𝑀⟩ −→
⟨⟨𝜎 ′,𝑉 , 𝑃⟩, 𝑀⟩

(choose)

𝜎
choose(𝑣)
−−−−−−−−→ 𝜎 ′

⟨⟨𝜎,𝑉 , 𝑃⟩, 𝑀⟩ −→
⟨⟨𝜎 ′,𝑉 , 𝑃⟩, 𝑀⟩

(fail)

𝜎
fail−−−→ ⊥

∀𝑚 ∈ 𝑃 . 𝑉 (𝑚.loc) < 𝑚.t

⟨⟨𝜎,𝑉 , 𝑃⟩, 𝑀⟩ −→ ⟨⟨⊥,𝑉 , ∅⟩, 𝑀⟩

(machine: normal)

⟨T (𝜋), 𝑀⟩ −→+ ⟨T ′, 𝑀 ′⟩
⟨T ′, 𝑀 ′⟩ −→∗ ⟨⟨𝜎 ′′,𝑉 ′′, ∅⟩, 𝑀 ′′⟩
⟨T , 𝑀⟩ −→ ⟨T [𝜋 ↦→ T ′], 𝑀 ′⟩

(machine: failure)

⟨T (𝜋), 𝑀⟩ −→+ ⟨⟨⊥, _, _⟩, 𝑀 ′⟩
⟨T , 𝑀⟩ −→ ⟨⊥, 𝑀 ′⟩

Figure 5. Transitions of PSna (differences w.r.t. the corresponding fragment of PS2.1 are highlighted)

hardware follows from the soundness of this strengthening

and of the mapping PS2.1 to hardware as shown in [8, 22].

Behavioral refinement. A behavior and behavioral re-

finement in PS
na

are defined as follows.
10

Definition 5.2. A behavior (in PSna) is a mapping 𝑟 : Tid →
Val assigning a return value to each thread or 𝑟 = ⊥ for erro-

neous termination. We inductively define when a machine

state ⟨T , 𝑀⟩ generates a behavior 𝑟 , denoted by ⟨T , 𝑀⟩ ⇓ 𝑟 :

∀𝜋 ∈ Tid.
T (𝜋) = ⟨return(𝑣𝜋), _, _⟩

⟨T , 𝑀⟩ ⇓ (𝜆𝜋 .𝑣𝜋) ⟨⊥, 𝑀⟩ ⇓ ⊥

⟨T , 𝑀⟩ −→ ⟨T ′, 𝑀 ′⟩
⟨T ′, 𝑀 ′⟩ ⇓ 𝑟

⟨T , 𝑀⟩ ⇓ 𝑟

We write 𝑟tgt ⊑ 𝑟src if either 𝑟src = ⊥ or ∀𝜋. 𝑟tgt (𝜋) ⊑ 𝑟src (𝜋).

Definition 5.3. A concurrent program state 𝜎1

tgt
∥ ... ∥𝜎𝑛

tgt

behaviorally refines a concurrent program state 𝜎1

src
∥ ... ∥𝜎𝑛

src
,

denoted by 𝜎1

tgt
∥ ... ∥𝜎𝑛

tgt
⊑PS

na 𝜎1

src
∥ ... ∥𝜎𝑛

src
, if whenever we

have ⟨𝜆𝜋 . ⟨𝜎𝜋
tgt
,𝑉init, ∅⟩, 𝑀init⟩ ⇓ 𝑟tgt, there exists 𝑟src such

that 𝑟tgt ⊑ 𝑟src and ⟨𝜆𝜋 . ⟨𝜎𝜋
src
,𝑉init, ∅⟩, 𝑀init⟩ ⇓ 𝑟src. (Here,𝑉init

is the initial thread view assigning the timestamp 0 to every

10
In Coq, a behavior is a sequence of system calls invoked during the

program execution. The version in the paper can be seen as the simplified

case where the code of each thread ends with a return(𝑒) system call.

location; ∅ is the initial empty set of promises; and 𝑀init is

the initial memory consisting of an initialization message

⟨𝑥@0, 0,⊥⟩ for every 𝑥 ∈ Loc.)

6 Adequacy of Sequential Reasoning
In this section, we state the adequacy of reasoning in SEQ

w.r.t. PS
na
, outline the main challenges in the proof, and

discuss our approach to overcome them. First, we define

deterministic programs, which is needed below.

Definition 6.1. A program state 𝜎 is deterministic if for

every 𝜎0 reachable from 𝜎 (i.e., 𝜎 −→∗ 𝜎0), if both 𝜎0
𝑒1−→ 𝜎1

and 𝜎0
𝑒2−→ 𝜎2, then one of the following holds: (i) 𝑒1 = 𝑒2

and 𝜎1 = 𝜎2; (ii) 𝑒1 = R𝑜 (𝑥, 𝑣1), 𝑒2 = R𝑜 (𝑥, 𝑣2), and 𝑣1 ≠ 𝑣2; or

(iii) 𝑒1 = choose(𝑣1), 𝑒2 = choose(𝑣2), and 𝑣1 ≠ 𝑣2.

Theorem 6.2 (Adequacy). If 𝜎tgt ⊑w 𝜎src (Def. 3.3) and 𝜎src
is deterministic, then 𝜎tgt | |𝜎1∥ ... ∥𝜎𝑛 ⊑PS

na 𝜎src | |𝜎1∥ ... ∥𝜎𝑛
(Def. 5.3) for any programs 𝜎1, ... ,𝜎𝑛 .

To prove this theorem, we first show that 𝜎tgt ⊑w 𝜎src
implies the existence of a simulation relation between the

source and target in SEQ (detailed in [1, Appendix A]). Then,

we show that a simulation in SEQ implies the existence of a

simulation in PS
na
. For this purpose, we lift steps in SEQ to

Sequential Reasoning for Optimizing Compilers under Weak Memory Concurrency PLDI ’22, June 13–17, 2022, San Diego, CA, USA

thread steps in PS
na
. This raises three significant challenges.

First, there is a large gap between SEQ’s simple states and the

complex states of PS
na
. Second, in PS

na
, we should consider

interference by other threads at every point, whereas in SEQ,

memory states are changed only in release/acquire steps.

Third, we need to show how promise steps of the target

in PS
na

are simulated by the source and establish a PS
na

certification execution for every step of the source.

The key idea for the first point is that even though PS
na

has complex states, not all its complexity affects non-atomic

steps. In fact, a memory in SEQ can be seen as an approxi-

mation of a state in PS
na

capturing only the part related to

non-atomic steps. The value of a location 𝑥 in SEQ corre-

spond to the value of the message pointed by the thread view

on 𝑥 in PS
na
, and a permission on 𝑥 in SEQ means that there

is no racy message with the thread in PS
na
. Since non-atomic

and relaxed accesses do not change the thread view on other

locations, states in SEQ are not changed after non-atomic

and relaxed accesses. In turn, an acquire read in PS
na

may

increase the thread view, which corresponds to the modified

values and gained permissions in acquire steps of SEQ.

For the second point, we need a novel insight on the

promising semantics: in a machine step, it suffices to have

promise steps followed by non-promise steps ending with

a release write (or thread termination). This implies that

racy messages of other threads are added only when a re-

lease write is executed, which corresponds to SEQ losing

permissions only on a release write.

For the third point, we construct the certification steps

of the source execution from those of the target. The chal-

lenge here is the two cases where the target thread fulfills its

promise while the source cannot: (𝑖) when there is no source

step corresponding to a write step of the target fulfilling a

promise; and (𝑖𝑖) when the written message by the source

has a different value than the target’s. This challenge is ad-

dressed by the commitment set of the advanced refinement,

which ensures that, in both cases, the source thread should

be able to write to the problematic locations in the future,

thereby allowing the source to establish its certification.

Remark 3. Theorem 6.2 does not hold without the deter-

minism premise (see [1, Appendix C] for an example). This

stems from a drawback of the promising semantics (rather

than due to SEQ) that we encountered while developing

SEQ. Concretely, the promising semantics disallows the re-

ordering of an internal non-deterministic choice followed

by a release write. By exposing non-deterministic choices

(via choose(_) labels), we invalidate these reorderings in
SEQ and obtain adequacy for deterministic programs. (Nev-

ertheless, the reordering of non-deterministic choices and

non-atomic accesses is fully allowed by SEQ.) We leave to fu-

ture work to improve the promising semantics to allow this

reordering, which will allow one to remove the choose(_)
labels from SEQ.

7 Conclusion and Related Work
We developed a sequential model, SEQ, for reasoning about

compiler optimizations in a rich weak memory model (con-

cretely, PS
na
, an extension of PS2.1 with non-atomic ac-

cesses), and demonstrated its applicability for compiler ver-

ification. This provides the first formal result establishing

the adequacy of sequential reasoning for a full-fledged weak

memory model without relying on catch-fire semantics for

races, accompanied by the first non-trivial certified optimiza-

tion algorithms for weak memory concurrency. While the

ideas and intuitions behind the sequential reasoning are gen-

eral, adequacy is specifically proved for PS
na
. Nevertheless,

we believe that SEQ can be adapted for reasoning about

optimizations in other weak memory models.

Having a sequential model for compiler optimizations

paves the way for future work, which has seemed to be out

of reach when dealing with complicated concurrency models.

This includes the extension of CompCert to weak memory

concurrency (in fact, our sequential model is not far from

compilers’ model of C, and the simple refinement in §2 may

well suffice), as well as of automatic tools like Alive2 [28] for

SMT-based translation validation.

Our results have two main limitations. First, SEQ requires

the memory layouts of the source and target to be identical,

which rules out certain compiler transformations that are

performed by CompCert and its extensions mentioned below

(although register promotion is supported by PS
na
). To the

best of our knowledge, these are the only thread-local opti-

mizations on non-atomics that compilers actually perform

that are unsound under SEQ. Second, our refinement notion

is not termination preserving (which requires fairness as-

sumptions, possibly following [19]). Addressing these issues

is left to future work.

Next, we discuss the relation to previous work.

Sequential reasoning. The closest to our work is the

work by Cuellar et al. [10] (see also [3, 9]) who develop a con-

currency semantics, called “concurrent permission machine”

(CPM), for CompCert that allows sequential reasoning on

program optimizations. Their model has catch-fire seman-

tics, using locks to avoid races. They also present a version

of concurrent separation logic that can be used to show that

a given program is race-free. While our use of permissions

is inspired by these works, our results go beyond lock-based

programs, and demonstrate the applicability of sequential

reasoning for a significantly more involved model: (i) we

handle C11-like atomic access and fences of different modes

(from which locks can be implemented); (ii) the model of

[9, 10] treats lock/unlock as unknown functional calls, thus

forbids optimizations across locks (since they are not per-

formed by CompCert) in contrast to our model that allows

optimizations across atomics; (iii) we validate load introduc-

tion which is unsound in CPM (in fact, we found out that

distinguishing read-only and write permissions, as done in

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Minki Cho, Sung-Hwan Lee, Dongjae Lee, Chung-Kil Hur, and Ori Lahav

[9, 10], does not suffice when write-read races are not UB,

and developed the idea of written locations set (𝐹) instead);

and (iv) the target model in [9, 10] is x86-TSO, which is

much simpler than the promising model studied here. All

these aspects pose significant challenges in the design of the

sequential model and its adequacy proof.

Certified compilation of concurrent programs. Jiang
et al. [16] presented CASCompCert, an extension of Com-

pCert deriving certified compilation of concurrent programs

from the correctness of sequential compilation, which, in

particular, preserves termination. The main difference from

our work is that CASCompCert targets DRF programs under

sequential consistency (SC), and assumes that racy code (e.g.,
for the implementation of locks) is confined in manually

written assembly assuming x86-TSO and has race-free SC

abstractions. As [9, 10], CASCompCert does not support op-

timizations across locked regions, reorderings of non-atomic

and atomic events, and load introduction.

Another extension of CompCert, called thread-safe Com-

pCertX, was presented by Gu et al. [13] in the context of the

certified concurrent abstraction layers framework (CCAL).

They assume SC as the underlying model, and do not support

optimizations on shared non-atomics, which are ubiquitous

in concurrent programming.

Earlier work extended CompCert to concurrency [39, 42,

43], for the case that both the source and the target programs

have x86-TSO semantics [31] using direct TSO reasoning for

the relevant optimization passes. In our terms, this assumes

that all accesses are atomic with semantics stronger than

release/acquire, rendering various optimizations on non-racy

code unsound. Indeed, these optimizations are not performed

in the optimization passes of CompCertTSO.

Verification of compiler transformations. Many pa-

pers study the correctness of compiler optimizations un-

der certain weak memory models. In particular, Burckhardt

et al. [4] develop a denotational approach for compiler opti-

mizations based on the rewritings performed by the target

architecture; Ševčík [40] investigates optimizations under

a general catch-fire model using locks and synchronization

(a.k.a. volatile) accesses; and Vafeiadis et al. [38] provide

an extensive study (in Coq) of program transformations in

the C/C++11 model [2]. The approach of [38] requires un-

derstanding of the C/C++11 model and reasoning about all

possible contexts. Another important difference is that the

claims in [38] are on the trace-level (represented by execu-

tion graphs) leaving implicit the connection to programs.

Based on [38], testing methods and tools for checking the

correctness of compiler optimizations were developed [5,

30] and applied on randomly generated programs. Roughly

speaking, these validators match (full program) source and

target executions and check that the matching adheres to

the set of allowed transformations.

Dodds et al. [11] developed a technique and a tool for ver-

ifying transformations in the fragment of C11 consisting of

release/acquire atomics, non-atomics, and SC-fences. They

presented a denotational framework for establishing contex-

tual refinement and provided a push-button tool (which does

not support non-atomics) using the Alloy model checker.

Program-logics-based approaches. Recently, Gäher

et al. [12] developed a separation logic (based on Iris [17])

for contextual refinement in a catch-fire model with SC

atomics, allowing, in particular, optimizations involving

both atomics and non-atomics. Their refinement preserves

termination under fairness assumptions, and allows certain

optimizations that modify the memory layout mappings.

Interestingly, they considered sequential reasoning as a

limitation of previous work, but, as we show, such reasoning

does not have to identify atomic accesses with external

function calls, and is, thus, capable of reasoning about a

variety of optimizations.

Earlier work developed a rely-guarantee relational frame-

work, which also provides means for establishing soundness

of program transformations in the presence of assumptions

about the environment [25, 26] . It assumes SC as the un-

derlying model, and requires rely-guarantee reasoning for

encoding, e.g., data-race-freedom, versus sequential reason-

ing that ensures refinement under any context as we present.

Compilation scheme correctness. A compilation cor-

rectness proof is not only about optimizations, and should

also include the correctness of the “mapping schemes” to dif-

ferent architectures. In particular, the aforementioned works,

including [9, 10, 16], include the correctness of mappings

targeting the x86-TSO architecture. Additional proofs of the

correctness of mapping schemes between more complex

models appear in [29, 35]. For the promising semantics, map-

ping correctness was established in Coq [22] for multiple

architectures (and the proof trivially generalizes to the ex-

tension with non-atomics) via IMM [36]. The latter provides

an intermediate model between the programming language

models and the various multicore architectures, which can

be adapted to accommodate revised models on both sides.

Acknowledgments
We thank the anonymous PLDI reviewers for their helpful

feedback. Chung-Kil Hur is the corresponding author. Minki

Cho, Sung-Hwan Lee, Dongjae Lee, and Chung-Kil Hur were

supported by Samsung Research Funding Center of Samsung

Electronics under Project Number SRFC-IT2102-03. Ori La-

hav was supported by the Israel Science Foundation (grant

number 1566/18) and by the Alon Young Faculty Fellowship.

This research was supported in part by the European Re-

search Council (ERC) under the European Union’s Horizon

2020 research and innovation programme (grant agreement

no. 851811).

Sequential Reasoning for Optimizing Compilers under Weak Memory Concurrency PLDI ’22, June 13–17, 2022, San Diego, CA, USA

References
[1] 2022. Coq development and supplementary material for this paper.

https://sf.snu.ac.kr/promising-seq
[2] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and TjarkWeber.

2011. Mathematizing C++ Concurrency. In POPL. ACM, New York,

NY, USA, 55–66. https://doi.org/10.1145/1926385.1926394
[3] Lennart Beringer, Gordon Stewart, Robert Dockins, and Andrew W.

Appel. 2014. Verified Compilation for Shared-Memory C. In ESOP.
Springer, Berlin, Heidelberg, 107–127. https://doi.org/10.1007/978-3-
642-54833-8_7

[4] Sebastian Burckhardt, Madanlal Musuvathi, and Vasu Singh. 2010.

Verifying Local Transformations on Relaxed Memory Models. In CC.
Springer, Berlin, Heidelberg, 104–123. https://doi.org/10.1007/978-3-
642-11970-5_7

[5] Soham Chakraborty and Viktor Vafeiadis. 2016. Validating Optimiza-

tions of Concurrent C/C++ Programs. In CGO. ACM, New York, NY,

USA, 216–226. https://doi.org/10.1145/2854038.2854051
[6] Soham Chakraborty and Viktor Vafeiadis. 2017. Formalizing the Con-

currency Semantics of an LLVM Fragment. In CGO. IEEE Press, 100–

110. https://doi.org/10.1109/CGO.2017.7863732
[7] Soham Chakraborty and Viktor Vafeiadis. 2019. Grounding Thin-Air

Reads with Event Structures. Proc. ACM Program. Lang. 3, POPL,
Article 70 (Jan. 2019), 28 pages. https://doi.org/10.1145/3290383

[8] Minki Cho, Sung-Hwan Lee, Chung-Kil Hur, and Ori Lahav. 2021.

Modular Data-Race-Freedom Guarantees in the Promising Semantics.

In PLDI. ACM, New York, NY, USA, 867–882. https://doi.org/10.1145/
3453483.3454082

[9] Santiago Cuellar. 2020. Concurrent Permission Machine for Modular
Proofs of Optimizing Compilers with Shared Memory Concurrency. Ph. D.
Dissertation. Princeton University.

[10] Santiago Cuellar, Nick Giannarakis, Jean-Marie Madiot, William Man-

sky, Lennart Beringer, Qinxiang Cao, and Andrew W Appel. 2020.

Compiler Correctness for Concurrency: from concurrent separation logic
to shared-memory assembly language. Technical Report TR-014-19.

Department of Computer Science, Princeton University.

[11] Mike Dodds, Mark Batty, and Alexey Gotsman. 2018. Compositional

Verification of Compiler Optimisations on Relaxed Memory. In ESOP.
Springer International Publishing, Cham, 1027–1055. https://doi.org/
10.1007/978-3-319-89884-1_36

[12] Lennard Gäher, Michael Sammler, Simon Spies, Ralf Jung, Hoang-

Hai Dang, Robbert Krebbers, Jeehoon Kang, and Derek Dreyer. 2022.

Simuliris: A Separation Logic Framework for Verifying Concurrent

Program Optimizations. Proc. ACM Program. Lang. 6, POPL, Article 28
(jan 2022), 31 pages. https://doi.org/10.1145/3498689

[13] Ronghui Gu, Zhong Shao, Jieung Kim, Xiongnan (Newman) Wu,

Jérémie Koenig, Vilhelm Sjöberg, Hao Chen, David Costanzo, and

Tahina Ramananandro. 2018. Certified Concurrent Abstraction Layers.

In PLDI. ACM, New York, NY, USA, 646–661. https://doi.org/10.1145/
3192366.3192381

[14] Radha Jagadeesan, Alan Jeffrey, and James Riely. 2020. Pomsets with

Preconditions: A Simple Model of Relaxed Memory. Proc. ACM Pro-
gram. Lang. 4, OOPSLA, Article 194 (Nov. 2020), 30 pages. https:
//doi.org/10.1145/3428262

[15] Alan Jeffrey and James Riely. 2019. On Thin Air Reads: Towards

an Event Structures Model of Relaxed Memory. Logical Methods in
Computer Science 15, 1 (2019). https://doi.org/10.23638/LMCS-15(1:
33)2019

[16] Hanru Jiang, Hongjin Liang, Siyang Xiao, Junpeng Zha, and Xinyu

Feng. 2019. Towards Certified Separate Compilation for Concurrent

Programs. In PLDI. ACM, New York, NY, USA, 111–125. https://doi.
org/10.1145/3314221.3314595

[17] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron

Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris: Monoids and

Invariants as an Orthogonal Basis for Concurrent Reasoning. In POPL.

ACM, New York, NY, USA, 637–650. https://doi.org/10.1145/2676726.
2676980

[18] Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek

Dreyer. 2017. A Promising Semantics for Relaxed-Memory Con-

currency. In POPL. ACM, New York, NY, USA, 175–189. https:
//doi.org/10.1145/3009837.3009850

[19] Ori Lahav, Egor Namakonov, Jonas Oberhauser, Anton Podkopaev,

and Viktor Vafeiadis. 2021. Making Weak Memory Models Fair. Proc.
ACM Program. Lang. 5, OOPSLA, Article 98 (oct 2021), 27 pages. https:
//doi.org/10.1145/3485475

[20] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek

Dreyer. 2017. Repairing Sequential Consistency in C/C++11. In PLDI.
ACM, New York, NY, USA, 618–632. https://doi.org/10.1145/3062341.
3062352

[21] Juneyoung Lee, Yoonseung Kim, Youngju Song, Chung-Kil Hur, Sanjoy

Das, David Majnemer, John Regehr, and Nuno P. Lopes. 2017. Taming

Undefined Behavior in LLVM. In PLDI. ACM, New York, NY, USA,

633–647. https://doi.org/10.1145/3062341.3062343
[22] Sung-Hwan Lee, Minki Cho, Anton Podkopaev, Soham Chakraborty,

Chung-Kil Hur, Ori Lahav, and Viktor Vafeiadis. 2020. Promising 2.0:

Global Optimizations in Relaxed Memory Concurrency. In PLDI. ACM,

New York, NY, USA, 362–376. https://doi.org/10.1145/3385412.3386010
[23] Xavier Leroy. 2009. Formal Verification of a Realistic Compiler. Com-

mun. ACM 52, 7 (July 2009), 107–115. https://doi.org/10.1145/1538788.
1538814

[24] Xavier Leroy. 2009. A Formally Verified Compiler Back-End. J. Autom.
Reason. 43, 4 (Dec. 2009), 363–446. https://doi.org/10.1007/s10817-
009-9155-4

[25] Hongjin Liang, Xinyu Feng, and Ming Fu. 2012. A Rely-Guarantee-

Based Simulation for Verifying Concurrent Program Transformations.

In POPL. ACM, New York, NY, USA, 455–468. https://doi.org/10.1145/
2103656.2103711

[26] Hongjin Liang, Xinyu Feng, and Ming Fu. 2014. Rely-Guarantee-Based

Simulation for Compositional Verification of Concurrent Program

Transformations. ACM Trans. Program. Lang. Syst. 36, 1, Article 3 (Mar.

2014), 55 pages. https://doi.org/10.1145/2576235
[27] LLVM documentation: Atomic Instructions and Concurrency Guide

2021. Retrieved Novermber, 2021 from https://llvm.org/docs/Atomics.
html

[28] Nuno P. Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang Liu, and

John Regehr. 2021. Alive2: Bounded Translation Validation for LLVM.

In PLDI. ACM, New York, NY, USA, 65–79. https://doi.org/10.1145/
3453483.3454030

[29] Evgenii Moiseenko, Anton Podkopaev, Ori Lahav, Orestis Melkonian,

and Viktor Vafeiadis. 2020. Reconciling Event Structures with Modern

Multiprocessors. In ECOOP. Schloss Dagstuhl–Leibniz-Zentrum für

Informatik, Dagstuhl, Germany, 5:1–5:26. https://doi.org/10.4230/
LIPIcs.ECOOP.2020.5

[30] Robin Morisset, Pankaj Pawan, and Francesco Zappa Nardelli. 2013.

Compiler Testing via a Theory of Sound Optimisations in the

C11/C++11 Memory Model. In PLDI. ACM, New York, NY, USA, 187–

196. https://doi.org/10.1145/2491956.2491967
[31] Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. A Better x86

Memory Model: x86-TSO. In TPHOLs. Springer, Berlin, Heidelberg,
391–407. https://doi.org/10.1007/978-3-642-03359-9_27

[32] Marco Paviotti, Simon Cooksey, Anouk Paradis, Daniel Wright, Scott

Owens, and Mark Batty. 2020. Modular Relaxed Dependencies in

Weak Memory Concurrency. In ESOP. Springer, Cham, 599–625. https:
//doi.org/10.1007/978-3-030-44914-8_22

[33] Gustavo Petri, Jan Vitek, and Suresh Jagannathan. 2015. Cooking the

Books: Formalizing JMM Implementation Recipes. In ECOOP, Vol. 37.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Ger-

many, 445–469. https://doi.org/10.4230/LIPIcs.ECOOP.2015.445
[34] Jean Pichon-Pharabod and Peter Sewell. 2016. A Concurrency Se-

mantics for Relaxed Atomics that Permits Optimisation and Avoids

https://sf.snu.ac.kr/promising-seq
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1007/978-3-642-54833-8_7
https://doi.org/10.1007/978-3-642-54833-8_7
https://doi.org/10.1007/978-3-642-11970-5_7
https://doi.org/10.1007/978-3-642-11970-5_7
https://doi.org/10.1145/2854038.2854051
https://doi.org/10.1109/CGO.2017.7863732
https://doi.org/10.1145/3290383
https://doi.org/10.1145/3453483.3454082
https://doi.org/10.1145/3453483.3454082
https://doi.org/10.1007/978-3-319-89884-1_36
https://doi.org/10.1007/978-3-319-89884-1_36
https://doi.org/10.1145/3498689
https://doi.org/10.1145/3192366.3192381
https://doi.org/10.1145/3192366.3192381
https://doi.org/10.1145/3428262
https://doi.org/10.1145/3428262
https://doi.org/10.23638/LMCS-15(1:33)2019
https://doi.org/10.23638/LMCS-15(1:33)2019
https://doi.org/10.1145/3314221.3314595
https://doi.org/10.1145/3314221.3314595
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1145/3485475
https://doi.org/10.1145/3485475
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1145/3062341.3062343
https://doi.org/10.1145/3385412.3386010
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1145/2103656.2103711
https://doi.org/10.1145/2103656.2103711
https://doi.org/10.1145/2576235
https://llvm.org/docs/Atomics.html
https://llvm.org/docs/Atomics.html
https://doi.org/10.1145/3453483.3454030
https://doi.org/10.1145/3453483.3454030
https://doi.org/10.4230/LIPIcs.ECOOP.2020.5
https://doi.org/10.4230/LIPIcs.ECOOP.2020.5
https://doi.org/10.1145/2491956.2491967
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-030-44914-8_22
https://doi.org/10.1007/978-3-030-44914-8_22
https://doi.org/10.4230/LIPIcs.ECOOP.2015.445

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Minki Cho, Sung-Hwan Lee, Dongjae Lee, Chung-Kil Hur, and Ori Lahav

Thin-Air Executions. In POPL. ACM, New York, NY, USA, 622–633.

https://doi.org/10.1145/2837614.2837616
[35] Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis. 2017. Promising

Compilation to ARMv8 POP. In ECOOP, Vol. 74. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 22:1–22:28.

https://doi.org/10.4230/LIPIcs.ECOOP.2017.22
[36] Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis. 2019. Bridging the

Gap Between Programming Languages and Hardware Weak Memory

Models. Proc. ACM Program. Lang. 3, POPL, Article 69 (Jan. 2019),

31 pages. https://doi.org/10.1145/3290382
[37] Kasper Svendsen, Jean Pichon-Pharabod, Marko Doko, Ori Lahav, and

Viktor Vafeiadis. 2018. A separation logic for a promising semantics.

In ESOP. Springer International Publishing, Cham, 357–384. https:
//doi.org/10.1007/978-3-319-89884-1_13

[38] Viktor Vafeiadis, Thibaut Balabonski, Soham Chakraborty, Robin

Morisset, and Francesco Zappa Nardelli. 2015. Common Compiler

Optimisations Are Invalid in the C11 Memory Model and What We

Can Do About It. In POPL. ACM, New York, NY, USA, 209–220.

https://doi.org/10.1145/2676726.2676995
[39] Viktor Vafeiadis and Francesco Zappa Nardelli. 2011. Verifying Fence

Elimination Optimisations. In SAS (LNCS, Vol. 6887). Springer, Berlin,

Heidelberg, 146–162. https://doi.org/10.1007/978-3-642-23702-7_14
[40] Jaroslav Ševčík. 2011. Safe Optimisations for Shared-memory Con-

current Programs. In PLDI. ACM, New York, NY, USA, 306–316.

https://doi.org/10.1145/1993498.1993534
[41] Jaroslav Ševčík and David Aspinall. 2008. On Validity of Program

Transformations in the Java Memory Model. In ECOOP. Springer-
Verlag, Berlin, Heidelberg, 27–51. https://doi.org/10.1007/978-3-540-
70592-5_3

[42] Jaroslav Ševčík, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh

Jagannathan, and Peter Sewell. 2011. Relaxed-Memory Concurrency

and Verified Compilation. In POPL. ACM, New York, NY, USA, 43–54.

https://doi.org/10.1145/1926385.1926393
[43] Jaroslav Ševčík, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh

Jagannathan, and Peter Sewell. 2013. CompCertTSO: A Verified Com-

piler for Relaxed-Memory Concurrency. J. ACM 60, 3, Article 22 (June

2013), 50 pages. https://doi.org/10.1145/2487241.2487248
[44] Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory

Malecha, Benjamin C. Pierce, and Steve Zdancewic. 2019. Interac-

tion Trees: Representing Recursive and Impure Programs in Coq.

Proc. ACM Program. Lang. 4, POPL, Article 51 (Dec. 2019), 32 pages.
https://doi.org/10.1145/3371119

https://doi.org/10.1145/2837614.2837616
https://doi.org/10.4230/LIPIcs.ECOOP.2017.22
https://doi.org/10.1145/3290382
https://doi.org/10.1007/978-3-319-89884-1_13
https://doi.org/10.1007/978-3-319-89884-1_13
https://doi.org/10.1145/2676726.2676995
https://doi.org/10.1007/978-3-642-23702-7_14
https://doi.org/10.1145/1993498.1993534
https://doi.org/10.1007/978-3-540-70592-5_3
https://doi.org/10.1007/978-3-540-70592-5_3
https://doi.org/10.1145/1926385.1926393
https://doi.org/10.1145/2487241.2487248
https://doi.org/10.1145/3371119

Sequential Reasoning for Optimizing Compilers under Weak Memory Concurrency PLDI ’22, June 13–17, 2022, San Diego, CA, USA

⟨𝜎src, 𝐹src, 𝑀src⟩ ∼A𝑃,𝑅 ⟨𝜎tgt, 𝐹tgt, 𝑀tgt⟩ ≜
((𝜎tgt ≠ ⊥) ∧
(∀ 𝑣tgt. (𝜎tgt = return(𝑣tgt)) ⇒
∃ 𝑣src . (𝜎src = return(𝑣src)) ∧ ((𝑣src, 𝑣tgt) ∈ 𝐴) ∧ (𝐹tgt ∪ 𝑅 ⊑ 𝐹src) ∧ (𝑀tgt ⊑ 𝑀src)) ∧

(∀ 𝜎 ′
tgt

𝐹 ′
tgt

𝑀 ′
tgt
. (⟨𝜎tgt, 𝑃, 𝐹tgt, 𝑀tgt⟩ −→ ⟨𝜎tgt, 𝑃, 𝐹tgt, 𝑀tgt⟩) ⇒

∃ 𝜎 ′
src

𝐹 ′
src

𝑀 ′
src
.(⟨𝜎src, 𝑃, 𝐹src, 𝑀src⟩ −→∗ ⟨𝜎 ′

src
, 𝑃, 𝐹 ′

src
, 𝑀 ′

src
⟩) ∧ (⟨𝜎 ′

src
, 𝐹 ′

src
, 𝑀 ′

src
⟩ ∼A

𝑃,𝑅
⟨𝜎 ′

tgt
, 𝐹 ′

tgt
, 𝑀 ′

tgt
⟩)) ∧

(∀ 𝑣 𝜎 ′
tgt
. (𝜎tgt

choose(𝑣)
−−−−−−−−→ 𝜎 ′

tgt
) ⇒

∃ 𝜎 ′
src
. (𝜎src

choose(𝑣)
−−−−−−−−→ 𝜎 ′

src
) ∧ (⟨𝜎 ′

src
, 𝐹src, 𝑀src⟩ ∼A𝑃,𝑅 ⟨𝜎 ′

tgt
, 𝐹tgt, 𝑀tgt⟩)) ∧

(∀ 𝑒 𝑃 ′ 𝜎 ′
tgt

𝐹 ′
tgt

𝑀 ′
tgt
. (∀ 𝑥 𝑣 𝜎 ′

tgt
. (𝜎tgt

Rrlx (𝑥,𝑣)
−−−−−−−→ 𝜎 ′

tgt
) ⇒

∃ 𝜎 ′
src
. (𝜎src

Rrlx (𝑥,𝑣)
−−−−−−−→ 𝜎 ′

src
) ∧ (⟨𝜎 ′

src
, 𝐹src, 𝑀src⟩ ∼A𝑃,𝑅 ⟨𝜎 ′

tgt
, 𝐹tgt, 𝑀tgt⟩)) ∧

(∀ 𝑥 𝑣tgt 𝜎
′
tgt
. (𝜎tgt

Wrlx (𝑥,𝑣)
−−−−−−−→ 𝜎 ′

tgt
) ⇒

∃ 𝜎 ′
src

𝑣src . (𝜎src
Wrlx (𝑥,𝑣)
−−−−−−−→ 𝜎 ′

src
) ∧ (𝑣tgt ⊑ 𝑣src) ∧ (⟨𝜎 ′

src
, 𝐹src, 𝑀src⟩ ∼A𝑃,𝑅 ⟨𝜎 ′

tgt
, 𝐹tgt, 𝑀tgt⟩)) ∧

(∀ 𝑥 𝑣 𝜎 ′
tgt
. (𝜎tgt

Racq (𝑥,𝑣)
−−−−−−−→ 𝜎 ′

tgt
) ⇒

∃ 𝜎 ′
src
. (𝜎src

Racq (𝑥,𝑣)
−−−−−−−→ 𝜎 ′

src
) ∧ (𝐹tgt ∪ 𝑅 ⊑ 𝐹src) ∧ ∀ 𝑃 ′ 𝑉 . ((𝑃 ⊆ 𝑃 ′) ∧ (dom(𝑉) = 𝑃 ′ \ 𝑃)) ⇒

(⟨𝜎 ′
src
, 𝐹src, (𝜆𝑥.(𝑥 ∈ dom(𝑉))?𝑉 (𝑥) : 𝑀src (𝑥))⟩ ∼A𝑃 ′,∅ ⟨𝜎 ′

tgt
, 𝐹tgt, (𝜆𝑥 .(𝑥 ∈ dom(𝑉))?𝑉 (𝑥) : 𝑀tgt (𝑥))⟩)) ∧

(∀ 𝑥 𝑣tgt 𝜎
′
tgt
. (𝜎tgt

Wrel (𝑥,𝑣tgt)−−−−−−−−→ 𝜎 ′
tgt
) ⇒

∃ 𝑣src 𝜎
′
src
. (𝜎src

Wrel (𝑥,𝑣src)−−−−−−−−→ 𝜎 ′
src
) ∧ (𝑣tgt ⊑ 𝑣src) ∧ ∀ 𝑃 ′. (𝑃 ⊆ 𝑃 ′) ⇒

∃𝑅′. (𝐹tgt ∪ 𝑅 ⊆ 𝐹src ∪ 𝑅′) ∧ (∀𝑥 ∉ 𝑅′.𝑀tgt (𝑥) ⊑ 𝑀src (𝑥)) ∧ (⟨𝜎 ′
src
, ∅, 𝑀src⟩ ∼A𝑃 ′,𝑅′ ⟨𝜎 ′

tgt
, ∅, 𝑀tgt⟩)) ∧

(∀ Ω. ∃ 𝑃 ′ 𝜎 ′
src

𝐹 ′
src

𝑀 ′
src

tr .

(⟨𝜎src, 𝑃, 𝐹src, 𝑀src⟩
tr−→ ⟨𝜎 ′

src
, 𝑃 ′, 𝐹 ′

src
, 𝑀 ′

src
⟩) ∧ (tr ∈ Tr(Ω)) ∧ (Racq (_) ∉ tr) ∧

((𝜎 ′
src

= ⊥) ∨ (𝐹tgt ∪ 𝑅 ⊆ 𝐹src ∪
⋃{𝐹 | Wrel (_, _, _, _, 𝐹 , _) ∈ tr}))) ∨

(∀ Ω. ∃ 𝑃 ′ 𝐹 ′
src

𝑀 ′
src

tr .

(⟨𝜎src, 𝑃, 𝐹src, 𝑀src⟩
tr−→ ⟨⊥, 𝑃 ′, 𝐹 ′

src
, 𝑀 ′

src
⟩) ∧ (tr ∈ Tr(Ω)) ∧ (Racq (_) ∉ tr))

𝜎src ∼𝐴
𝜎tgt ≜ ∀𝑀 𝐹 𝑃. ⟨𝜎src, 𝐹 , 𝑀⟩ ∼A

𝑃,∅ ⟨𝜎tgt, 𝐹 , 𝑀⟩

Figure 6. A simulation relation for SEQ

A The Simulation Relation in SEQ
The simulation relation in SEQ is given in Fig. 6. In order to prove adequacy of the simulation relation in Fig. 6, we define a

simulation relation in PS
na
, denoted by ≈na

PS
between two threads in PS, and prove the adequacy.

Lemma A.1 (Adequacy of the simulation relation in PS
na
). If 𝜎src ≈na

PS
𝜎tgt, then 𝜎tgt | |𝜎1∥ ... ∥𝜎𝑛 ⊑PS

na 𝜎src | |𝜎1∥ ... ∥𝜎𝑛 for any
programs 𝜎1, ... ,𝜎𝑛 .

Then, we prove that the simulation relation given in Fig. 6 implies the simulation relation in PS, ≈PS.

Lemma A.2 (Simulation Lifting). If 𝜎src ∼𝐴
𝜎tgt for a relation 𝐴, then 𝜎src ≈na

PS
𝜎tgt.

Therefore, we get the final adequacy theorem with respect to PS
na
.

Theorem A.3 (Adequacy of the simulation relation in Fig. 6). If 𝜎src ∼
𝐴

𝜎tgt for a relation 𝐴, then 𝜎tgt | |𝜎1∥ ... ∥𝜎𝑛 ⊑PS
na

𝜎src | |𝜎1∥ ... ∥𝜎𝑛 for any programs 𝜎1, ... ,𝜎𝑛 .

Theorem A.3 states the behavior refinement between two whole programs. However, we prove the congruence property,

given in Fig. 7, which allows reasoning about a part of a program and composing it with larger contexts. Note that the bind

and iteration operators are of interaction trees, which we use to define WHILE language.

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Minki Cho, Sung-Hwan Lee, Dongjae Lee, Chung-Kil Hur, and Ori Lahav

(reflexivity)

𝐴 is reflexive

𝜎 ∼𝐴 𝜎

(monotonicity)

𝐴 ⊆ 𝐴′ 𝜎src ∼𝐴 𝜎tgt

𝜎src ∼𝐴′ 𝜎tgt

(return)

(𝑣src, 𝑣tgt) ∈ 𝐴

return(𝑣src) ∼𝐴 return(𝑣tgt)
(bind)

𝜎src ∼𝐴 𝜎tgt ∀(𝑣src, 𝑣tgt) ∈ 𝐴0. 𝑘src (𝑣src) ∼𝐴1 𝑘tgt (𝑣tgt)
(𝜎src >>= 𝑘src) ∼𝐴1 (𝜎tgt >>= 𝑘tgt)

(iteration)

∀(𝑣src, 𝑣tgt) ∈ 𝐴0. 𝑘src (𝑣src) ∼𝐴0+𝐴1 𝑘tgt (𝑣tgt)
iter(𝑘src) (𝑖) ∼𝐴1 iter(𝑘tgt) (𝑖)

Figure 7. Compatibility Lemmas

B An Example Justifying the Semantics for Non-atomic writes
We present an example that justifies allowing non-atomic writes to add multiple arbitrary messages to the memory. Consider

the following program where 𝜋2 is optimized as shown:

𝑎 := 𝑥na ;

𝑦rlx := 𝑎

𝑏 := 𝑦rlx ;

𝑐 := freeze(𝑏) ;
if 𝑐 = 1 then
𝑥na := 1 ;

print(1)
else
𝑥na := 2

{

𝑏 := 𝑦rlx ;

𝑐 := freeze(𝑏) ;
𝑥na := 2 ;

if 𝑐 = 1 then
𝑥na := 1 ;

print(1) //reachable!

Suppose that a non-atomic write is only allowed write a single message as a relaxed write does. Then, after the optimization,

𝜋2 is allowed to print 1 by entering the if-branch through following execution:

(i) 𝜋2 promises 𝑥 = 2;

(ii) 𝜋1 reads undef from 𝑥 , writes it back to 𝑦;

(iii) 𝜋2 reads undef from 𝑦, freezes11 the read value (i.e., undef) to 1, and prints 1 by executing the rest of the thread’s code.

However, 𝜋2 before the optimization cannot print 1 unless a non-atomic write is allowed to add multiple messages to the

memory. Indeed, once 𝜋2 promises 𝑥 = 2, it cannot enter the if-branch since the promise 𝑥 = 2 cannot be fulfilled through the

write 𝑥na := 1. (Note that if a non-atomic write can write multiple messages, including 𝑥 = 2 in this example, the promise 𝑥 = 2

can be fulfilled through the write 𝑥na := 1.) In addition, 𝜋2 cannot promise 𝑥 = 1 because it cannot be certified. Therefore,

there is no execution where 𝜋2 prints 1, which makes this optimization unsound.

C A Problem of PS with Non-determinism
In this section, we observe that PS (as well as PS2 and PS2.1) does not validate reordering of internal (pure) non-determinism

12

followed by a release write. The source of the problem is that release writes explicitly block promises with non-⊥ message

view to the same location (i.e., a thread transition for a release write to a location 𝑥 requires that the thread has no promise

with non-⊥ message view to 𝑥 .) Consider the following program:

𝑎 := 𝑥rlx ;

𝑦rlx := 𝑎

𝑏 := freeze(undef) ;
𝑥rel := 0 ;

if 𝑏 = 1 then
𝑐 := 𝑦rlx ;

if 𝑐 = 1 then
𝑥rlx := 1 ;

print(1) //not reachable!
else
𝑥rlx := 1

{

𝑥rel := 0 ;

𝑏 := freeze(undef) ;
if 𝑏 = 1 then
𝑐 := 𝑦rlx ;

if 𝑐 = 1 then
𝑥rlx := 1 ;

print(1) //reachable!
else
𝑥rlx := 1

Here, 𝜋2 is optimized by reordering the freeze instruction with the release write to 𝑥 . We observe that 𝜋2 printing 1 is

observable after the optimization while it is not before. Indeed, we note that 𝜋2 can be further optimized so that printing 1 is

observable even under a sequentially consistent execution.

11
We place freeze here to prevent 𝜋2 from invoking UB due to the branching on undef. Note that freeze returns the given value when a normal (non-undef)

value is passed and returns an arbitrary normal value when undef is passed.

12
a representative example of such non-determinism is freeze instruction of LLVM IR [21].

Sequential Reasoning for Optimizing Compilers under Weak Memory Concurrency PLDI ’22, June 13–17, 2022, San Diego, CA, USA

Domain: D ∈ Loc → P(Reg)
Ordering: D1 ⊑ D2 ≜ ∀𝑥 . D1 (𝑥) ⊇ D2 (𝑥)
Transitions: T (𝑥) (𝑥na := 𝑣, t) = ∅

T (𝑥) (𝑎 := 𝑥na, t) = t ∪ {𝑎}
T (𝑥) (_ := 𝑦acq, t) = ∅
T (𝑥) (_, t) = t otherwise

(a) Analysis for Load-to-Load Forwarding

Domain: D ∈ Loc → { ◦, •,⊤ }
Ordering: ◦ ⊑ • ⊑ ⊤
Transitions: TB (𝑥) (𝑥na := _, t) = ◦

TB (𝑥) (_ := 𝑥na, t) = ⊤
TB (𝑥) (𝑦rel := _, •) = ⊤
TB (𝑥) (_ := 𝑦acq, ◦) = •
TB (𝑥) (_, t) = t otherwise

(b) Analysis for Dead Store Elimination

Figure 8. Analyses for optimizer passes

First, 𝜋2 can print 1 through following execution:

(i) 𝜋2 writes 0 to 𝑥 ;

(ii) 𝜋2 promises 𝑥 = 1 (certifying it by freezing undef to 0);

(iii) 𝜋1 reads 1 from 𝑥 and writes 1 to 𝑦;

(iv) 𝜋2 freezes undef to 1 (unlike it did in the certification), enters the if-branch, reads 1 from 𝑦, fulfills 𝑥 = 1, and prints 1.

However, this behavior is not observable by 𝜋2 before the optimization because the thread cannot promise 𝑥 = 1 before freezing

undef due to the release write to 𝑥 that blocks the promise. Indeed, if 𝜋2 freezes undef to 1, it cannot promise 𝑥 = 1 since

the promise cannot be certified (i.e., 𝜋2 cannot execute to write 𝑥 = 1 in isolation.) Otherwise, it will not have any execution

printing 1 as 𝑏 ≠ 1 is already determined to be false.

Therefore, PS (as well as PS2 and PS2.1) does not validate reordering of a freeze instruction and a release write. We note

that PS does not validate reordering of non-determinism and release fences as well for the same reason. (An example obtained

by replacing the release write with a release fence in the above example is a counterexample to such reorderings.)

D A Certified Optimizer
In this section, we describe analyses and optimizations performed in the optimization passes, Load-to-Load Forwarding (LLF),

Dead Store Elimination (DSE), and Loop Invariant Code Motion (LICM) in detail. The analyses for LLF and DSE are given in

Fig. 8a and Fig. 8b respectively.

Load-to-Load Forwarding (LLF) forwards values read by loads to later loads, possibly across some atomic operations, but

not across acquire accesses. The analysis assigns an abstract state, a location-wise set of registers, at every program point.

Here, 𝑥 ↦→ 𝑅 for some 𝑅 ⊆ Reg indicates that the registers in 𝑅 contain values loaded from 𝑥 since the last acquire access.

Note that an acuiqre access may invalidate such information by acquiring new values for the memory from the context. The

analysis starts from the initial abstract state assigning ∅ to every location in the initial program point, and updates the abstract

state following the transition function T . In particular, the analysis adds a register 𝑎 to the abstract state of 𝑥 when it meets a

(non-atomic) read 𝑎 := 𝑥na; and it empties the abstract state of any location when it meets an acquire access. Given the analysis

result at each program point, LLF transforms a read 𝑎 := 𝑥na into a register assignment 𝑎 := 𝑏 if there is a register 𝑏 in the

register set of 𝑥 at that program point. Formally, any reachable SEQ state ⟨𝜎, 𝑃, 𝐹, 𝑀⟩ is related to the analysis result at that

program point as follows (where 𝜎.rs indicates a register file assigning a value to each register):

∀𝑥 𝑟 . 𝑥 ∈ 𝑃 ∧ 𝑟 ∈ 𝑅 ⇒ 𝜎.rs(𝑟) ⊑ 𝑀 (𝑥) for 𝑥 ↦→ 𝑅

Dead Store Elimination (DSE) removes dead stores which are overwritten by other stores, possibly across some atomic

operations, but not across release-acquire pairs. The analysis of DSE is interesting in that unlike SLF or LLF, it analyzes given

code backward because it has to analyze if a location will be overwritten in the future or not. Specifically, at every program

point, the analysis assigns to each share variable a flag indicating if there is a later store before facing a release-acquire pair or

a read from the corresponding location. This information is represented by the following abstract tokens:

• 𝑥 ↦→ ◦ indicates that there is a overwriting store in the future and no acquire read or a read from 𝑥 can be executed in the

middle;

• 𝑥 ↦→ • indicates that there is a overwriting store in the future and an acquire read may be executed in the middle while a

release write or a read from 𝑥 may not; and

• 𝑥 ↦→ ⊤ indicates any other case, in particular, including the case when there is a overwriting store in the future, but a

release-acquire pair or a read from 𝑥 can be executed in the middle.

The backward transition function TB, which gets the current instruction and the token to a location 𝑥 and returns the abstract

token to 𝑥 before the instruction, is given in Fig. 8b. Roughly speaking, the abstract state of 𝑥 transitions to ◦ for a non-atomic

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Minki Cho, Sung-Hwan Lee, Dongjae Lee, Chung-Kil Hur, and Ori Lahav

write to 𝑥 ; ◦ transitions to • for an acquire read; • transitions to ⊤ for a release write; and any token transitions to ⊤ for a read

from 𝑥 . Given the analysis result at each program point, DSE transformas a write 𝑥na := _ into a skip if the token to 𝑥 is ◦ or •
at that program point. Formally, any reachable SEQ state 𝑆 = ⟨𝜎, 𝑃, 𝐹,𝑀⟩ is related to the analysis result at that program point

as follows: for any 𝑥 , (𝑖) in any execution of 𝑆 under SEQ, 𝑥 is overwritten before executing a read from 𝑥 or an acquire read if

𝑥 ↦→ ◦; and (𝑖𝑖) in any execution of 𝑆 under SEQ, 𝑥 is overwritten before executing a read from 𝑥 or a release-acquire pair if

𝑥 ↦→ •.
Loop Invariant Code Motion (LICM) is implemented in two stages: (𝑖) introducing irrelevant loads; and (𝑖𝑖) forwarding the

loaded values of the introduced loads to the loads inside the loop using the LLF pass we discussed above. Since introducing an

irrelevant load is unconditionally sound in SEQ (i.e., no analysis is required), it is enough for LICM pass to decide which load

needs to be introduced. Indeed, LICM analyzes each loop body and collect the shared variables that can be potentially hoisted.

Note that this analysis only affects the performance of the optimized code, but not the correctness of the optimization pass

itself. Once the loads are introduced before each loop, running LLF pass transforms the loads inside the loop into register

assignments, resulting in the code where loop invariant loads are hoisted.

E A challenge in supporting mixing of atomic and non-atomic accesses to the same location
We describe a challenge in establishing the adequacy theorem of SEQ (i.e., Theorem 6.2) under the presence of mixing of atomic

and non-atomic accesses to the same location. The problem stems from a common compiler transformation that replaces an

undef in the source program with a non-undef value. In order to validate this transformation, PS
na

allows a thread to lower
its outstanding promises by changing the message value from 𝑣1 with 𝑣2 where 𝑣1 ⊑ 𝑣2. To see why the lower operation is

required, consider the following transformation:

𝑐 := 𝑦rlx ;

if 𝑐 = 1 then
𝑥rlx := 1

else
𝑥rlx := undef

{

𝑐 := 𝑦rlx ;

if 𝑐 = 1 then
𝑥rlx := 1

else
𝑥rlx := undef

{

𝑐 := 𝑦rlx ;

if 𝑐 = 1 then
𝑥rlx := 1

else
𝑥rlx := 1

{
𝑥rlx := 1 ;

𝑐 := 𝑦rlx

After the second transformation, which is marked in red, the thread can promise 𝑥 = 1 before executing 𝑐 := 𝑦rlx and

later fulfill the promise by taking else-branch. In contrast, without the lower operation, the thread before the optimization

cannot fulfill its promise 𝑥 = 1 by taking else-branch since the write 𝑥rlx := undef cannot fulfill the promise 𝑥 = 1. The lower

operation solves this problem by allowing the thread to first lower its promise 𝑥 = 1 to 𝑥 = undef and then fulfill the promise

through the write 𝑥rlx := undef.
While the lowering admits above transformation, it causes a mismatch between SEQ and PS

na
. In particular, PS

na
allows a

value of existing message that is pointed by a thread’s view to be lowered by another thread. However, this is not the case in

SEQ: a memory value in SEQ is only updated by executing acquire accesses. This gap between SEQ and PS
na

invalidates the

proof sketch for the adequacy given in §6.

A possible solution to bridge this gap would be extending SEQ to allow memory values to be lowered to undef when release

accesses are executed. Nevertheless, we chose to prohibit mixing of atomic and non-atomic accesses to the same location for

two reasons: (𝑖) to keep SEQ as simple as possible; and (𝑖𝑖) to make the proof of the adequacy theorem easier. By disallowing

the mixing, one can easily show that a thread’s view to a non-atomic location never points to an oustainding promise of

another thread, thereby lifting the above problem of the message value being lowered by another thread.

	Abstract
	1 Introduction
	2 The Sequential Permission Machine
	3 Advanced Behavior Refinement
	4 A Certified Optimizer
	5 Non-atomics in the Promising Semantics
	6 Adequacy of Sequential Reasoning
	7 Conclusion and Related Work
	Acknowledgments
	References
	A The Simulation Relation in SEQ
	B An Example Justifying the Semantics for Non-atomic writes
	C A Problem of PS with Non-determinism
	D A Certified Optimizer
	E A challenge in supporting mixing of atomic and non-atomic accesses to the same location

