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Abstract
Despite many years of research, it has proven very difficult to de-
velop a memory model for concurrent programming languages that
adequately balances the conflicting desiderata of programmers, com-
pilers, and hardware. In this paper, we propose the first relaxed
memory model that (1) accounts for a broad spectrum of features
from the C++11 concurrency model, (2) is implementable, in the
sense that it provably validates many standard compiler optimiza-
tions and reorderings, as well as standard compilation schemes to
x86-TSO and Power, (3) justifies simple invariant-based reasoning,
thus demonstrating the absence of bad “out-of-thin-air” behaviors,
(4) supports “DRF” guarantees, ensuring that programmers who use
sufficient synchronization need not understand the full complexi-
ties of relaxed-memory semantics, and (5) defines the semantics of
racy programs without relying on undefined behaviors, which is a
prerequisite for applicability to type-safe languages like Java.

The key novel idea behind our model is the notion of promises:
a thread may promise to execute a write in the future, thus enabling
other threads to read from that write out of order. Crucially, to
prevent out-of-thin-air behaviors, a promise step requires a thread-
local certification that it will be possible to execute the promised
write even in the absence of the promise. To establish confidence in
our model, we have formalized most of our key results in Coq.

Categories and Subject Descriptors D.1.3 [Concurrent Program-
ming]: Parallel programming; D.3.1 [Programming Languages]:
Formal Definitions and Theory—Semantics

Keywords Weak memory models; C++11; operational semantics

1. Introduction
What is the right semantics for concurrent shared-memory programs
written in higher-level languages? For programmers, the simplest
answer would be a sequentially consistent (SC) semantics, in which
all threads in a program share a single view of memory and writes
to memory take immediate global effect.

However, a naive SC semantics is costly to implement. First of
all, commodity architectures (such as x86, Power, and ARM) are
not SC: they execute memory operations speculatively or out of
order, and they employ hierarchies of buffers to reduce memory
latency, with the effect that there is no globally consistent view of
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memory shared by all threads. To simulate SC semantics on these
architectures, one must therefore insert expensive fence instructions
to subvert the efforts of the hardware. Secondly, a number of com-
mon compiler optimizations—such as constant propagation—are
rendered unsound by a naive SC semantics because they effectively
reorder memory operations. Moreover, SC semantics is stronger (i.e.,
more restrictive) than necessary for many concurrent algorithms.

Hence, languages like Java and C++ have opted instead to
provide relaxed (aka weak) memory models [21, 13], which enable
programmers to demand SC semantics when they need it, but which
also support a range of cheaper memory operations that trade off
strongly consistent and/or well-defined behavior for efficiency.

1.1 Criteria for a Programming Language Memory Model
Unfortunately, despite many years of research, it has proven very
difficult to develop a memory model for concurrent programming
languages that adequately balances the conflicting desiderata of
programmers, compilers, and hardware. In particular, we would like
to find a memory model that satisfies the following properties:

• The model should be implementable, i.e., it should validate com-
mon compiler optimizations, as well as standard compilation
schemes to the major modern architectures. To be implementable,
it must justify many kinds of instruction reordering and merging.

• The model should support high-level reasoning principles that
programmers and compiler analyses depend on. At a bare min-
imum, it should validate simple invariant-based verification,
and should provide some “DRF” guarantees [4], ensuring that
programmers who employ sufficient synchronization need not
understand the full complexities of relaxed-memory semantics.

• The model should ideally avoid relying on undefined behavior
to define the semantics of racy programs. This is a prerequisite
for applicability to type-safe languages like Java, in which well-
typed programs may contain data races but are nevertheless
expected to have safe, well-defined semantics.
Both Java and C++ fail to achieve some of these criteria.
In the case of Java, the memory model fails to validate a

number of common program transformations performed by real Java
compilers, such as redundant read-after-read elimination and “roach
motel” reordering [26]. Although this problem has been known for
some time, a satisfactory solution has yet to be developed.

In the case of C++, the memory model relies crucially on
undefined behaviors to give semantics to racy programs. Moreover,
it permits certain “out-of-thin-air” executions which violate basic
invariant-based reasoning (and DRF guarantees) [7].

1.2 The “Out of Thin Air” Problem
To illustrate the problem with C++, consider these two variants of
the classic “load buffering” litmus test (with two threads in parallel):

a := x;
y := 1;

x := y; (LB) a := x;
y := a;

x := y; (LBd)
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Here, we assume that all variables are initially 0, and that all
memory accesses are of the weakest consistency level, i.e., they
are compiled down to plain loads and stores at the hardware level
with no additional synchronization (in C++ this is called “relaxed”).
The question is: should it be possible for these programs to assign 1
to a? In the case of LB, the answer is yes: architectures like Power
and ARM may reorder the write of y before the read of x in the first
thread (since these are accesses to distinct variables), after which a
can be assigned 1 by a standard interleaving execution. In the case of
LBd, however, the answer ought to be no: all the operations simply
copy one variable to another and all are initially 0, so if a could
receive 1, it would come “out of thin air”. No hardware reorderings
or reasonable compiler optimizations will produce this behavior. If
they did, it would cause major problems: one would not be able to
establish even basic invariants (such as x = y = 0), and basic sanity
results like the aforementioned DRF theorems would cease to hold.
It is therefore a serious problem that the formal memory model of
C++ allows such out-of-thin-air (OOTA) behavior.

Intuitively, the reason C++ allows OOTA behaviors is that it
is not clear how to distinguish them from acceptable behaviors.
The C++ model formalizes valid executions as graphs of memory
access events (think: partially-ordered traces) subject to a set of
coherence axioms, and the same coherent event graph that describes
a valid execution of LB in which a receives 1 also describes a valid
execution of LBd in which a receives 1.

Hardware memory models (e.g., Power and ARM) handle this
problem by taking syntactic dependencies between instructions into
account in determining program semantics. Under such models,
the out-of-order execution in LB is valid because the write to y is
independent of the read from x, whereas in LBd such out-of-order
execution is prevented by the syntactic dependency between the
two instructions. Although this approach is suitable for modeling
hardware, it is too brittle for a language-level semantics because
it fails to validate standard compiler optimizations that remove
syntactic dependencies (see also [7]). As a very simple example,
consider the following variant of LB and LBd:

a := x;
y := a+ 1− a;

x := y; (LBfd)

Under the hardware models, this LBfd program would be treated
similarly to LBd due to the syntactic data dependency, so a could
not receive 1. But even a basic optimizing compiler could trivially
transform LBfd to LB, in which case a could receive 1.

As a result, we still to this day lack a semantics for relaxed-
memory concurrency in Java and C++ that corresponds to how
these languages are implemented and that provides sufficient rea-
soning guarantees to programmers and compiler-writers. Several
proposals have recently been made for how to fix the Java and C++
memory models (some of which are discussed in §6), but none
have been proven to validate the full range of standard optimiza-
tions/reorderings performed by Java and C++ compilers and by
commodity hardware like Power and ARM. Furthermore, for most
of the existing proposals, it is known that indeed they do not validate
some important reorderings.

1.3 A “Promising” Semantics for Relaxed Memory
In this paper, we present what we believe is a very promising way
forward: the first relaxed memory model to support a broad spectrum
of features from the C++ concurrency model while also satisfying
all three criteria listed in §1.1.

We achieve these ends through a combination of mechanisms
(some standard, some not), but the most important and novel idea
for the reader to take away from this paper is the notion of promises.

Under our model, which is defined by an operational semantics,
a thread T may nondeterministically “promise” to write a value v

to a memory location x at some point in the future. From the point
of view of other threads, a promise is no different from an ordinary
write: once T has promised to write v to x, other threads can read
from that write. (In contrast, T cannot read from its own promised
write until T has fulfilled the promise: this is crucial to preserve basic
sanity of the semantics.) Intuitively, promises simulate the effect of
read-write reorderings by allowing write events to be visible to other
threads before the point at which they occur in the program order.

We must, however, ensure that promises do not introduce bad
OOTA behaviors. Toward this end, we only allow T to promise
to write v to x if it is possible to thread-locally certify that the
promise can be fulfilled in a finite number of steps. That is, we
must show that T will be able to write v to x after some finite
sequence of steps of T ’s execution (i.e., with no help from other
threads). The certification requirement guarantees absence of bad
OOTA executions by ensuring that T can only promise to write a
value v to x if T could have written v to x anyway.

Returning to the examples from §1.2, it is easy to see how
promises give us the desired semantics:

• In LB, the first thread can promise to write 1 to y (since it will
indeed write 1 to y no matter what value is assigned to a), after
which the second thread can read from that promise and write 1
to x. Subsequently, the first thread can execute normally, reading
1 from x and assigning it to a.

• The execution of LBfd may proceed in exactly the same way. The
fact that the write of y depends syntactically on a is irrelevant,
because during certification of the promised write of 1 to y, the
expression a+ 1− a will always evaluate to 1.

• By contrast, the OOTA behavior will not be allowed for LBd. In
order for the first thread to promise to write 1 to y, it would need
to certify that it can write 1 to y without promises. But since all
variables are initially 0, this is not possible.

Our model supports all features of C++ concurrency except con-
sume reads and SC accesses. Consume reads are widely considered
a premature aspect of the C++11 standard and are currently im-
plemented the same as acquire reads in mainstream compilers. In
contrast, SC accesses are a major feature of C++, and originally
our model included an account of SC accesses as well. However,
in the course of trying to mechanize correctness of compilation to
Power (§5.3), we discovered that our semantics of SC accesses was
flawed, and this led us to discover a flaw in the C++11 standard as
well! (See [19] for further details.) Thus, a proper handling of SC
accesses remains an open and important problem for future work.

In the rest of the paper, we will flesh out the idea of promises—
as well as the other elements of our model—in layers. We begin
in §2 by presenting the details of our model restricted to relaxed
reads and writes. In §3, we extend this base model further to support
atomic updates (i.e., read-modify-write operations, like CAS). Then,
in §4, we scale the model up to handle most features of the C++
memory model. In §5, we present our formal results—validating
many program transformations, compilation to x86-TSO and Power,
DRF theorems, and an invariant-based logic—most of which are
fully mechanized in the Coq proof assistant (totalling about 37K
lines of Coq). In §6, we compare with related work, and in §7, we
conclude with discussion of future work.

2. Basic Model for Handling Relaxed Accesses
In this section, we introduce the key ideas of our memory model, first
by example and then more formally. At first we will only consider
a semantics for fully “relaxed” atomic read and write accesses (in
the sense of C++). This is a natural starting point, since the OOTA
problem is fundamentally about how to give a reasonable semantics
for these relaxed accesses, and the key elements of our solution
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are easiest to understand in this simpler setting. We will see in
subsequent sections how to extend and generalize this base model
to account for a much richer variety of memory operations.

To illustrate our semantics, we will write small programs such
as the following:

x := 1;
a := y; // 0

y := 1;
b := x; // 0

(SB)

As a convention, we write a, b, c for local variables (registers) and
x, y, z for (distinct) shared memory locations, and assume that all
variables are initialized to 0. We refer to thread i as Ti. Moreover, in
order to refer to a specific observation of the program, we annotate
the corresponding reads with the values expected to be read (e.g.,
in the above program, the comment notation indicates the observed
result that a = b = 0).

2.1 Main Ideas
High-Level Requirements: Reorderings and Coherence Re-
laxed read and write operations are intended to be compiled down
directly to plain loads and stores at the machine level, so one of
the main requirements of our semantics is that it be at least as
permissive as commodity hardware. Toward this end, our semantics
must justify reordering of independent memory operations (i.e.,
operations that access distinct locations), since the more weakly
consistent architectures (like ARM) may potentially perform such
reorderings. There are four such classes of reorderings—write-read,
write-write, read-read, and read-write—and in §5 we will prove
formally that our semantics justifies all of them.

On the other hand, it is also important that our semantics not be
unnecessarily weak. In particular, all the existing implementations of
C++, even for weaker architectures like Power and ARM, guarantee
at a bare minimum a property we call per-location coherence (aka
SC-per-location). Per-location coherence says that, even though
threads may observe writes to different locations in different orders,
they must observe writes to the same location in a single total
order (called the “modification order” in C++ lingo). In addition to
being supported by hardware, per-location coherence is preserved
by common compiler optimizations as well. Hence, we want our
semantics of relaxed accesses to guarantee it. (In §4.3 we will
present an even weaker mode of accesses that does not provide
full per-location coherence.)

Operational Semantics with Timestamps In contrast to the C++
memory model, which relies on declarative semantics over event
graphs, ours employs a more standard SC-style operational seman-
tics for concurrency, in which the executions of different threads are
nondeterministically interleaved. However, in order to account for
weak memory behaviors, we use a more elaborate memory repre-
sentation than the standard SC semantics does. Instead of being a
flat map from addresses to values, our memory records the set of all
writes ever performed. It may help to think of writes as messages,
and memory as a message pool which grows monotonically. When a
thread T reads from a location x, it need not read “the latest” write
to x, since there is no shared understanding among threads of what
the latest write is. The thread T thus retains flexibility in terms of
which message it reads, but we must place some restrictions on this
flexibility in order to guarantee per-location coherence.

Specifically, we totally order the writes to each location by at-
taching a (unique) timestamp to each write message. Thus, messages
are triples of the form 〈x : v@t〉 (where x is a location, v a value,
and t a timestamp). (The modification order for a location x is thus
implicitly derivable from the order of timestamps on x’s messages.)
In addition, for each thread T , we keep track of a map from locations
x to the largest timestamp of a write to x that T has observed or
executed. We refer to this map as T ’s view of memory, and one can
think of it as recording the set of most recent write messages that

T has observed. Hence, when T reads from a location x, it must
read from a message with a timestamp at least as large as the one
recorded for x in T ’s view. And when T writes to x, it must pick a
timestamp strictly larger than the one recorded for x in its view.

Let us see now how our semantics, as explained thus far, already
suffices to justify desirable reorderings while ruling out violations
of coherence. First, recall the write-read reordering exhibited by
the “store buffering” SB example above, and let us see how the
behavior can be justified. Initially, assume the memory contains the
initialization messages 〈x : 0@0〉 and 〈y : 0@0〉, and both threads
maintain a view of x and y that maps them to 0. When T1 performs
the assignment x := 1, it will choose some timestamp t > 0, add
the message 〈x : 1@t〉 to the memory, and update its view of x to t.
But this will have no effect on its view of y or T2’s view of x, which
remain at 0. Thus, when T1 subsequently reads y, it is free to read 0.
(And analogously for T2.)

On the flip side, per-location timestamps also explain why the
following coherence violation is forbidden.

x := 1;
a := x; // 2

x := 2;
b := x; // 1

(COH)

Here, the two writes to x must be totally ordered. Suppose, without
loss of generality, that the x := 1 was written at timestamp 1 and
x := 2 at timestamp 2. Then, although T1 may read value 2, T2

cannot read 1, because 1 was written at a smaller timestamp than
the one that T2 already recorded in its view when it wrote x := 2.

One subtle point is that, when writing to a location x, a thread
T may select any unused timestamp t larger than the one recorded
in its view of x, but t need not be globally maximal. That is, t may
be smaller than the timestamp that another thread has already used
for a write to x. This freedom is in fact crucial in order to permit
write-write reorderings, as exemplified by the following test case:

x := 2;
y := 1;
a := y; // 2

y := 2;
x := 1;
b := x; // 2

(2+2W)

To get the desired weak outcome, the writes of x := 1 and y := 1
must pick smaller timestamps than the x := 2 and y := 2 writes,
respectively, but at least one of the 1-writes must be executed after
the 2-write to the same location. Thus, it is essential to be able to
write using a timestamp that is not globally maximal.

Promises Unfortunately, our timestamp semantics alone does not
suffice to explain read-write reorderings, as exemplified by the (LB)
and (LBfd) programs from §1.2. It is precisely these reorderings
that motivate our introduction of promises.

As explained in §1.3, a thread T may at any point promise to
write x := v at some timestamp t (provided that t is greater than T ’s
current view of x). This promise is treated to a large extent like an
actual write operation. In particular, it adds a new message 〈x : v@t〉
to memory, which may then be read by other threads. However,
in order to make such a promise, T must thread-locally certify
it—that is, T must demonstrate that it will be able to fulfill this
promise (writing x := v at timestamp t) in a finite number of thread-
local steps. Certification is needed to guarantee plausibility of the
promise, but crucially, there is no requirement that the specific steps
of execution taken during certification must match the subsequent
steps of actual execution. Indeed, we already witnessed this with the
(LB) and (LBfd) executions, where T1 read x = 0 during the initial
certification of its promised write to y, but read x = 1 during the
actual execution.

Let us now briefly touch on a few technical points concerning
the interaction of promises and timestamps.

First of all, it is important that T cannot directly read its own
promises, because this would violate per-location coherence: for
example, the single-threaded program a := x; x := 1 would be able
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to return a = 1! Note that we do not need to explicitly enforce this
restriction—it just falls out from our rules concerning timestamps.
In particular, if T were to promise 〈x : v@t〉, and then were to read
from its own promise, then T ’s view of x would be updated to t,
and there would be no way for T to subsequently fulfill the promise
because it would have to pick a timestamp strictly greater than t
when performing the assignment x := v.

That said, it is possible for T to read its promised value indirectly
via another thread, as in the LB and LBfd programs. It may even
read the promised value from the same location where it promised
to write it, as in the following example [18].

a := x; // 1
x := 1;

y := x; x := y; (ARM-weak)

This outcome can be explained by T1 promising 〈x : 1@2〉, then
T2 reading x = 1 and storing it to y, and T3 reading y = 1 and
writing x := 1 at timestamp 1, which T1 can read before fulfilling
its promise. Such behavior, strange though it may seem, is actually
allowed (though not yet observed) by the ARM memory model [11].

Last but not least, we wish to ensure that promises do not lead to
impossible situations later down the road, i.e., that making a promise
cannot cause the execution of a program to get stuck. The thread-
local certification that accompanies a promise step goes some way
toward ensuring this progress condition, but it is not enough. We
also amend the semantics in the following two ways:

1. Every step a thread takes, it must re-certify all its outstanding
promises to make sure they can still be fulfilled. To see why,
consider a possible execution of the following program:

a := x;
x := 1;

x := 2;

Suppose that T1 (for no particularly good reason) promises
〈x : 1@1〉. At first, this is easy to certify: T1 can read the
initial value of x (the message 〈x : 0@0〉), and then perform
the assignment x := 1 picking timestamp 1. Suppose then
that T2 picks the timestamp 2 when performing x := 2. If
at this point in the execution T1 were permitted to read the
message 〈x : 2@2〉, it would have the effect of bumping up
T1’s view of x to timestamp 2, which would prevent it from
subsequently fulfilling its promise. It is thus crucial that T1

not be allowed to read x = 2 (in this particular execution),
and indeed our semantics will not allow it to do so because
the re-certification check would fail. As the example illustrates,
promises can restrict a thread’s future nondeterministic choices
concerning the messages it reads.

2. We require the total order on timestamps to be dense (e.g.,
choosing timestamps to be rational numbers), so that there
is always a place to put intermediate writes before a promise.
Consider, for example, the following program:

x := 1;
x := 2;

x := 3;

Here, T1 may promise 〈x : 2@2〉—when validating this promise,
T1 might write 〈x : 1@1〉 before writing 〈x : 2@2〉. If, however,
T2 subsequently writes 〈x : 3@1〉 before T1 has actually written
x := 1, then T1 can no longer pick 1 as a timestamp for
x := 1. To make progress here, T1 needs a timestamp for x := 1
strictly between 0 and 2, and 1 is already taken. By requiring
the timestamp order to be dense, we ensure that there is always
some free timestamp (e.g., 1.5) that T1 can use.

2.2 Formal Definition
We now define our model for relaxed accesses formally. Let Loc be
the set of memory locations, Val be the set of values, and Time be an
infinite set of timestamps, densely totally ordered by≤, with 0 being

the minimum element. A timemap is a function T : Loc→ Time.
The order ≤ is extended pointwise to timemaps.

Programming Language To keep the presentation abstract, we
do not fix a particular programming language; we simply consider
each thread i as a transition system with a set of states Statei, initial
state σ0

i ∈ Statei and final state σfinal
i ∈ Statei. Intuitively, these

states store the values of the local registers and the program counter.
Transitions are labeled: the label R(x, v) corresponds to a transition
that reads the value v from location x, and W(x, v) denotes a write
of the value v to x, while local transitions that do not access the
memory are labeled with “Silent”. We assume receptiveness of the
transition systems—whenever an R(x, v)-transition is possible from
a state σi, so is an R(x, v′)-transition for every value v′—and that
they only get stuck in the σfinal

i states.

Messages A message m is a tuple 〈x : v@t〉, where x ∈ Loc,
v ∈ Val and t ∈ Time. We denote by m.loc, m.val, and m.t the
components of a message m. Two messages m and m′ are called
disjoint, denoted m#m′, if m.loc 6= m′.loc or m.t 6= m′.t.
Two sets M and M ′ of messages are called disjoint, denoted
M #M ′, if m#m′ for every m ∈M and m′ ∈M ′.

Memory A memory is a pairwise disjoint finite set of messages.
A message m may be (additively) inserted into memory M if m is
disjoint from every message in M . Formally, the additive insertion
M ←↩A m is given by M ∪ {m} and is only defined if M #{m}.

Thread States and Configurations A thread state is a triple
TS = 〈σ, V, P 〉, where σ is the thread’s local state, V is a timemap
representing the thread’s view of memory, and P is a memory that
keeps track of the thread’s outstanding promises. We denote by
TS .st, TS .view, and TS .prm the components of a thread state
TS . In turn, a thread configuration is a pair TC = 〈TS ,M〉, where
TS is a thread state and M is a memory, called the global memory.
Note that we will always have TS .prm ⊆M .

Figure 1 shows the five reduction rules for thread configurations.
The SILENT rule handles the case when the program performs some
local computation that does not affect memory. The READ rule
handles the case when the program reads from a location x. The rule
nondeterministically selects some messagem in the memory, whose
timestamp is greater than or equal to the timestamp recorded for x
in the thread’s view, and returns its value; it also updates the thread’s
view of x to the timestamp of m. The WRITE rule handles the
case when the program writes to location x. It extends the memory
with a new message for x, whose timestamp t is greater than the
one recorded for x in the thread’s view, and it updates the thread’s
view of x to match t. The PROMISE rule extends the memory and
the thread’s promise set with an arbitrary new message m, whose
timestamp is not already present in the memory. (The promise
certification is handled separately, as described below.) Finally, the
FULFILL rule is similar to the WRITE rule, except that instead of
adding a message to the memory, it removes an appropriate message
from the thread’s promise set P .

We note that the WRITE rule is redundant; we merely included it
to improve readability. Any application of WRITE can be simulated
by first promising the appropriate message with the PROMISE rule
and then immediately fulfilling the promise with the FULFILL rule.

As we have already mentioned, we have to restrict thread exe-
cutions so that all promises a thread makes are fulfillable. Thread
configurations satisfying this property are called consistent. For-
mally, a thread configuration 〈TS ,M〉 is consistent if 〈TS ,M〉 −→∗
〈TS ′,M ′〉 for some TS ′ and M ′ such that TS ′.prm = ∅. Notice
that in the certification of a promise, it is formally possible to make
further promises. Since, however, in the end all such promises must
be fulfilled, it is useless to make such promises. (A proof of this
property is included in our formal development.)
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(THREAD: SILENT)

σ
Silent−−−→ σ′

〈〈σ, V, P 〉,M〉 −→ 〈〈σ′, V, P 〉,M〉

(THREAD: READ)

σ
R(x,v)−−−−→ σ′ 〈x : v@t〉 ∈M
V (x) ≤ t V ′ = V [x 7→ t]

〈〈σ, V, P 〉,M〉 −→ 〈〈σ′, V ′, P 〉,M〉

(THREAD: WRITE)

σ
W(x,v)−−−−→ σ′ M ′ = M ←↩A 〈x : v@t〉
V (x) < t V ′ = V [x 7→ t]

〈〈σ, V, P 〉,M〉 −→ 〈〈σ′, V ′, P 〉,M ′〉

(THREAD: PROMISE)
M ′ = M ←↩A m P ′ = P ←↩A m

〈〈σ, V, P 〉,M〉 −→ 〈〈σ, V, P ′〉,M ′〉

(THREAD: FULFILL)

σ
W(x,v)−−−−→ σ′ 〈x : v@t〉 ∈ P P ′ = P \ {〈x : v@t〉}

V (x) < t V ′ = V [x 7→ t]

〈〈σ, V, P 〉,M〉 −→ 〈〈σ′, V ′, P ′〉,M〉

(MACHINE STEP)
〈TS(i),M〉 −→+ 〈TS ′,M ′〉
〈TS ′,M ′〉 is consistent

〈TS,M〉 −→ 〈TS[i 7→ TS ′],M ′〉

Figure 1. Operational semantics for the simplified model handling only relaxed read and write accesses.

Machine States A machine state MS = 〈TS,M〉 consists of a
function TS assigning a thread state to every thread, and a (global)
memory M . The initial state MS0 (for a given program) consists
of the function TS0 mapping each thread i to its initial state σ0

i ,
a current timestamp of 0 for every location, and an empty set of
promises; and the initial memory M0 that has one initial message
〈x : 0@0〉 for each location x. A machine takes a step (see the last
rule in Figure 1) whenever a thread can take several steps to some
consistent configuration. Note that we allow multiple thread steps in
one machine step. This is convenient in our proofs, and can reduce
the number of certifications during an execution of a program.

Finally, we can easily show that a machine never gets stuck
unless each thread i has reached 〈σfinal

i , V, ∅〉 for some view V .
For non-final states, progress follows from the receptiveness and
progress assumptions about the programming language, together
with the invariant that no thread has a higher view of any x than
the highest timestamp for x in memory. Another crucial invariant is
consistency: the MACHINE STEP rule demands that each machine
step taken by a thread must preserve consistency of the thread’s own
configuration, and it implicitly preserves the consistency of other
threads’ configurations as well, since they are free to ignore any new
messages the thread has added. When all threads reach their final
states, consistency implies they must have no promises left to fulfill.

3. Supporting Atomic Updates
In this section, we extend our basic model for relaxed accesses
to also handle (relaxed) atomic update—aka read-modify-write
(RMW)—instructions, such as fetch-and-add and compare-and-
swap. Updates are essential as a means to implement synchroniza-
tion (e.g., mutual exclusion) between threads, but this also makes
them tricky to model semantically. In particular, a successful update
operation performed by one thread will often have the effect of
“winning a race” and hence blocking (previously possible) update
operations performed by other “losing” threads. This stands in con-
trast to the updates-free fragment in §2, in which threads are free
to ignore the messages of other threads. Thus, to extend our model
to support updates, we must ensure that threads performing updates
cannot invalidate the already-certified promises of other threads.

An update is an atomic composition of a read and a write to
the same location x. However, unlike under SC, atomicity requires
more than just avoiding interference of other threads between the
two operations. Consider the following example (taking FAA(x, 1)
to be an atomic fetch-and-add of 1 to x, which returns the value of
x before the increment):

a := FAA(x, 1); b := FAA(x, 1); (Par-Inc)

Atomicity ensures that it is not possible for both threads to increment
x from 0 to 1 (we must either get a = 1 or b = 1). To obtain this, we
require that the read timestamp of the update (i.e., the timestamp of
the write message that the update reads from) immediately precede
its write timestamp (i.e., the timestamp of the write message that the
update generates) in x’s modification order, and that future writes to

x may not be assigned timestamps in between them. In the example
above, if both of the updates were to increment x from 0 to 1, the
write timestamp for one of the updates would have to come between
the read and write timestamps for the other update.

To enforce this restriction, we extend messages to store a
continuous range of timestamps rather than a single timestamp.
Thus, messages are now tuples of the form 〈x : v@(f, t]〉 where
x ∈ Loc, v ∈ Val, and f, t ∈ Time satisfying f < t or f = t = 0.
We write m.from and m.to to denote the f and t components of
a message m. Intuitively, m can be thought of as reserving the
timestamps in the range (m.from,m.to]; among these, m.to is the
“real” timestamp of m, but the remaining timestamps in the range
are reserved so that other messages cannot use them. Timestamp
reservation is reflected in the following revised definition of message
disjointness, which enforces that disjoint messages for the same
location must have disjoint ranges:

〈x : v@(f, t]〉# 〈x′ : v′@(f ′, t′]〉 ,

x 6= x′ ∨ t ≤ f ′ < t′ ∨ t′ ≤ f < t

With timestamp reservation, we can easily ensure that the write
timestamp of an update is adjacent to its read timestamp in the
modification order. Formally, we will say two messages m and
m′ are adjacent, denoted Adj(m,m′), if m.loc = m′.loc and
m.to = m′.from. In defining the semantics of updates, we will
then insist that the message that the update inserts into memory must
appear adjacently after the message that it reads from. This suffices
to guarantee the correct outcome in the Par-Inc program above.

Although the introduction of timestamp reservation enables us to
easily model updates, it creates a complication for promises, namely
that timestamp reservations may invalidate the promise certifications
already performed by other threads. Consider, for example, the
following program:

a := x; // 1
b := FAA(z, 1); // 0
y := b+ 1;

x := y; FAA(z, 1); (Upd-Stuck)

This behavior ought to be allowed, since hardware could reorder
the read of x after the independent accesses to z and y. To produce
this behavior, following our semantics from the previous section,
T1 could promise to write y := 1 because it can thread-locally
certify that the promise can be fulfilled (the certification will involve
updating z from 0 to 1). If, however, T3 then updates z from 0 to 1,
that will mean that T1 can no longer perform the update it needs to
fulfill its promise, and its execution will eventually get stuck.

To avoid such stuck executions, we strengthen the check per-
formed by promise certification, i.e., the consistency requirement
on thread configurations. We require that each thread’s promises are
locally fulfillable not only in the current memory, but also in any
future memory, i.e., any extension of the memory with additional
messages. This quantification over future memories ensures that
thread configurations remain consistent whenever another thread
performs an execution step, and thus the machine cannot get stuck.

5



(THREAD: FULFILL UPDATE)

σ
U(x,vr,vw)−−−−−−−→ σ′ 〈x : vr@(fr, tr]〉 ∈M

mw = 〈x : vw@(tr, tw]〉 mw ∈ P P ′ = P \ {mw}
V (x) ≤ tr V ′ = V [x 7→ tw]

〈〈σ, V, P 〉,M〉 −→ 〈〈σ′, V ′, P ′〉,M〉

Figure 2. Additional rule for updates (all other rules are as before
except all messages 〈x : v@t〉 are replaced by 〈x : v@(f, t]〉).

Returning to the above example, T1 will not be permitted to
promise to write y := 1 in the initial state, precisely because that
promise could not be fulfilled under an arbitrary future memory
(e.g., one containing the update of T3, as we showed). T1 may,
however, first promise 〈z : 1@(0, 1]〉, reserving the time range from
the initialization of z up to its increment. T1 can fulfill that promise,
because no future extension of the memory will be able to add
any messages in between. After making that promise, T1 may then
promise, e.g., 〈y : 1@(3, 4]〉, which it can now fulfill under any
extension of the memory. With these promises in place, T3 will be
prevented from updating z from 0 to 1; it will be forced to update z
from 1 to 2, which will not block the future execution of T1.

Our quantification here over all future memories may seem rather
restrictive in that it completely ignores what can or cannot happen
in a particular program. That said, we find it a simple and natural
way of ensuring “thread locality”. The latter is a guiding principle
in our semantics, according to which the set of actions a thread can
take is determined only by the current memory and its own state.

Formally, we say that Mfuture is a future memory of M if
Mfuture = M ←↩A m1 ←↩A ...←↩A mn for some n ≥ 0 and messages
m1, ... ,mn. And we now say a thread configuration 〈TS ,M〉 is
consistent if, for every future memory Mfuture of M , there exist TS ′

and M ′ such that 〈TS ,Mfuture〉 −→∗ 〈TS ′,M ′〉 and TS ′.prm = ∅.
Finally, we extend the operational semantics for thread config-

urations with one additional rule for update fulfillment shown in
Figure 2. This rule forces its write to be adjacent in modification
order to its read. As with ordinary writes, a normal (non-promised)
update step can be simulated by a promise step immediately fol-
lowed by fulfillment. Note that the other rules remain exactly the
same; they simply ignore the m.from component of messages m.

4. Full Model
In this section, we extend the basic model of §2-3 to handle all the
features of the C++ concurrency model except SC accesses and
consume reads.

4.1 Release/Acquire Synchronization
Release/Acquire Fences A crucial feature of the C++ model is the
ability for threads to synchronize using memory fences or stronger
kinds of atomic accesses. Consider the message-passing test case:

x := 1;
fence-rel;
y := 1;

a := y; // 1
fence-acq;
b := x; // 6= 0

(MP+fences)

The release fence between the writes, together with the acquire
fence between the reads, prevents the weak behavior of the example
(i.e., that of returning a = 1 and b = 0). Roughly speaking, the
C++ model forbids this behavior by requiring that whenever a read
before an acquire fence reads from a write after a release fence, the
two fences synchronize, which in turn means that any write that
happens-before the release fence must be visible to any read that
happens-after the acquire fence. So, if T2 reads y = 1, then after
the acquire fence it must read x = 1.

To implement this semantics, we extend our model in two ways.

First, we refine each thread’s view. Rather than having a single
view of which messages it has observed, a thread now has three
views: V = 〈cur, acq, rel〉. We denote by V.cur, V.acq and V.rel
the components of a thread view V . A thread’s current view, cur,
is as before: it records which messages the thread has observed
and restricts which messages a read may return and a write may
create. Its release view, rel, records what the thread’s cur view
was at the point of its last release fence. Dually, its acquire view,
acq, records what the thread’s cur view will become if it performs
an acquire fence. Consequently, the views are related as follows:
rel ≤ cur ≤ acq.

Second, we extend write messages to record a message view R,
which records the release view of the writing thread at the time the
write occurred (updated to include the write itself). Thus, a message
now takes the form m = 〈x : v@(f, t], R〉, where R(x) = t. We
write m.view for the message view of m.

During execution of relaxed accesses, a thread’s views drift apart.
When a thread reads a message, it incorporates the message’s view
into the thread’s acq view, but not into its cur or rel views. When
a thread writes a message, it uses the thread’s rel view as the basis
for the message’s view, but only incorporates the message itself into
the thread’s cur and acq views, not its rel view.

Fence commands bring these diverging views closer to one
another. Specifically, an acquire fence increases the thread’s cur
view to match its acq view, thereby ensuring that the thread is up to
date with respect to views of all the messages read before the fence.
Symmetrically, a release fence increases the thread’s rel view to
match its cur view, thereby ensuring that the views of all messages
the thread writes after the release fence will contain the messages
observed before the fence.

Returning to the MP+fences program, suppose that T1 emitted
messages 〈x : 1@(_, tx], _〉 and 〈y : 1@(_, ty], Ry〉. Then, T1’s cur
view before the release fence maps x to tx. The fence then updates
T1’s rel view to match its cur view, so that the message view
accompanying the subsequent write to y will map x to tx as well.
(Without the release fence, this message view would map x to 0.) On
T2’s side, the read of y = 1 updates T2’s cur view to [x@0, y@ty],
and its acq view to [x@tx, y@ty]. The acquire fence then updates
T2’s cur view to match its acq view, and hence the subsequent read
of x must see the x := 1 write. If either the release or the acquire
fence were missing, then T2’s cur view at the read of x would have
been [x@0, y@ty], allowing it to read x = 0.

Interaction with Promises Promises (like every other message)
now carry a view, and threads reading a promise are subject to
the same constraints as if they were reading a normal message.
In particular, after reading a promise and performing an acquire
fence, a thread can only read messages with timestamp greater than
or equal to the view carried in the promise message. In order to
avoid cases where execution gets stuck, we must ensure that some
message can be read for every location. Thus we require that the
view attached to a promise message includes only timestamps of
messages that exist in memory at the time the promise is made.

Going back to MP+fences, note that T1 cannot promise y := 1
before performing x := 1. Indeed, because of the release fence,
the view in the y := 1 message must include the message that will
be produced for the x := 1 assignment, but at the beginning the
only message for x in memory is the initial one (at timestamp 0).
Hence, release fences effectively serve also as barriers for promises.
We find it convenient to explicitly require this in our semantics:
whenever a release fence is performed, the set of promises of the
executing thread must be empty. This may seem restrictive, but note
that the main reason for introducing promises was to allow read-
write reorderings, as in the LB example of §1.2. If there is a release
fence in between the read and write, then the reordering is no longer
possible, and thus our motivation for promising the write is void.
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Release/Acquire Accesses In addition to release and acquire
fences, C++ offers a more fine-grained way of achieving synchro-
nization, via acquire reads and release writes. Intuitively speaking,
an acquire read is a relaxed read followed by an acquire fence,
whereas a release write is a release fence followed by a relaxed
write, with the restriction that these fences induce synchronization
only on the location of the access. For example, in the following
program,1 only the second thread synchronizes with the first one.

x := 1;
yrel := 1;
z := 1;

a := yacq; // 1
b := x; //6= 0

c := zacq; // 1
d := x; // 0

Hence, b must get the value 1, while d may get 0.
To model these accesses, we treat the rel view of each thread

not as a single view, but rather as one separate view per location,
recording the thread’s current view at the latest release fence or
release write to that location. Thus, when a thread performs a release
write to location x, we update its release view of x to match its cur
view, while a release fence effects this update on the release views
of all locations. Then, a write to x (either release or relaxed) will use
the release view of x (newly updated, if it is a release write) to form
the view of the write message, and an acquire read will incorporate
the message’s view into the reading thread’s current view.

In the example above, at the end of T1’s execution, its thread
view has rel(y) = [x@tx, y@ty, z@0], whereas rel(z) =
[x@0, y@0, z@tz]. As a result, the yacq read increases T2’s cur
view to [x@tx, y@ty, z@0], which forces it to then read x = 1,
whereas the zacq read increases T3’s cur view to [x@0, y@0, z@tz],
which allows it to later read x = 0.

Release Sequences Using the per-location release views, we can
straightforwardly handle C++-style release sequences (following
the definition of release sequences given in [28]). In C++, an acquire
read synchronizes with a release write w to x not only if it reads
from w but also if it reads from a write in w’s release sequence. The
release sequence of w is inductively defined to include all the same-
thread writes/updates to x after w, as well as all updates reading
from an event in the release sequence of w. For example, in the
following program, the yacq synchronizes with the yrel := 1 because
it reads from the FAA(y, 1), which in turn reads from the y := 2.

x := 1;
yrel := 1;
y := 2;

FAA(y, 1);
a := yacq; // 3
b := x; // 6= 0

Our operational semantics already handles the case of reading from
a later write of the same thread, because the thread’s release view
for y is included in the message’s view. To handle the updates that
read from elements of the release sequence, we insist that the view
of the write message of an update must incorporate the view of the
read message of the update. Thus, in this example, the views of all
the y messages contain x@tx, and hence T3 must read x = 1.

Promises Over Release/Acquire Accesses We finally point out
another delicate issue related to the interaction between promises
and release/acquire accesses. Consider the following variants of the
LB example:

a := x; // 6= 1
yrel := 1;

x := y; (LBr) a := xacq; // 1
y := 1;

x := y; (LBa)

In the first variant (LBr), the promise of yrel := 1 should be
forbidden for the same reason that a promise over a release fence
is forbidden, and hence the specified behavior is disallowed. We
note that this behavior is possible under the C++ model, but is not

1 In this and in following code snippets, we annotate non-relaxed accesses
with their access mode; all non-annotated accesses are relaxed.

possible under the usual compilation of release writes to Power
and ARM (using a lwsync/dmb_sy fence in the first thread).2 More
generally, our model forbids promises over release writes to the
same location.

In the second variant (LBa), we allow the promise of y := 1
and thus the a = 1 outcome. The reason is that we want to enable
optimizations that result in the elimination of an acquire read and
thus remove the reordering constraints of the acquire. Consider, for
example, the following program transformation:

a := x; // 2
y := 1;
b := yacq;
y := 2;

x := y; ;

y := 1;
b := 1;
y := 2;
a := x; // 2

x := y; (LBa′)

which may in effect reorder the y := 2 write before the a := x read
even though there is an acquire read in between (by first replacing
yacq with 1 and then reordering a := x past both writes to y). Thus,
our semantics has to allow promises over acquire actions. Note that
there is no need to do so for release writes, because release writes
cannot simply be eliminated in this way.

4.2 Sequentially Consistent (SC) Fences
We now extend the model with sequentially consistent (SC) fences,
whose purpose is to allow the programmer to enforce strong ordering
guarantees among memory accesses. In particular, full sequential
consistency is restored if an SC fence is placed between every two
shared memory accesses of a program.3

To handle SC fences, we extend our machine state with a global
timemap S , which records the latest messages written by any thread
before an SC fence. When a thread T executes an SC fence, in
addition to the effect of both an acquire and a release fence, T
increases both its cur view and the global timemap to the maximum
of the two. Consider the following variant of the SB example:

x := 1;
fence-sc;
a := y; // 0

y := 1;
fence-sc;
b := x; //6= 0

(SB+fences)

Here, the current views of the two threads just before their SC
fences are [x@tx, y@0] and [x@0, y@ty], respectively, while the
global view is [x@0, y@0]. If the fence of T1 is executed first, it
will update S to [x@tx, y@0]. So, when the fence of T2 is executed,
both its cur view and S become [x@tx, y@ty], from which point
onwards T2 must read x = 1.

4.3 “Plain” Non-Synchronizing Accesses
Both C++ and Java provide some form of non-synchronizing ac-
cesses, i.e., accesses that are meant to be used only for non-racy
data accesses (C++’s non-atomic accesses and Java’s normal ac-
cesses). Such accesses can never achieve synchronization, even to-
gether with fences. Consequently, compilers are free to reorder non-
synchronizing reads across acquire fences, and to reorder release
fences across non-synchronizing writes. These non-synchronizing
accesses, which we refer to as plain accesses, are easily supported
in our model. The difference from relaxed accesses is simple: a
plain read from a message m should not incorporate m.view into
the thread’s acq view; and a message m produced by a plain write
should only carry the 0-view (i.e., ⊥ in the lattice of views). More-
over, plain writes can be promised even beyond a release fence or a
release write to the same location.

2 Moreover, we observe that even the C++ model forbids this outcome, if we
additionally make the read of y in the second thread into a consume read
(which is supposed to be compiled exactly as a relaxed read, but preserving
syntactic dependencies).
3 In this regard, our semantics is stronger than the C++ model [6], which
fails to validate this basic property, and follows Lahav et al. [17, 19] instead.

7



Besides the reordering mentioned above, compilers can (and
do) utilize further the assumption that some accesses are intended
to be non-racy. Indeed, assuming two non-racy reads, a compiler
may reorder them even if they are reading the same location. In a
broader context, it may pave the way to further optimizations (e.g.,
a compiler may prefer to unconditionally optimize a := x; b := ∗p;
c := x to b := ∗p; a := x; c := a, without the burden of analyzing
whether the pointer p points to x or not). Since we followed C++’s
assumption of full per-location coherence for our relaxed accesses,
the reordering of two reads from the same location is unsound for
them. Concretely, consider the following example:

x := 1;
x := 2;

a := x; // 2
b := x; // 1

;
x := 1;
x := 2;

b := x; // 1
a := x; // 2

The target program obviously allows the specified behavior, while
the source does not. Fortunately, it is not hard to adapt our plain
accesses to provide only partial per-location coherence (in C++11
terms, dropping “coherence-RR” for plain accesses), consequently
allowing this reordering. The idea is to extend the notion of a view
V—both message views R and the three component views of a
thread (cur, acq, rel)—from being a single timemap to a pair of
timemaps: a “normal” one (V.rlx) as before, and one for plain
accesses (V.pln). The V.pln timemap is generally smaller than
the normal timemap (V.pln ≤ V.rlx), and restricts the possible
timestamps available to plain reads. A plain read from a message m
with location x and time t only consults this new timemap, checking
that cur.pln(x) ≤ t, and only updates cur.rlx(x) to include t. A
plain write, on the other hand, cannot pick a timestamp smaller than
cur.rlx(x) (since we do maintain the other coherence properties
besides “coherence-RR”).

Importantly, we do not exploit “catch-fire” semantics (à la C++)
to accommodate our plain accesses, but rather give a well-defined
semantics to arbitrary racy programs. In addition, we note that it is
easy to decouple the two weaknesses of plain accesses compared to
relaxed ones, by introducing a middle access mode that allows
synchronization (together with release and acquire fences) but
supports only partial per-location coherence.

Remark 1. Our model handles only hardware-atomic memory ac-
cesses. To handle non-atomic reads/writes, such as Java double and
C struct accesses, our semantics could be extended by introducing
“garbage values” (LLVM-style undefined values [2]) as in [8].

4.4 System Calls
For the purpose of defining the behaviors of programs (as needed
to prove soundness of transformations), we augment our language
and semantics with system calls labeled with “SysCall(v)”. These
are operations that are visible to an external observer (e.g., printing
statements). For simplicity, we assume that these take one value
(input or output), and more importantly, that they do not access the
memory, and serve as the strongest barrier for reordering. Thus, we
simply model system calls as SC fences.

4.5 Modifying Existing Promises
So far, our model does not allow promises, once made, to be
changed. However, our full model does allow two forms of promise
adjustment, both of which are defined in such a way that threads
that have already read from the promised message are unaffected.

Split The first form of promise adjustment is splitting. Consider
the following example:

a := x; // 2
if a = 2 then FAA(y, 1); FAA(y, 1); else FAA(y, 2);

x := y;

We find it natural to allow the specified behavior, as it can be ob-
tained by benign compiler optimizations: first FAA(y, 1); FAA(y, 1)

can be merged to FAA(y, 2), and then the whole if-then-else state-
ment can be replaced by FAA(y, 2). Nevertheless, the model de-
scribed so far forbids this behavior. Indeed, clearly, an execution
obtaining this behavior must start with T1 promising 〈y : 2@(f, t]〉.
Since this promise must be certified under an arbitrary future mem-
ory, T1 must pick f = 0 (or else, it cannot fulfill its promise for a
memory that includes, say, 〈y : 42@(0, 5]〉). Then, T2 can read the
promise and add a message of the form 〈x : 2@(_, tx]〉 to the mem-
ory. Now, T1 would like to read this message. However, if it does so,
it will not be able to fulfill its promise 〈y : 2@(0, t]〉, simply because
there is no available timestamp interval in which it can put the first
y = 1 message. To solve this, we allow threads to split their own
promises in two pieces, keeping the original promise with the same
m.to value. For the example above, T1 could proceed by splitting
its promise 〈y : 2@(0, t]〉 into 〈y : 1@(0, t/2]〉 and 〈y : 2@(t/2, t]〉,
reading the message 〈x : 2@(_, tx]〉 and fulfilling both promises.

Lower The second form of promise adjustment is lowering of
the promised message’s view. Note that by promising a message
carrying a high view, a thread places more restrictions on the readers
of that promise. Thus, changing the view of a promise m to a view
R′ ≤ m.view can never cause any harm. Technically, including
this option simplifies our simulation arguments used to prove the
soundness of program transformations, by allowing us to have a
simpler simulation relation between the source and target memories.
More generally speaking, it allows us to prove and use the following
natural property: if all the views included in some machine state
MS (in its memory’s messages and its threads’ views) are less than
or equal to all views in another machine state MS′, then every
behavior of MS′ is also a behavior of MS.

4.6 Formal Model
Finally, we formally present our full model, combining and making
precise all the ideas outlined above. The model employs three modes
for memory accesses, naturally ordered as follows:

pln @ rlx @ ra

We use o as a metavariable for access mode. The programming
language is modeled by a transition system whose transition labels
(see §2.2) are: “Silent” for local transitions; R(o, x, v) for reads;
W(o, x, v) for writes; U(or, ow, x, vr, vw) for updates; Facq, Frel, Fsc
for fences; and SysCall(v) for system calls. Note that updates have
two access modes, one for the read and one for the write; and that
only fences may have the sc mode.

View A view is a pair V = 〈Tpln, Trlx〉 of timemaps (see §2.2)
satisfying Tpln ≤ Trlx. We denote by V.pln and V.rlx the
components of V . View denotes the set of all views.

Messages A message m is a tuple 〈x : v@(f, t], R〉, where x ∈
Loc, v ∈ Val, f, t ∈ Time, and R ∈ View, such that f < t or
f = t = 0, and R.rlx(x) = t or R = ⊥. We denote by m.loc,
m.val, m.from, m.to, and m.view the components of m.

Memory A memory is a (nonempty) pairwise disjoint finite set of
messages (see §3 for def. of disjointness). A memory M supports
the following insertions of a message m = 〈x : v@(f, t], R〉 :

• The additive insertion, denoted by M ←↩A m, is only defined if
{m}#M , in which case it is given by {m} ∪M .

• The splitting insertion, denoted by M ←↩S m, is only defined
if there exists m′ = 〈x : v′@(f, t′], R′〉 with t < t′ in M , in
which case it is given by M\{m′} ∪ {m, 〈x : v′@(t, t′], R′〉}.

• The lowering insertion, denoted by M ←↩U m, is only defined
if there exists m′ = 〈x : v@(f, t], R′〉 with R ≤ R′ in M , in
which case it is given by M\{m′} ∪ {m}.

We write M(x) for the sub-memory {m ∈M | m.loc = x }.
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(MEMORY: NEW)

〈P,M〉 m−→ 〈P,M ←↩A m〉

(MEMORY: FULFILL)
←↩∈ {←↩S ,←↩U } P ′ = P ←↩ m M ′ = M ←↩ m

〈P,M〉 m−→ 〈P ′ \ {m},M ′〉

(READ-HELPER)
o = pln =⇒ cur.pln(x) ≤ t

o ∈ {rlx, ra} =⇒ cur.rlx(x) ≤ t
cur′ = cur t V t (o w ra ?R)
acq′ = acq t V t (o w rlx ?R)

where V = [pln : (o w rlx ? {x@t}), rlx : {x@t}]

〈cur, acq, rel〉 R:o,x,t,R−−−−−−→ 〈cur′, acq′, rel〉

(WRITE-HELPER)
cur.rlx(x) < t

cur′ = cur t V acq′ = acq t cur′
rel′ = rel[x 7→ rel(x) t V t (o w ra ? cur′)]

Rw = (o w rlx ? (rel′(x) tRr))
where V = [pln : {x@t}, rlx : {x@t}]

〈cur, acq, rel〉 W:o,x,t,Rr,Rw−−−−−−−−−→ 〈cur′, acq′, rel′〉

(SC-FENCE-HELPER)
S′ = acq.rlx t S

cur′ = acq′ = 〈S′,S′〉
rel′ = λ_.〈S′,S′〉

〈〈cur, acq, rel〉,S〉 Fsc−−→
〈〈cur′, acq′, rel′〉,S′〉

(READ)

σ
R(o,x,v)−−−−−→ σ′

〈x : v@(_, t], R〉 ∈M
V R:o,x,t,R−−−−−−→V ′

〈〈σ,V, P 〉,S,M〉 −→ 〈〈σ′,V ′, P 〉,S,M〉

(WRITE)

σ
W(o,x,v)−−−−−→ σ′

o = ra =⇒ ∀m′ ∈ P (x). m′.view = ⊥
m = 〈x : v@(_, t], R〉
〈P,M〉 m−→ 〈P ′,M ′〉
V W:o,x,t,⊥,R−−−−−−−−→V ′

〈〈σ,V, P 〉,S,M〉 −→ 〈〈σ′,V ′, P ′〉,S,M ′〉

(UPDATE)

σ
U(or,ow,x,vr,vw)−−−−−−−−−−→ σ′

ow = ra =⇒ ∀m′ ∈ P (x). m′.view = ⊥
〈x : vr @(_ , tr ], Rr 〉 ∈M

mw =〈x : vw@(tr, tw], Rw〉
〈P,M〉 mw−−→ 〈P ′,M ′〉

V R:or,x,tr,Rr−−−−−−−→ W:ow,x,tw,Rr,Rw−−−−−−−−−−−→V ′

〈〈σ,V, P 〉,S,M〉 −→ 〈〈σ′,V ′, P ′〉,S,M ′〉

(ACQ-FENCE)

σ
Facq−−→ σ′ cur′ = acq

〈〈σ, 〈cur, acq, rel〉, P 〉,S,M〉 −→
〈〈σ′, 〈〈cur′, acq, rel〉, P 〉,S,M〉〉

(REL-FENCE)

σ
Frel−−→ σ′ rel′ = λ_.cur
∀m ∈ P. m.view = ⊥

〈〈σ, 〈cur, acq, rel〉, P 〉,S,M〉 −→
〈〈σ′, 〈〈cur, acq, rel′〉, P 〉,S,M〉〉

(SC-FENCE)

σ
Fsc−−→ σ′

〈V,S〉 Fsc−−→ 〈V ′,S′〉
∀m ∈ P. m.view = ⊥
〈〈σ,V, P 〉,S,M〉 −→
〈〈σ′,V ′, P 〉,S′,M〉

(SYSTEM CALL)

σ
SysCall(v)−−−−−−→ σ′

〈V,S〉 Fsc−−→ 〈V ′,S′〉
∀m ∈ P. m.view = ⊥

〈〈σ,V, P 〉,S,M〉 SysCall(v)−−−−−−→
〈〈σ′,V ′, P 〉,S′,M〉

(SILENT)

σ
Silent−−−→ σ′

〈〈σ,V, P 〉,S,M〉 −→ 〈〈σ′,V, P 〉,S,M〉

(PROMISE)
←↩∈ {←↩A ,←↩S ,←↩U } P ′ = P ←↩ m
M ′ = M ←↩ m m.view ∈M ′

〈〈σ,V, P 〉,S,M〉 −→ 〈〈σ,V, P ′〉,S,M ′〉

(MACHINE STEP)
〈TS(i),S,M〉 −→∗ 〈TS ′,S′,M ′〉
〈TS ′,S′,M ′〉 e−→ 〈TS ′′,S′′,M ′′〉
〈TS ′′,S′′,M ′′〉 is consistent

〈TS,S,M〉 e−→ 〈TS[i 7→ TS ′′],S′′,M ′′〉

Figure 3. Full operational semantics.

Closed Memory Given a timemap T and a memory M , we write
T ∈ M if, for every x ∈ Loc, we have T (x) = m.to for some
m ∈ M with m.loc = x. For a view V , we write V ∈ M if
T ∈ M for each component timemap T of V . A memory M is
closed if m.view ∈M for every m ∈M .

Future Memory For memories M,M ′, we write M −→M ′ if
M ′ ∈ {M ←↩A m,M ←↩S m,M ←↩U m} for some message m, and
M ′ is closed. We say M is a future memory of M w.r.t. a memory
P , if P ⊆M ′ and M −→∗ M ′.

Threads A thread view is a triple V = 〈cur, acq, rel〉, where
cur, acq ∈ View and rel ∈ Loc → View satisfying rel(x) ≤
cur ≤ acq for all x ∈ Loc. We denote by V.cur, V.acq, and V.rel
the components of V . A thread state is a triple TS = 〈σ,V, P 〉
defined just as in §2.2 except with a thread view V instead of a
single timemap (σ is a local state and P is a memory). We denote
by TS .st, TS .view, and TS .prm the components of TS .

Thread Configuration Steps A thread configuration is a triple
〈TS ,S,M〉, where TS is a thread state, S is a timemap (the global
SC timemap), and M is a memory.

Figure 3 presents the full list of thread configuration steps. To
avoid repetition, we use the additional rules READ-HELPER, WRITE-
HELPER, and SC-FENCE-HELPER. These employ several helpful
notations: ⊥ and t denote the natural bottom elements and join
operations for timemaps and for views (pointwise extensions of the
initial timestamp 0 and thet—i.e., max—operation on timestamps);
{x@t} denotes the timemap assigning t to x and 0 to other locations;
and (cond ?X) is defined to be X if cond holds, and ⊥ otherwise.

The write and the update steps cover two cases: a fresh write
to memory (MEMORY:NEW) and a fulfillment of an outstanding
promise (MEMORY:FULFILL). The latter allows to split the promise
or lower its view before its fulfillment (note that whenm ∈ P ⊆M ,
we have P = P ←↩U m and M = M ←↩U m by def. of←↩U ).

Consistency A thread configuration 〈TS ,S,M〉 is called consis-
tent if for every future memory Mfuture of M w.r.t. TS .prm and
every timemap Sfuture with S ≤ Sfuture ∈Mfuture, there exist TS ′,
S ′, M ′ such that:

〈TS ,Sfuture,Mfuture〉 −→∗ 〈TS ′,S ′,M ′〉 ∧ TS ′.prm = ∅

Machine and Behaviors A machine state is a triple MS =
〈TS,S,M〉 consisting of a function TS assigning a thread state to
every thread, an SC timemap S, and a memory M . The initial
state MS0 (for a given program) consists of the function TS0

mapping each thread i to its initial state σ0
i , the zero thread view (all

timestamps in all timemaps are 0), and an empty set of promises;
the zero timemap S0; and the initial memory M0 consisting of one
message 〈x : 0@(0, 0],⊥〉 for each location x. The machine step is
defined by the last rule in Figure 3. The variable e in the final thread
configuration step can either be a usual step (e is empty), or denote
a system call (e = SysCall(v)).

To define the set of behaviors of a program P (namely, what is
externally observable during P’s executions), we use the system
calls that P’s executions perform. More precisely, every execution
induces a sequence of system calls (each includes a specific value
for input/output), and the set of behaviors of P is taken to be the set
of all system call sequences induced by executions of P .
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Promise-Free Machine In several of our results below, we make
use of the fragment of our model obtained by revoking the ability to
make promises (i.e., omitting the PROMISE rule). We call this the
promise-free machine.

5. Results
In this section, we outline a number of important results we have
proven to hold of our “promising” model.

All the results of this section are fully validated in Coq except
for §5.3 and Theorems 2 and 3, for which we provide proof outlines.
The Coq development and all proof outlines are available at [1].

5.1 Compiler Transformations
A transformation Psrc ; Ptgt is sound if it does not introduce new
behaviors under any (parallel and sequential) context, that is, for
every context C, every behavior of C[Ptgt] is a behavior of C[Psrc].

Next, we list the program transformations proven to be sound
in our model. To streamline the presentation, we refer to transfor-
mations on the semantic level, as if they are applied to actions,
namely fences and (valueless) memory accesses. Thus, we presup-
pose adequate syntactic manipulations on the program level that
implement these semantic transformations. For example, a syntactic
transformation implementing Rxrlx; R

y
rlx ; Ryrlx; R

x
rlx is a reordering

a := x; b := y ; b := y; a := x on the program code (assuming
a 6= b); while a merge of a write and an update correspond, e.g., to a
transformation of the form x := a; FAA(x, 1) ; x := a+ 1. Nev-
ertheless, our formal development proves soundness of transforma-
tions on the purely syntactic level, assuming a simple programming
language with memory operations, conditionals, and loops.

Trace-Preserving Transformations Transformations that do not
change the set of traces of actions in a given thread are clearly sound.
For example, y := a+ 1− a; y := 1 is a sound transformation
(recall that a denotes a local register; see §1:LBfd). Indeed, this
is the crucial property that distinguishes a memory model for a
higher-level language from a hardware memory model.

Strengthening A simple transformation that is sound in our model
is strengthening of access modes. A read/write action Xo can be
transformed to Xo′ provided that o v o′. Similarly, it is sound to
replace Uor,ow by Uo′r ,o′w provided that or v o′r and ow v o′w, or to
strengthen Frel or Facq to Fsc.

Reordering Next we consider transformations of the form X; Y ;

Y; X, and specify the set of reorderable pairs, that is the set of pairs
X; Y for which we proved this reordering transformation to be sound
in our model. First, the following pairs are reorderable (where x and
y denote distinct locations):
• Wx; Ry • Wx; Wyvrlx • W; Facq
• Rxvrlx; R

y and Rxpln; Rxpln • Rxvrlx; W
y
vrlx • R6=rlx; Facq

• Frel; W6=rlx • Frel; R • Frel; Facq

In addition, for the purpose of specifying reorderable pairs,
an update is just a combination of a read and a write. Thus,
X; Uor,ow is reorderable if both X; Ror and X; Wow are reorderable,
and symmetrically Uor,ow ; X is reorderable if both Ror ; X and Wow ; X
are reorderable. In particular, a pair Uxoxr ,oxw ; Uy

o
y
r ,o

y
w

is reorderable if
x 6= y, oxr v rlx, oyw v rlx.

The set of reorderable pairs in our model contains all pairs that
are intended to be reorderable in the C++ and Java memory models,
including in particular all “roach-motel reorderings” [28, 26].

Merging These are transformations that completely eliminate an
action. Clearly, the two actions in mergeable pairs (pairs for which
we proved the merge to be sound in our model) should access the
same location. The following three kinds of pairs are mergeable:

LRvrlxM = ld LRraM = ld; lwsync
LWvrlxM = st LWraM = lwsync; st
LF@scM = lwsync LFscM = sync
LUvrlx,vrlxM = L: lwarx; cmp; bc Lout; stwcx.; bc L; Lout:
LUra,vrlxM = LUrlx,rlxM; lwsync LUvrlx,raM = lwsync; LUrlx,rlxM
LUra,raM = lwsync; LUrlx,rlxM; lwsync

Figure 4. Compilation to Power.

R-after-R: Ro; Ro W-after-W: Wo; Wo R-after-W: W; R

Using the strengthening transformation, the access modes here
can be read as upper bounds (e.g., Rra; Rrlx can be first strengthened
to Rra; Rra and then merged). Note that the R-after-W merge allows
even to eliminate a redundant acquire read after a plain/relaxed write
(as in Example LBa′ in §4.1).

In addition, the following pairs involving updates are mergeable:

R-after-U: Urlx,o; Rrlx, and Ura,o; Rra U-after-W: Wo; Uor,o

U-after-U: Uo1,o; Uo2,o, provided that Uo1,o; Ro2 is mergeable

Note that read-after-update does not allow the read to be an acquire
read unless the update includes an acquire read (unlike read-after-
write elimination). This is due to release sequences: eliminating an
acquire read after a relaxed update may remove the synchronization
due to a release sequence ending in this update.

Finally, two fences of the same type can obviously be merged.
The set of mergeable pairs in our model contains all pairs

intended to be mergeable in the C++ and Java models [28, 26].
In particular, we support R-after-W merging, which is the effect of
local satisfaction of reads in hardware like TSO, Power, and ARM.

Introducing and Eliminating Unused Reads Introduction of ir-
relevant read accesses is sound in our model, unlike in the Java
memory model [26]. Eliminating plain read accesses whose read
values are never used in the program is also sound in our model. In
contrast, eliminating relaxed or acquire reads is not generally sound
because it may remove synchronization.

Proof Technique Our proof of these results employs the well-
known approach of simulation relations between the target and the
source programs. Importantly, our definitions ensure thread-locality,
thus allowing us to define a simulation relation on thread config-
urations, which (as we prove) can be composed into a simulation
relation on full machine states. Additionally, for thread configura-
tions, we prove the adequacy of simulation up-to context, which lets
us ignore the certification processes in the source and the target, and
just provide simulations between simple “code snippets”.

5.2 Compilation to TSO
Like C++11, our model can be efficiently compiled to x86-TSO.
Since this architecture provides relatively strong guarantees, every
memory access can be compiled to a primitive hardware instruc-
tion. Moreover, release/acquire fences are ignored during compi-
lation, and SC fences are mapped to an MFENCE instruction. Cor-
rectness of this mapping follows from a recent result by Lahav and
Vafeiadis [18], which shows that all weak behaviors of TSO are
explained by store-load reordering and merging. Accordingly, it re-
duces the correctness proof of compilation to TSO to: (i) supporting
write-read reordering and write-read merge; and (ii) a correctness
proof of compilation to SC. Since we proved the soundness of write-
read reordering and merge (regardless of the access modes of the
two events), and since clearly our model is weaker than SC, we
immediately derive the correctness of compilation to TSO.

5.3 Compilation to Power
Figure 4 provides the compilation scheme of our model to Power,
following the C++11 one. We denote by LPM the Power program
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obtained by applying this mapping to a source program P . To prove
compilation correctness, we again utilize a result of [18], which
shows that every allowed behavior of a Power programQ (assuming
its recent declarative model of Alglave et al. [5]) is a behavior of a
Power programQ′ under a stronger model, called “StrongPower”,
where Q′ is obtained from Q by applying a sequence of local
reorderings of independent memory accesses to distinct locations.
Accordingly, it suffices to show that, given a source program P ,
our model allows all behaviors that StrongPower allows for some
reordering of LPM. We split this into two steps, outlined below.

Compilation to StrongPower First, we show that the compilation
to StrongPower is correct, that is: every behavior of LPM under
StrongPower is allowed for P in our model. StrongPower strength-
ens the Power model by forbidding “load buffering” behaviors (for-
mally, it disallows cycles in the entire program order together with
the reads-from relation). Consequently, we do not actually need
promises in order to explain StrongPower behaviors—instead, we
can just show that behaviors of LPM under StrongPower are allowed
for P under our promise-free machine (see end of §4.6). (Note
that this does not contradict the fact that promises are necessary
to explain weak behaviors of the (non-strong) Power model, such
as the LB.) To ease the proof, we use an alternative, declarative
presentation of our promise-free machine (§5.6), which can straight-
forwardly be shown to be weaker than the StrongPower model under
the compilation scheme in Figure 4. See [1] for details.

Reorderings in the Compiled Program Second, to account for se-
quences of reorderings of independent memory accesses to distinct
locations in LPM, we would like to relate them to the reorderings in
the source program P that we proved sound in §5.1. But there is a
subtle complication here: some reorderings in LPM do not correspond
to reorderings in P! For example, if P is x :=ra 1; y :=rlx 2, its
compilation LPM has the form lwsync;st x 1;st y 2, but reorder-
ing the stores in LPM would produce lwsync;st y 2;st x 1, which
does not correspond to the reordering of P to y :=rlx 2;x :=ra 1
(compiling the latter would yield st y 2;lwsync;st x 1).

To solve this issue, we slightly extend our model and consider
compilation as if it happens in two stages. First, all release/acquire
accesses in P are split into weaker accesses and corresponding
fences as follows:
• Rra ; Rrlx; Facq and Wra ; Frel; Wsrlx
• Ura,o ; Urlx,o; Facq and Uo,ra ; Frel; Uo,srlx where o v rlx

Here, we introduced a new srlx (“strong relaxed”) mode, which has
the same semantics as rlx but blocks promises like ra writes (i.e.,
in write/update steps, we require that ∀m′ ∈ P (x). m′.view = ⊥
if o w srlx). The reason for this is technical: we would have liked
to just use rlx rather than srlx, but at least for Uo,ra, the mapping
to Frel; Uo,rlx is unsound. Using srlx, however, we have proved the
soundness of the above source-to-source mappings (in Coq) using a
straightforward simulation argument (the target program’s promises
are subject to the same constraints as the source’s), and srlx is
sufficient for the rest of the proof.

After this first step, we obtain a program P1, which has no
ra accesses except possibly for Ura,ra’s (which are surrounded
by fences after compilation), and which has srlx accesses only
immediately after release fences. (The relevance of this property
will become clearer below.) For instance, in the example given
above, P1 would be fence-rel;x :=srlx 1; y :=rlx 2. We then apply
the compilation scheme of Figure 4, where srlx is compiled like
rlx. Clearly, by construction of P1, the result LP1M is identical to
LPM. Moreover, sequences of reorderings of accesses applied to LPM
now correspond directly to sequences of reorderings in P1.

Thus, suppose Power program Q is the result of applying
some sequence of reorderings of accesses to the compilation result
LPM = LP1M. Then, there exists a source program P2 such that

LP2M = Q, and P2 is obtained from P1 by applying a sequence of
reorderings at the source level. Crucially, the reorderings that takeP1

toP2 are all sound in our model: in addition to those already covered
in §5.1, the reorderings of Wxsrlx/Uxrlx,srlx past a Ryrlx/W

y
rlx/U

y
rlx,rlx

(where x 6= y) have also been proven sound in Coq. (Note that
the reverse reorderings—moving accesses past a srlx—are not
needed because of the aforementioned property that all srlx’s in
P1 come immediately after a release fence.) Returning to the above
example, when matching the reordering of lwsync;st x 1;st y 2
to lwsync;st y 2;st x 1 in the target, these new reorderings
validate the transformation of fence-rel;x :=srlx 1; y :=rlx 2 to
fence-rel; y :=rlx 2;x :=srlx 1 in the source.

Putting it all together: by the compilation to StrongPower result,
we know that any behavior of Q under StrongPower is also a
behavior of P2 in our model; by soundness of the reorderings,
we know this is also a behavior of P1; and by soundness of the
source-to-source mappings, it is also a behavior of the original P .

Finally, we note that for C++11, there is a more efficient com-
pilation scheme of acquire reads and updates, which uses a control
dependency and an isync fence instead of a lightweight fence
(lwsync). We believe that our model is also correctly compiled us-
ing this scheme. Nevertheless, this will require a more direct proof
(isync fences are beyond the reach of [18]), which we leave to
future work.

5.4 DRF Theorems
We proceed with an explanation of our DRF theorems. These
theorems provide ways of restricting attention to better-behaved
subsets of the model assuming certain conditions on programs.

Evidently, the most complicated part of our semantics is the
promises. Without promises, our model amounts to a usual oper-
ational model, where thread steps only arise because of program
instructions. Hence, our first DRF result (and the one that is by
far the most challenging to prove) identifies a set of programs for
which promises cannot introduce additional behaviors. Specifically,
we show that this holds for programs in which all racy accesses
are release/acquire, assuming a promise-free semantics. Crucially,
as usual in DRF guarantees, the races are considered under the
stronger semantics (promise-free), not the full model, thus allowing
programmers to adhere to this programming discipline while being
completely ignorant of the weak semantics (promises).

More precisely, we say that a machine state MS is o-race-free,
if whenever two different threads may take a (non-promise) step
accessing the same location, then both accesses are reads or both
have access mode strictly stronger than o.

Theorem 1 (Promise-Free DRF). Let =⇒ denote the steps of the
promise-free machine (see end of 4.6). Suppose that every machine
state that is =⇒-reachable from the initial state of a programP is rlx-
race-free. Then, the behaviors of P according to the full machine
coincide with those according to the =⇒-machine.

Putting promises aside, a counter-intuitive part of weak memory
models are the relaxed accesses, which allow threads to observe
writes without observing previous writes to other locations. Re-
moving pln/rlx accesses, namely keeping only ra, substantially
simplifies our machine (in particular, its thread views would consist
of just one view, the cur one). Accordingly, our second DRF result
strengthens Theorem 1 and states that it suffices to show that there
are only races on ra accesses under release/acquire semantics to
conclude that a program has only release/acquire behaviors.

Theorem 2 (DRF-RA). Let ra
=⇒ be identical to =⇒ in Theorem 1,

except for interpreting rlx and pln accesses in program transitions
as if they are all ra-accesses. Suppose that every machine state
that is ra

=⇒-reachable from the initial state of a program P is rlx-
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race-free. Then, the behaviors of P according to the full machine
coincide with those according to the ra

=⇒-machine.

We observe that promise re-certification is necessary for the
proofs of Theorems 1 and 2: in [1] we show a counterexample in
the absence of promise re-certification.

To state a more standard DRF theorem, we assume programs
are well-locked: (1) locations are partitioned into normal and lock
locations, and (2) lock locations are accessed only by matching pairs
of the following lock/unlock operations:

lock(l) : while !CAS(l, 0, 1, acqrel) do skip;

unlock(l) : lrel := 0;

The theorem forbids any weak behavior in programs that, under
SC semantics, race only on lock locations. For the SC semantics, we
consider “an interleaving machine”, where reads read from the latest
write to the appropriate location (regardless of the access modes).

Theorem 3 (DRF-LOCK). Let sc
=⇒ denote the steps of the interleav-

ing machine. Suppose that every machine state that is sc
=⇒-reachable

from the initial state of a well-locked program P is race-free on
normal locations. Then, the behaviors of P according to the full
machine coincide with those according to the sc

=⇒-machine.

5.5 An Invariant-Based Program Logic
Besides the DRF guarantees, to demonstrate that our model does
not suffer from the disastrous consequences of OOTA, we prove
soundness of a very simple program logic for concurrent programs
with respect to our model. In particular, it can be trivially used to
show that LBd must return a = 0, and more generally, that programs
cannot read values they never wrote. Note that even this basic logic
is unsound for C++’s relaxed accesses (whereas it is sound in our
model even if all accesses are plain).

We take a program proof to be a tuple 〈J, S1, S2, ...〉, where J
is a global invariant over the shared variables and each Si ⊆ Statei
is a set of local states (intuitively describing the reachable states of
thread i) such that the following conditions hold:

• σ0
i ∈ Si and

∧
x∈Loc x = 0 ` J .

• If σi
R(o,x,v)−−−−−→ σ′i then σi ∈ Si ∧ J ∧ x = v ` σ′i ∈ Si.

• If σi
W(o,x,v)−−−−−→ σ′i then σi ∈ Si ∧ J ` σ′i ∈ Si ∧ J [v/x].

• If σi
U(or,ow,x,vr,vw)−−−−−−−−−−→ σ′i then

σi ∈ Si ∧ J ∧ x = vr ` σ′i ∈ Si ∧ J [vw/x].
• For e ∈ {Facq, Frel, Fsc, Silent, SysCall(v)}, if σi

e−→ σ′i then
σi ∈ Si ` σ′i ∈ Si.

Figure 5 provides an illustration of a program proof showing that
LBd does not exhibit weak behaviors.

Now, given a program proof for a program P , we can show that
all the reachable states MS from the initial state MS0 of P satisfy
the global invariant J :

Theorem 4 (Soundness). Let 〈J, S1, S2, ...〉 be a program proof,
and let MS = 〈TS ,S,M〉 such that MS0 −→∗ MS. Then,
TS(i).st ∈ Si for every thread i, and

∧
x∈Loc x = f(x).val ` J

for every function f that assigns to every location x a message
m ∈M such that m.loc = x.

Our Coq proof of this theorem is simple: it holds trivially for
promise-free executions, and extends easily to promise steps, since
every promise step has a promise-free certification.

5.6 Declarative Presentation of the Promise-Free Machine
In this section, we provide a declarative presentation of our model,
in the style of C++11, namely using sets of execution graphs to

{
J
}

a := x;{
J ∧ (a = 0)

}
y := a;{
J
}

{
J
}

x := y;{
J
} J

def
= (x = 0) ∧ (y = 0)

Figure 5. A simple derivation in the invariant-based program logic.

describe the possible behaviors of programs. This presentation
abstracts away particular timestamp choices and thread views, and
replaces them by formal conditions on partial orders in execution
graphs. The promise mechanism has an inherent operational nature,
and thus our declarative presentation only applies to the promise-free
machine (see end of §4.6). Nevertheless, this presentation is useful
for comparing our model to C++11, and it is used for establishing
the correctness of compilation (see §5.3). We also find this useful as
a technical device for analyzing possible behaviors of the promise-
free machine and applying Theorem 1.

The nodes of execution graphs are called events. An event
consists of an identifier (natural number), a thread identifier (taken
from a finite set Tid of thread identifiers, or 0 for initialization
events), and a label. Labels have the form R(o, x, v) or W(o, x, v)
(where o is the access mode, x is the location accessed, and v is the
value read/written), as well as Facq, Frel, or Fsc (for fences). The
functions tid, lab, typ, and loc return (when applicable) the thread
identifier, label, type (R, W, F), and location of an event.

In turn, an execution graph G consists of:
• a set E of events. This set always contains a set E0 of initialization

events, consisting of one plain write event assigning the initial
value for every location. We assume that all initial values are 0.
For T ∈ {R, W, F}, we denote by T the set {a ∈ E | typ(a) = T}.
We also use subscript for access modes (e.g., Wwrlx denotes the
set of all events a ∈ W with whose access mode is at least rlx).

• a relation sb, called sequenced before, which is a union of
relations (E0 × (E \ E0)) ∪ {sbi | i ∈ Tid}, where every sbi
(i ∈ Tid) is a strict total order on {a ∈ E | tid(a) = i}.

• a relation rmw, called read-modify-write pairs, consisting of
immediate sb-edges (i.e., if 〈a, b〉 ∈ rmw then no c satisfies both
〈a, c〉 ∈ sb and 〈c, b〉 ∈ sb). In addition, for every 〈a, b〉 ∈ rmw,
we have typ(a) = R, typ(b) = W, and loc(a) = loc(b).

• a relation rf, called reads-from, which relates every read event in
E with one write event in E that has the same location and value.

• a relation mo, called modification order, which is a disjoint union
of relations {mox}x∈Loc, such that each relation mox is a strict
total order on Wx.

• a relation sc, called SC order, which is a strict total order on Fsc
(the set of all SC fence events in E).

Notation 1. R?, R+, and R∗ respectively denote the reflexive,
transitive, and reflexive-transitive closures of a binary relation
R. R−1 denotes its inverse relation. We denote by R1;R2 the
left composition of two relations R1, R2. Finally, [A] denotes the
identity relation on a setA. In particular, [A];R; [B] = R∩(A×B).

Now, to define which execution graphs are allowed, we derive
an happens-before order hb, which is defined as in C++11 (after
applying the correction suggested in [28] for release sequences):

sb|loc = {〈a, b〉 ∈ sb | loc(a) = loc(b)} (sb-loc)

rs = [W]; sb|?loc ; [Wwrlx]; (rf; rmw; [Wwrlx])
∗ (release-seq)

rel = ([Wra] ∪ ([Frel ∪ Fsc]; sb)); rs (to-be-released)
sw = rel; rf; ([Rra] ∪ ([Rwrlx]; sb; [Facq ∪ Fsc])) (sync)

hb = (sb ∪ sw)+ (happens-before)

Given the definition of hb, an execution graph G is consistent if
the following hold:
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• mo; hb is irreflexive. (WW-coherence)
• mo; rf; hb is irreflexive. (RW-coherence)
• mo; hb; rf−1 is irreflexive. (WR-coherence)
• mo; rf;R; rf−1 is irreflexive, (RR-coherence)

where R = ([Rwrlx]; hb) ∪ (hb; [Rwrlx]) ∪ (hb; [Fsc]; hb).
• (rf; rmw) ∩ (mo; mo) = ∅. (Atomicity)

• mo; rf?; hb; sc; hb; (rf−1)? is irreflexive. (SC)
• sb ∪ rf ∪ sc is acyclic. (No-promises)

Putting aside differences in presentation (e.g., instead of a
primitive RMW event, we have two events related by an rmw-edge),
there are three essential differences between this model and the
C++11 one [6]:

• Our model disallows cycles in sb ∪ rf ∪ sc, and hence it does
not permit load buffering behaviors (which are not possible in
the promise-free machine).

• Our model lacks SC accesses, and its condition for SC fences
is stronger than the one of C++11. In particular, unlike in
C++11, placing an SC fence between every two commands
does guarantee SC semantics.

• Our model does not have non-atomic accesses on which races im-
ply undefined behavior. It does have plain accesses for which RR-
coherence does not apply (unless an SC fence is hb-between).

Now, to define behaviors of programs using consistent execution
graphs and programs, we present a “declarative machine”, which
incrementally builds a consistent execution graph following some
interleaving of the program’s threads operations. Formally, the
declarative machine state is a pair 〈Σ, G〉, where Σ assigns a local
state σ to every thread (as described in §2), andG is some consistent
execution graph. The possible steps of this machine are given
in Figure 6, assuming the same abstract programming language
discussed in §4.6. To define these steps, we use the following
notation for execution graph extension.

Notation 2. For two execution graphs G and G′, we write G′ ∈
Add(G, a) if G′ extends G with one event a, which is sb∪ rf∪ sc
maximal in G′. We write G′ ∈ AddRMW(G, ar, aw) if G′ extends
some Gmid ∈ Add(G, ar) with one event aw and an rmw-edge
〈ar, aw〉, and aw is sb ∪ rf ∪ sc maximal in G′.

The initial machine state is given by 〈λi.σ0
i , G0〉, where G0

contains only the initialization events E0 (its relations are empty). A
behavior of a program under the declarative machine is again taken
to be the set of sequences of system calls induced by its executions.

Remark 2. In a purely declarative style, one considers only full runs
of a program and checks consistency only once at the end. However,
the definition of consistent execution graphs above is “prefix-closed”
(that is, every sb ∪ rf ∪ sc-prefix of a consistent execution graph
forms a consistent execution graph). As a result, we were able to
present our declarative semantics in a more operational style, which
can be conveniently related to the promise-free machine.

Theorem 5. For every program P , the behaviors of P according
to the promise-free machine coincide with the behaviors of P
according to the declarative machine.

The Coq proof of this theorem involves a non-trivial simulation
argument. The simulation relation is presented in [1].

6. Related Work
There have been many proposals for solving the “out of thin air”
problem. Several of them have come with proofs of DRF guarantees,

σ
Silent−−−→ σ′

〈σ,G〉 i−→ 〈σ′, G〉

σ
lab(a)−−−−→ σ′

typ(a) ∈ {R, W, F}
tid(a) = i

G′ ∈ Add(G, a)

〈σ,G〉 i−→ 〈σ′, G′〉

σ
U(x,vr,vw,or,ow)−−−−−−−−−−→ σ′

lab(ar) = R(or, x, vr)
lab(aw) = W(ow, x, vw)
tid(ar) = tid(aw) = i

G′ ∈ AddRMW(G, ar, aw)

〈σ,G〉 i−→ 〈σ′, G′〉

σ
SysCall(v)−−−−−−→ σ′ lab(a) = Fsc

tid(a) = i G′ ∈ Add(G, a)

〈σ,G〉 i,SysCall(v)−−−−−−−→ 〈σ′, G′〉

(MACHINE STEP)

〈Σ(i), G〉 i,e−−→ 〈σ′, G′〉
G′ is consistent

〈Σ, G〉 e−→ 〈Σ[i 7→ σ′], G′〉

Figure 6. Operational semantics based on the declarative model.

but ours is the first to come with formal (and machine-checked)
validation of a wide range of essential local transformations (§5.1)
concerning a broad spectrum of features from the C++ model.

The first major attempt to solve the “out of thin air” problem was
by the Java memory model (JMM) [21] (see also [20]). The JMM in-
tended to validate all the compiler optimizations that Java compilers
and just-in-time compilers might perform, but its formal definition
failed to validate them [26]. Subsequent fixes were proposed to the
model, which improved the set of enabled optimizations, but still
falling short of what actual Java compilers were performing.

Interestingly, an early glimpse of our idea of promises may be
seen in version 1.0 of the JMM [12], which describes a form of
“prescient store actions” (§17.8). However, their description is very
brief and vague, and the feature was removed for JSR 133 [3].

To resolve some of the problems with the JMM definition,
Jagadeesan et al. [14] proposed an operational model following
quite closely the intended behavior of the JMM, but employing
the notion of a speculation. Speculations are similar to our notion of
promises, but unlike promises they are not certified thread-locally:
whereas we model interference conservatively by quantifying over
all future memories during certification, they model interference
from other threads more precisely by executing multiple threads
together during certification. We believe our conservative approach
is sufficient for justifying standard compiler optimizations, which
are typically thread-local, and moreover it simplifies the presentation
of the semantics and the development of the metatheory because it
avoids the need for nested certifications.

Jagadeesan et al.’s model satisfies the standard DRF theorem,
as well as a DRF theorem saying that speculations are unnecessary
for programs without read-write races. They also develop a simu-
lation proof technique, with which they verify three optimizations:
write-write reordering, roach-motel reordering, and read-after-read
elimination. We have applied our simulation method to a much
wider variety of optimizations, and our proofs are machine-checked
in Coq. They also do not provide any compilation correctness results,
and their model omits release-acquire accesses, updates, and fences.

More recently, Jeffrey and Riely [15] presented a weak memory
model based on event structures. Their model admits a standard DRF
theorem, but does not fully allow the reordering of independent
memory accesses, and thus cannot be compiled to Power/ARM
without extra fences. The paper suggests an idea about how to fix
the model to support such reorderings, but it is not known whether
the suggested fixed model avoids OOTA behaviors. Relating to our
work, their model seems to be “promising” reads (instead of writes)
and restricting the quantification over possible futures to only those
that could arise from further execution of the current program. The
model only supports relaxed accesses and locks.

Pichon-Pharabod and Sewell [24] introduced an event structure
model with both a normal reduction rule, which executes an initial
event of the event structure, and special reduction rules that mimic
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the effect of standard compiler optimizations on the event structure.
These optimization rules include a rather complex rule for non-
thread-local optimizations that can declare a whole branch of the
event structure unreachable. The paper does not present any formal
results about the model. It is worth noting that the model does not
support the weak behavior of the ARM-weak program and thus may
not be compiled to ARM without additional fences. The model only
handles relaxed and non-atomic accesses and locks.

Podkopaev et al. [25] proposed an operational model covering
a large subset of the features of the C++ model. They provide
many litmus tests to demonstrate the suitability of their model,
but do not prove any formal results about it. Their model ensures
per-location coherence in a very similar way to our model: using
timestamps. In order to handle read-write reorderings, they allow
reads to return symbolic values, which are then evaluated at a later
point in time when their value is actually needed. This approach
gives the expected behaviors to the LB and LBd programs, and
may be extended with a set of syntactic symbolic simplification
rules to also give the expected result to the LBfd program. It
seems, however, very difficult to extend this approach to enable
code motion optimizations, where some common code is pulled
out of two branches of a conditional. What makes code motion
more challenging is that the common code may become apparent
only after some earlier transformations, like for example the y := 1
assignment in the following code:

a := x; // 1
if a = 1 then y := a; else (z := 1; y := z; )

x := y;

Our model allows the annotated behavior of the program above,
precisely because our promises are semantic in nature and thus
avoid the brittle tracking of syntactic data dependencies.

Zhang and Feng [29] suggested an operational model for Java
accesses in which threads may re-execute some memory events. The
model admits a standard DRF theorem, and its replay mechanism
enables it to support local transformations. However, to avoid OOTA,
this mechanism is limited by its tracking of syntactic dependencies
between instructions, and thus it fails to validate behaviors resulting
from trace-preserving transformations like the one above.

Other proposals for language-level memory models have tried
not to solve the OOTA problem, but to avoid it, by introducing
stronger models where read-write reordering is not allowed. For
example, Ševčík et al. [27] and Demange et al. [10] proposed us-
ing TSO as the memory model for C and Java, respectively. These
proposals may be reasonable compromises if the only target ma-
chines of interest also follow the TSO model, but are prohibitively
expensive on weaker architectures, such as Power and ARM, be-
cause enforcing TSO on those machines requires essentially as many
fences as enforcing SC. In a similar line of work, Lahav et al. [17]
introduced a strengthening of the release/acquire fragment of the
C++ memory model, which they called SRA, together with an op-
erational semantics for SRA. Compiling SRA to Power and ARM
is cheaper than TSO, but still requires some fences before or af-
ter every shared variable access, and may thus not be suitable for
performance-critical code.

Another approach is to simply allow OOTA behaviors. This was
the approach taken by Batty et al.’s formalization of C++ [6], and
by the OpenCL model [16], as well as by Crary and Sullivan [9],
who introduced a more fine-grained specification of the orders that
the model is supposed to preserve. All of these models allow the
weak behavior of the LBd example, thereby invalidating standard
reasoning principles and DRF theorems.

Finally, Norris and Demsky [22] presented a tool that exhaus-
tively enumerates the behaviors of concurrent C++ programs. To
account for speculative reads, the tool may establish “promised fu-
ture values”, which a load can read from, and which must eventually

be written by a future store. Norris and Demsky’s promises look
superficially quite similar to ours, but their purpose is to support
practical model checking of C++ programs, not to change the se-
mantics of the language, so the paper does not present any formal
model or metatheory of promises.

7. Future Work
Besides extending our model with SC accesses (see §1.3), there are
a number of interesting issues remaining for future work.

Compilation Correctness Establishing the correctness of compi-
lation of our model to ARM, as well as to Power using the more
efficient compilation scheme for acquire reads and updates (see
§5.3), is an important future goal. To the best of our knowledge, we
know of no counterexamples for correctness of compilation to these
architectures.

Global Optimizations In our model, we insist that promises can
always be certified thread-locally. This decision enables thread-
local reasoning about our semantics and suffices to justify all
the known thread-local program transformations that a compiler
or the hardware may perform. It does, however, render unsound
some transformations of a global nature, such as sequentialization
(aka “thread inlining”), which merges threads together. To see this,
consider the following:

a := x; // 1
if a = 0 then
x := 1;

y := x; x := y; ;

a := x; // 1
if a = 0 then
x := 1;

y := x;

x := y;

This source program disallows the specified behavior because if T1

reads 1 for x after promising x := 1, then it will not be able to
fulfill its promise. Nevertheless, the result a = 1 is allowed in the
target program (obtained by sequentializing T1 before T2). Here,
T1 can safely promise y := 1, and later read x = 1 from T2’s
write.4 While sequentialization seems like a transformation that no
compiler would perform, there might be other more useful global
optimizations. Investigating what global optimizations are supported
in our model is left for future work.

Liveness It is natural to extend our operational model with liveness
guarantees, and it is useful and interesting to study their interac-
tion with program transformations and DRF theorems. Liveness
properties are currently mostly ignored in weak memory research.

Program Logic The program logic presented in §5.5 only estab-
lishes the very basic sanity of our memory model. Developing a
useful program logic for this model is a direction for future work.

Simulation and Model Checking The high degree of nondeter-
minism in our model makes it hard to exhaustively explore all
possible behaviors of a given program. Further work is required to
develop efficient methods and tools for this purpose.
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A. Proofs of DRF Theorems
We define the set of memory events α ∈ ME as follows:

{ silent }
∪ { read(o, x, t) | o ∈ AM, x ∈ Loc, t ∈ Time }
∪ { write(o, x, t) | o ∈ AM, x ∈ Loc, t ∈ Time }
∪ { update(or, ow, x, tr, tw) | or, ow ∈ AM, x ∈ Loc, tr, tw ∈ Time }
∪ { fence(T ) | T ∈ {acq, rel, sc} }
∪ { syscall(v) | v ∈ ... }
where AM = {pln, rlx, ra}.

We call the following events globally synchronizing:

{ fence(sc) }
∪ { syscall(v) | v ∈ ... }

Then we annotate promise-free and release-acquire steps with
the executed thread ids and memory events, denoted =⇒(i,α) and
ra
=⇒(i,α).

First, we prove two key lemmas for ra
=⇒: one for removing an

intermediate step, and another for reordering adjacent steps.

Lemma 6 (Step removal). Suppose we have a release-acquire
execution

MS
ra
=⇒(i1,α1) MS1

ra
=⇒(i2,α2) · · ·

ra
=⇒(in,αn) MSn

such that

∀k ≥ 2.MSk.ths(ik).view 6≥MS1.ths(i1).view .

Then we have ik 6= i1 for all k ≥ 2 and the following execution

MS
ra
=⇒(i2,α2) MS′2

ra
=⇒(i3,α3) · · ·

ra
=⇒(in,αn) MS′n

for some machine states MS′k satisfying

∀k ≥ 2. ∀i 6= i1.MS′k.ths(i).st = MSk.ths(i).st .

Proof. There are only two cases where the first step with (i1, α1)
affects a subsequent step with (ik, αk): either (i) the latter reads
what the former wrote; or (ii) the former globally synchronizes.
In case (i), the view MSk.ths(ik).view becomes as high as
the view MS1.ths(i1).view because the read and write are ra-
synchronized. This is impossible because it conflicts with the
assumption. In case (ii), the effect is limited: MS′k is the same
as MSk except the effect of the event α1. More specifically, MSk’s
memory may contain an extra message produced by α1 and the
threads other than i1 in MS′k are the same as those in MSk except
that every view in the former may be less than the corresponding
view in the latter. By monotonicity, MS′k has more behaviors than
MSk and thus we can construct such an execution.

Lemma 7 (Step reorder). Suppose we have a release-acquire
execution

MS
ra
=⇒(i1,α1) MS1

ra
=⇒(i2,α2) MS2

such that one of α1 and α2 is not globally synchronizing and

MS1.ths(i1).view 6≤MS2.ths(i2).view .

Then we have i1 6= i2 and MS′1 satisfying

MS
ra
=⇒(i2,α2) MS′1

ra
=⇒(i1,α1) MS2 .

Proof. Basically a similar argument as in the previous lemma applies
here: (i) α2 should not read α1; and (ii) the earlier step with α2

does not affect the later step with α1 since α1 or α2 is not globally
synchronizing.

Now we prove DRF-RA. Let ra
=⇒ be identical to =⇒ in Theorem 1,

except that (i) rlx and pln accesses in program transitions are

interpreted as if they are all ra-accesses, and (ii) a machine step
consists only of one thread step. Note that the second condition does
not affect the semantics, since a machine state without promises is
vacuously consistent.

Proof of DRF-RA (Theorem 2). It suffices to show that (i) the ex-
istence of a rlx-race in the =⇒-machine implies that in the ra

=⇒-
machine, and (ii) the behavior in the ra

=⇒-machine and that in the
=⇒-machine coincide if P is rlx-race-free in the ra

=⇒-machine. Then
Theorem 1 concludes the proof.

We prove both (i) and (ii) by a single simulation argument. We
say an ra

=⇒-execution

MS′0
ra
=⇒(i1,α1) MS′1

ra
=⇒(i2,α2) · · ·

ra
=⇒(in,αn) MS′n

simulates a =⇒-execution

MS0 =⇒(i1,α1) MS1 =⇒(i2,α2) · · · =⇒(in,αn) MSn ,

if the following conditions hold:

1. ∀k, j.MSk.ths(j).st = MS′k.ths(j).st ;
2. ∀k, j.MSk.ths(j).view.cur = MS′k.ths(j).view.cur ;
3. ∀k, j.MSk.ths(j).view.acq = MS′k.ths(j).view.acq ;
4. ∀k.MSk.gsc = MS′k.gsc ; and
5. ∀k.MSk.mem and MS′k.mem have the same messages, except

that the released view of a message in the ra
=⇒-execution may

be higher than that of the corresponding message in the =⇒-
execution.

This simulation proves (i), as a rlx-race in MSk in the =⇒-
execution is also a rlx-race in MS′k in the ra

=⇒-machine, thanks to
the condition 1. It also proves (ii) by the adequacy of the simulation
relation.

Now we prove the simulation. Consider a =⇒-step:

MSn =⇒(in+1,αn+1) MSn+1 ,

and we will find a corresponding ra
=⇒-step that preserves the simula-

tion relation:

MS′n
ra
=⇒(in+1,αn+1) MS′n+1 .

Thanks to the simulation relation, there exists MS′n+1 such that
MS′n

ra
=⇒(in+1,αn+1) MS′n+1. If αn+1 is not reading (i.e., neither

a read nor an update event), it is immediate from the semantics that
the simulation relation is preserved. Now suppose αn+1 is reading
〈x@t〉 with the access mode or , and let k be such an index that
αk is writing 〈x@t〉 with the access mode ow, and R (and Rra) be
the released view of 〈x@t〉 in the =⇒-execution (and ra

=⇒-execution,
respectively).

Now we proceed by a case analysis:

Case ow, or w ra.
Note that the current & acquire views of MSn+1.ths(in+1)
and MS′n+1.ths(in+1) may diverge only due to the discrep-
ancy of the 〈x@t〉’s released views (R and Rra), and the
read’s access mode (or for the =⇒-machine, and or t ra for
the ra

=⇒-machine). A similar argument applies to the other ma-
chine state components in the simulation relation. Hence it
suffices to show that R = Rra and or = or t ra, which
come clearly from the assumption: in particular we have R =
MSk.ths(ik).view.cur = MS′k.ths(ik).view.cur = Rra
thanks to ow w ra.

Case MS′k.ths(ik).view.cur ≤MS′n.ths(in).view.cur.
Since the released view Rra = MS′k.ths(ik).view.cur of
〈x@t〉 is already incorporated in the current view, a similar
argument also applies here.
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Otherwise.
In this case, we construct a rlx-race in the ra

=⇒-execution by re-
peatedly applying the step-removing Lemma 6 to the execution:

MS′k−1
ra
=⇒(ik,αk) MS′k

ra
=⇒(ik+1,αk+1) · · ·

ra
=⇒(in,αn) MS′n ,

so that ik (attempting to write to x with ow) and in+1 (attempt-
ing to read from x with or) race in a reachable machine state.
Let j ∈ [k, n) be the last such an index that MS′j .ths(ij).view.cur
6≤ MS′n.ths(in).view.cur. By Lemma 6 there exists an ra

=⇒-
execution:

MS′j−1
ra
=⇒(ij+1,αj+1) MS′′j+1 · · ·

ra
=⇒(in,αn) MS′′n ,

such that MS′′n.ths(in+1).st = MS′n.ths(in+1).st. By rep-
etition, we have an ra

=⇒-execution:

MS′k−1
ra
=⇒(il,αl) MS′′′l

ra
=⇒(iu,αu) · · ·

ra
=⇒(in,αn) MS′′′n ,

such that MS′′′n .ths(in+1).st = MS′n.ths(in+1).st and
ik is not executed at all from MS′k−1 to MS′′′n . Hence
MS′′′n .ths(ik).st = MS′k−1.ths(ik).st, thus ik and in+1

race in MS′′′n .

A.1 Proof for DRF-LOCK
In this section, we assume that we do not have sc-operations.

To state a DRF theorem on properly locked programs, we classify
locations into normal locations and lock locations and suppose lock
locations are accessed only by the acquire and release operations, as
defined as follows:
acquire(l) {

while !CAS(l, 0, 1, acqrel) do skip;
}

release(l) {
lrel := 0;
}

Furthermore, we say a machine state MS is properly locked, if:

1. If two different threads can take a step accessing the same
location, then both accesses are reads, or the location is a lock
location; and

2. If a thread can release a lock, say l, then the value of l in MS’s
memory is 1.

Theorem 8 (DRF-LOCK). Let sc
=⇒ denote the steps of the interleav-

ing machine. Suppose that every machine state that is sc
=⇒-reachable

from the initial state of a program P is properly locked. Then, the
behaviors of P according to the full machine coincide with those
according to the sc

=⇒-machine.

Proof. We say that an ra
=⇒-execution is interleaving if any reading

step reads from the message with the greatest timestamp and any
writing step writes a message with a timestamp greater than any
existing message’s timestamp. It is obvious that the sc

=⇒-machine is
equivalent to the interleaving ra

=⇒-machine (which we simply call
the interleaving machine), and thus we identify them.

First of all, for any ra
=⇒-execution E (i.e., a finite or infinite

sequence of ra
=⇒-steps), it is easy to see that removing all failed

acquire steps from the execution still yields a valid ra
=⇒-execution

E′ with the same behavior (i.e., the same sequence of system calls).
Furthermore, if E is a finite execution leading to a ra-racy machine
state, then so is E′. We will simply say nfra

==⇒-executions for ra
=⇒-

executions with no failed acquire steps.
From this observation and Theorem 2, we can easily see that

it suffices to prove that (i) the existence of a ra-race in an nfra
==⇒-

execution of P implies a violation of proper locking in an interleav-
ing execution of P; and (ii) the nfra

==⇒-behaviors of P coincide with

its interleaving behaviors if P is properly locked in all interleaving
executions.

We prove both (i) and (ii) by a single simulation argument. We
say an interleaving execution

MS′0
ra
=⇒(i′1,α

′
1)

MS′1
ra
=⇒(i′2,α

′
2)
· · · ra

=⇒(i′n,α
′
n) MS′n

simulates an nfra
==⇒-execution

MS0
ra
=⇒(i1,α1) MS1

ra
=⇒(i2,α2) · · ·

ra
=⇒(in,αn) MSn ,

if the following conditions hold:

1. (i′1, α
′
1), ... , (i′n, α

′
n) is a reordering of (i1, α1), ... , (in, αn)

such that the order of system calls is preserved; and
2. MS0 = MS′0 and MS′n = MSn.

If we prove that given any nfra
==⇒-execution of length n there exists

a simulating interleaving execution, then we are done as follows.
Given any (possibly infinite) nfra

==⇒-execution and any number of
steps n, we can find an interleaving execution of length n leading to
the same machine state with the same sequence of observable events
(i.e., system calls). Thus, any arbitrarily long observation on an
nfra
==⇒-execution cannot be distinguished from that on an interleaving
execution. Also, if there is any nfra

==⇒-execution leading to a ra-racy
machine state, we can find a simulating interleaving execution to an
improperly locked machine state by the simulation argument.

Now it suffices to prove the simulation theorem by induction
on the length n. The base case is trivial. For an induction step,
let’s assume that we have a simulating execution of length n, given
as in the above definition of simulation. Suppose we have a step
MSn

nfra
==⇒in+1,αn+1 MSn+1. Then we need to find a simulating

interleaving execution of length n + 1 that starts from MS0 and
ending in MSn+1. If the event αn+1 is neither a read, a write, nor
an update, then the execution MS′0 ...MS′n

ra
=⇒(in+1,) MSn+1 is

interleaving, so we are done.
Thus suppose that αn+1 is accessing (i.e., a read, a write, or an

update event on) a location x and does not satisfy the interleaving
condition (i.e., does not read the latest message nor writes with a
greatest timestamp). By definition of the interleaving condition, we
can find an event writing to x whose timestamp is bigger than that
of the event αn+1. Let’s write αk and tk for the first such event (i.e.,
with the smallest index k) and its timestamp.

Now, by exactly the same argument as in Theorem 2, we can re-
move all steps MSj such that k ≤ j ≤ n and MSj .ths(ij).view ≥
MSk.ths(ik).view. Then we have a race between αk and αn+1.
The resulting execution is also interleaving because removing a step
from an interleaving execution always results in an interleaving
execution. Thus, by the proper locking assumption, it follows that
αk and αn+1 are accessing the same lock location.

Now we will construct an interleaving execution from MS0 to
MSn+1 that simulates the given execution. For this, we repeatedly
apply the step-reordering using Lemma 7 as follows. First, we
find the first event, say αj , such that k ≤ j ≤ n + 1 and
MSj .ths(ij).view.cur.rlx(x) < tk. Then we can move down
the event to just before αk using Lemma 7. We repeat this process
until we move αn+1 down to just before αk. This is possible
because we have MSn+1.ths(in+1).view.cur.rlx(x) < tk. Also
note that this process does not reorder system calls because we
assume that system calls synchronize on lock locations (i.e., making
the view on lock locations to be up-to date).

Finally we will show that such a reordering does not break
the interleaving condition for all existing events and furthermore
make αn+1 to satisfy the interleaving condition. The latter holds
trivially by construction because αk was the first event with respect
to which αn+1 violates the interleaving condition. The former holds
as follows. In order to break the interleaving condition, we need to
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reorder two events α, β to β, α such that they are accessing the same
location and at least one of them is writing. During the reordering
process, suppose we meet such a reordering for the first time. Then,
the execution before the reordering is interleaving because we are
about to break the condition for the first time. Since α and β are
racing on the same location, they both have to be lock operations (i.e.,
successful acquire or release). By the proper locking assumption,
we have only two possibilities: α is a release and β is an acquire; or
α is an acquire and β is a release. The former case is a contradiction
because β reads what α writes due to the interleaving condition,
which makes β’s view as high as α’s. The latter is a contradiction
too because after reordering the execution up to β is still interleaving
but the machine state before β is not properly locked. Thus we can
conclude that the reorderings do not break the interleaving condition.

A.2 Counterexample to Promise-Free DRF & DRF-RA
Re-certifying promises at each step is necessary for Promise-
Free DRF (Theorem 1) and DRF-RA (Theorem 2). Without re-
certification, one can get additional behaviors:

Thread 1:

w=1 rel

||

Thread 2:

if (y_acq) {
if (z) {

x = 1
}

}

||

Thread 3:

if (w_acq) {
z=1

} else {
y=1 rel

}

if (x) {
z=1;
a=1

}

The outcome a=1 (which contradicts both the Promise-Free DRF
and the DRF-RA theorems) would be allowed by first executing
w=1 and then promising z=1 in thread 3. Then, thread 3 can read
w=0 (now the promise can no longer be certified) and write y=1. At
the end, the promise can be fulfilled by the final z=1 write.
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B. Proof of Theorem 5
Our proof of equivalence between the “declarative machine” and the promise-free machine shows that each machine simulates the other. Next,
we provide the simulation relation.

Definition 1. A timestamp assignment for an execution G is a function f : W → Time. A timestamp assignment f is extended for sets of
write events by f(A) = maxa∈A f(a).

Definition 2. An execution G induces the following additional derived relations:

• G.urr = (rf?; hb; [Fsc])?; (sc; [F])?; hb? ∪ (rf; [Rwrlx]; hb?).
• G.rwr = urr ∪ (rf; hb?).

Definition 3. An axiomatic machine state 〈Σ, G〉 relates to a machine state MS = 〈TS,S,M〉, denoted by 〈Σ, G〉 ∼MS , if the following
hold:

• G is coherent.
• MS is well-formed.
• TS(i).prm = ∅ for every i ∈ Tid.
• Σ(i) = TS(i).st for every i ∈ Tid.
• There exists two timestamp assignments ffrom, fto for G for which the following hold:

For every x ∈ Loc and a, b ∈ Wx, we have fto(a) < fto(b) iff 〈a, b〉 ∈ mo.
For every x ∈ Loc and a, b ∈ Wx, if 〈a, b〉 ∈ mo \ rf; rmw, then fto(a) 6= ffrom(b).
For every b ∈ W, if 〈a, b〉 6∈ mo \ rf; rmw for all a, then ffrom(b) 6= 0.
For every x ∈ Loc, M(x) = {mb | b ∈ Wx}, where each mb satisfies:
− mb.val = val(b).
− mb.to = fto(b) and mb.from = ffrom(b).
− mb.from = fto(a) if 〈a, b〉 ∈ rf; rmw.
− For every y ∈ Loc:

· mb.view.pln(y) = fto({a ∈ Wy | 〈a, b〉 ∈ urr; rel}).
· mb.view.rlx(y) = fto({a ∈ Wy | 〈a, b〉 ∈ rwr; rel}).

For every x ∈ Loc, S(x) = fto(Wscx ∪ dom([Wx]; rf?; hb; [Fsc])).
For every i ∈ Tid, TS(i) = 〈Σ(i),Vi, ∅〉 where Vi satisfies the following conditions for every x, y ∈ Loc:
− Vi.rel(y).pln(x) = fto(dom([Wx]; urr; [WAra

y ∪ Frel]; [Ei])).
− Vi.rel(y).rlx(x) = fto(dom([Wx]; rwr; [WAra

y ∪ Frel]; [Ei])).
− Vi.cur.pln(x) = fto(dom([Wx]; urr; [Ei])).
− Vi.cur.rlx(x) = fto(dom([Wx]; rwr; [Ei])).
− Vi.acq.pln(x) = fto(dom([Wx]; urr; (rel; rf; [RArlx])?; [Ei])).
− Vi.acq.rlx(x) = fto(dom([Wx]; rwr; (rel; rf; [RArlx])?; [Ei])).
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