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Abstract
We define logical relations between the denotational semantics of
a simply typed functional language with recursion and the opera-
tional behaviour of low-level programs in a variant SECD machine.
The relations, which are defined using biorthogonality and step-
indexing, capture what it means for a piece of low-level code to
implement a mathematical, domain-theoretic function and are used
to prove correctness of a simple compiler. The results have been
formalized in the Coq proof assistant.

Categories and Subject Descriptors F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs—Mechanical verification, Specification techniques; F.3.2
[Logics and Meanings of Programs]: Semantics of Program-
ming Languages—Denotational semantics, Operational seman-
tics; F.3.3 [Logics and Meanings of Programs]: Studies of Pro-
gram Constructs—Type structure,Functional constructs; D.3.4
[Programming Languages]: Processors—Compilers; D.2.4 [Soft-
ware Engineering]: Software / Program Verification—Correctness
proofs, Formal methods

General Terms Languages, theory, verification

Keywords Compiler verification, denotational semantics, biorthog-
onality, step-indexing, proof assistants

1. Introduction
Proofs of compiler correctness have been studied for over forty
years (McCarthy and Painter 1967; Dave 2003) and have recently
been the subject of renewed attention, firstly because of increased
interest in security and certification in a networked world and sec-
ondly because of advances in verification technology, both theoret-
ical (e.g. separation logic, step-indexed logical relations) and prac-
tical (e.g. developments in model checking and improvements in
interactive proof assistants).

There are many notions of correctness or safety that one might
wish to establish of a compiler. For applying language-based tech-
niques in operating systems design, as in proof-carrying code, one
is primarily interesting in broad properties such as type-safety,
memory-safety or resource-boundedness. Although these terms are
widely used, they are subject to a range of interpretations. For ex-
ample, type-safety sometimes refers to a simple syntactic notion
(‘is the generated code typable using these rules?’) and sometimes
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to a deeper semantic one (‘does the observable behaviour of the
code satisfy this desirable property?’). In previous work (Benton
2006; Benton and Zarfaty 2007; Benton and Tabareau 2009), we
have looked at establishing type-safety in the latter, more semantic,
sense. Our key notion is that a high-level type translates to a low-
level specification that should be satisfied by any code compiled
from a source language phrase of that type. These specifications are
inherently relational, in the usual style of PER semantics, capturing
the meaning of a type A as a predicate on low-level heaps, values or
code fragments together with a notion of A-equality thereon. These
relations express what it means for a source-level abstractions (e.g.
functions of type A → B) to be respected by low-level code (e.g.
‘taking A-equal arguments to B-equal results’). A crucial property
of our low-level specifications is that they are defined in terms of
the behaviour of low-level programs; making no reference to any
intensional details of the code produced by a particular compiler or
the grammar of the source language. Of course, the specifications
do involve low-level details of data representations and calling con-
ventions – these are part of the interface to compiled code – but up
to that, code from any source that behaves sufficiently like code
generated by the compiler should meet the specification, and this
should be independently verifiable.

Ideally, one might wish to establish the sense in which a compi-
lation scheme is fully abstract, meaning that the compiled versions
of two source phrases of some type are in the low-level relation
interpreting that type iff the original source phrases are contextu-
ally equivalent. If low-level specifications are used for checking
linking between the results of compiling open programs and code
from elsewhere1 and full abstraction does not hold, then source
level abstractions become ‘leaky’: reasoning about equivalence or
encapsulation at the source level does not generally translate to
the target, which can lead to unsound program transformations in
optimizing compilers and to security vulnerabilities (Abadi 1998;
Kennedy 2006). Ahmed and Blume (2008) also argue that fully
abstract translation should be the goal, and prove full abstraction
for (source to source) typed closure conversion for a polymorphic
lambda calculus with recursive and existential types. Later on we
will say something about why we believe that ‘full’ full abstraction
may not, in practice, be quite the right goal, but we certainly do
want ‘sufficiently abstract’ compilation, i.e. the preservation of the
reasoning principles that we actually use in an optimizing compiler
or in proving security properties.

The low-level relations of our previous work are not, however,
really even sufficiently abstract, having roughly comparable power
to a denotational semantics in continuation-passing style (CPS).
This is a very strong and useful constraint on the behaviour of
machine-code programs, but does not suffice to prove all the equa-

1 This is obviously important for foreign function interfaces and multilan-
guage interoperability, but can be an issue even for separate compilation
using the same compiler. It also covers the simpler and ubiquitous case of
handcrafted implementations of standard library routines.



tions we might like between low-level programs: even something
as simple as the commutativity of addition does not hold for arbi-
trary integer computations (just as it doesn’t in a lambda calculus
with control), even though it does in our pure source language. To
understand how to refine our low-level relations further, it is natural
to look at logical relations between low-level code and elements of
the domains arising in a standard, direct-style, denotational model
of our language, which is what we’ll do here. Given such a typed
relation between high-level semantics and low-level programs, a
low-level notion of typed equivalence can be generated by consid-
ering pairs of low-level programs that are related to some common
high-level denotational value.

The relations we define will establish a full functional correct-
ness theorem for a simple compiler, not merely a semantic type
safety theorem. Just as for type-safety, there are several approaches
to formulating such correctness theorems in the literature. A com-
mon one, used for example by Leroy (2006), is to define an oper-
ational semantics for both high- and low-level languages and then
establish a simulation (or bisimulation) result between source pro-
grams and their compiled versions, allowing one to conclude that
if a closed high-level program terminates with a particular observ-
able result, then its compiled version terminates with the same re-
sult, and often the converse too (Hardin et al. 1998; Leroy and
Grall 2009). The limitation of these simulation-based theorems is
that they are not as compositional (modular) or extensional (be-
havioural) as we would like, in that they only talk about the be-
haviour of compiled code in contexts that come from the same com-
piler, and usually specify a fairly close correspondence between the
(non-observable) intermediate states of the source and target. We
would rather have maximally permissive specifications that capture
the full range of pieces of low-level code that, up to observations,
behave like, or realize, a particular piece of high-level program. A
slogan here is that ‘the ends justify the means’: we wish to allow
low-level programs that extensionally get the right answers, whilst
intensionally using any means necessary.

The main results here will involve logical relations between
a cpo-based denotational semantics of a standard CBV lambda
calculus with recursion and programs in an extended SECD-like
target, chosen to be sufficiently low-level to be interesting, yet
simple enough that the important ideas are not lost in detail. The
relations will involve both biorthogonality and step-indexing, and
in the next section we briefly discuss these constructions in general
terms, before turning to the particular use we make of them.

The results in the paper have been formalized and proved in the
Coq proof assistant, building on a formalization of domain theory
and denotational semantics that we describe elsewhere (Benton
et al. 2009). The scripts are available from the authors’ webpages.

2. Orthogonality and Step-Indexing
2.1 Biorthogonality
Biorthogonality is a powerful and rather general idea that has been
widely used in diffent kinds of semantics in recent years, beginning
with the work of Pitts and Stark (1998) and of Krivine (1994). One
way of understanding the basic idea is as a way of ‘contextualizing’
properties of parts of a system, making them compositional and
behavioural. In the unary case, we start with some set of systems
S (e.g. configurations of some machine, lambda terms, denotations
of programs, processes) and some predicate O ⊆ S, which we call
an observation, over these systems (e.g. those that execute without
error, those that terminate, those that diverge). Then there is some
way of combining, or plugging, program fragments p ∈ P in
whose properties we are interested (bits of machine code, terms,
denotations of terms, processes) with complementary contexts c ∈
C (frame stacks, terms with holes, continuations, other processes) to

yield complete systems. The plugging−◦− : P×C → S might be
effected by appending bits of program, substituting terms, applying
continuations to arguments or composing processes in parallel. In
any such situation, there is contravariant map (·)⊥ : P(P) → P(C)
given by

P⊥ = {c ∈ C | ∀p ∈ P, p ◦ c ∈ O}
and a homonymous one in the other direction, (·)⊥ : P(C) → P(P)

C⊥ = {p ∈ P | ∀c ∈ C, p ◦ c ∈ O}

yielding a contravariant Galois connection, so that, amongst many
other things, (·)⊥⊥ is a closure operator (inflationary and idempo-
tent) on P(P), and that any set of the form C⊥ is (·)⊥⊥-closed.2

The binary version of this construction starts with a binary rela-
tion (e.g. an equivalence relation) on S and proceeds in the obvious
way.

For compiler correctness, we want the interpretations of source-
level types or, indeed, source-level values, to be compositional and
extensional: properties of low-level program fragments that we can
check independently and that make statements about the observable
behavior of the complete configurations that arise when we plug
the fragments into ‘appropriate’ contexts. This set of ‘appropriate’
contexts can be thought of as a set of tests: a low-level fragment
is in the interpretation of a source type, or correctly represents
a source value, just when it passes all these tests. Thus these
low-level interpretations will naturally be (·)⊥⊥-closed sets. For a
simply typed source language, we can define these sets by induction
on types, either positively, starting with an over-intensional set
and then taking its (·)⊥⊥-closure, or negatively, by first giving
an inductive definition of a set of contexts and then taking its
orthogonal. See Vouillon and Melliès (2004) for more on the use
of biorthogonality in giving semantics to types.

2.2 Step-Indexing
Logical predicates and relations can be used with many different
styles of semantics. When dealing with languages with recursion
and working denotationally, however, we often need extra admis-
sibility properties, such as closure under limits of ω-chains. Op-
erational logical relations for languages with recursion generally
need to satisfy some analogue of admissibility. One such that has
often been used with operational semantics based on lambda terms
(Plotkin 1977; Pitts and Stark 1998) considers replacing the recur-
sion construct rec f x =M (or fixpoint combinator) with a family
of finite approximations: recn f x =M for n ∈ N, unfolds the
recursive function n times in M and thereafter diverges. Appel
and McAllester (2001) introduced step-indexed logical relations,
which have since been refined and succesfully applied by various
authors to operational reasoning problems for both high and low
level languages, many of which involve challenging language fea-
tures (Ahmed 2006; Appel et al. 2007; Benton and Tabareau 2009;
Ahmed et al. 2009). Step-indexing works with small-step opera-
tional semantics and N-indexed sets of values, with (n, v) ∈ P (or
v ∈ Pn) meaning ‘value v has property P for n steps of reduction’.
An interesting feature of step-indexing is that one usually works di-
rectly with this family of approximants; the limits that one feels are
being approximated (like {v | ∀n, v ∈ Pn}) do not play much of a
rôle.

2.3 On Using Both

Amongst the useful properties of the operational (·)⊥⊥-closure op-
eration used by Pitts and Stark (1998) is that it yields admissible

2 Pitts and Stark, and some other non-Gallic authors, tend to write (·)>
rather than (·)⊥.



relations (in the recn sense). The same is true of its natural deno-
tational analogue (Abadi 2000). Our earlier work on low-level in-
terpretations of high-level types (Benton and Tabareau 2009) used
both step-indexing and orthogonality, but there was some question
as to whether the step-indexing was really necessary. Maybe our
closed sets are automatically already appropriately ‘admissible’,
just by construction, and there is no need to add extra explicit in-
dexing? Slightly to our surprise, it turns out that there are good
reasons to use both (·)⊥⊥-closure and step-indexing, for which we
now try to give some intuition.

The aim is to carve out interpretations of high-level types and
values as ‘well-behaved’ subsets of low-level, untyped programs.
The essence of these interpretations generally only depends upon
these well-behaved subsets: we’ll (roughly) interpret a function
type A → B as the set of programs that when combined with a
good argument of type A and a good continuation expecting some-
thing of type B, yield good behaviour. So exactly what range of
impure, potentially type-abstraction violating, operations are avail-
able in the untyped language (the range of ‘any means necessary’
above) does not seem to affect the definitions or key results. Pro-
grams that use low-level features in improper ways will simply not
be in the interpretations of high-level entities, and nothing more
needs to be said. For a simply-typed total language without re-
cursion, this intuition is quite correct: a Krivine-style realizability
interpretation is essentially unaffected by adding extra operations
to the untyped target. Even though orthogonality introduces quan-
tification over bigger sets of contexts, nothing relies explicitly on
properties of the untyped language as a whole.

In the presence of recursion, the situation changes. The fact that
Pitts and Stark’s (·)⊥⊥-closed relations are admissible depends on
a ‘compactness of evaluation’ result, sometimes called an ‘unwind-
ing theorem’, saying that any complete program p terminates iff
there is some n such that for all m ≥ n, p with all the recs re-
placed by recms terminates, which is clearly a global property of
all untyped programs. In the denotational case, attention is already
restricted to operations that can be modelled by continuous func-
tions, i.e. ones that behave well with respect to approximation, in
the chosen domains. But realistic targets often support operations
that can violate these global properties. Examples of such egre-
giously non-functional operations include the ‘reflection’ features
of some high-level languages (such as Java or C]) or, more inter-
estingly, the ability of machine code programs to switch on code
pointers or read executable machine instructions.3 We have found
that the presence of such seriously non-functional operations does
not just make the proofs harder, but can actually make the ‘natu-
ral’ theorems false. Appendix A shows how the addition of equal-
ity testing on lambda terms to an untyped lambda calculus breaks
a ‘standard’ syntactic interpretation of simple types as sets of un-
typed terms in the presence of term-level recursion in the source.

Fortunately, as we will see, step-indexing sidesteps this prob-
lem. In place of appealing to a global property that holds of all
untyped programs, we build a notion of approximation, and the re-
quirement to behave well with respect to it, directly into the defini-
tion of our logical relations. In fact, we will also do something very
similar on the denotational side, closing up explicitly under limits
of chains.

3 Real implementations, even of functional languages, can make non-trivial
use of such features. For example, interpreting machine instructions that
would normally be executed in order to advance to a safe-point for inter-
ruption, building various runtime maps keyed on return addresses, doing
emulation, JIT-compilation or SFI.

3. Source Language
Our high-level language PCFv is a conventional simply-typed, call-
by-value functional language with types built from integers and
booleans by products and function spaces, with type contexts Γ
defined in the usual way:

t := Int | Bool | t → t′ | t× t′

Γ := x1 : t1 , . . . , xn : tn

We separate syntactic values (canonical forms), ranged over by V ,
from general expressions, ranged over by M and restrict the syntax
to ANF, with explicit sequencing of evaluation by let and explicit
inclusion of values into expressions by [·].

The typing rules for values and for expressions are shown in
Figure 1. Note that there are really two forms of judgement, but we
refrain from distinguishing them syntactically. The symbol ? stands
for an arbitrary integer-valued binary operation on integers, whilst
> is a representative boolean-valued one.

PCFv has the obvious CBV operational semantics, which we
elide here, and a conventional, and computationally adequate, de-
notational semantics in the category of ω-cpos and continuous
maps, which we now briefly summarize to fix notation. Types and
environments are interpreted as cpos:

JIntK def
= N

JBoolK def
= B

Jt → t′K def
= JtK⇒ Jt′K⊥

Jx1 : t1, . . . , xn : tnK
def
= Jt1K× · · · × JtnK

where ⇒ is the cpo of continuous functions and × is the Cartesian
product cpo. Typing judgements for values and expressions are then
interpreted as continuous maps:

JΓ ` V : tK : JΓK→ JtK
JΓ ` M : tK : JΓK→ JtK⊥

defined by induction. So, for example

JΓ ` Fix f x = M : A → BK ρ
=
µdf .λdx ∈ JAK.JΓ, f : A → B, x : A ` M : BK (ρ, df , dx)

We write [·] : D → D⊥ for the unit of the lift monad. We elide
the full details of the denotational semantics as they are essentially
the same as those found in any textbook, such as that of Winskel
(1993). The details can also be found, along with discussion of the
Coq formalization of the semantics, in Benton et al. (2009).

4. Target Language and Compilation
4.1 An SECD Machine
The low-level target is a variant of an SECD virtual machine
(Landin 1964). We have chosen such a machine rather than a lower-
level assembly language, such as that of our previous work, so as
to keep the formal development less cluttered with detail. But we
are emphatically not interested in the SECD machine as some-
thing that is inherently “for” executing programs in a language like
our source. We have included an equality test instruction, Eq, that
works on arbitrary values, including closures, so a counterexample
to a naive semantics of types like that in Appendix A can be con-
structed. Furthermore, the logical relations we present have been
carefully constructed with applicability to lower-level machines in
mind.



Values:
[TV AR]

Γ, x : t ` x : t
[TBOOL]

Γ ` b : Bool
(b ∈ B) [TINT ]

Γ ` n : Int
(n ∈ N)

[TFIX]
Γ, f : t → t′, x : t ` M : t′

Γ ` Fix f x = M : t → t′
[TP ]

Γ ` Vi : ti (i = 1, 2)

Γ ` 〈V1, V2〉 : t1 × t2

Expressions:

[TV AL]
Γ ` V : t

Γ ` [V ] : t
[TLET ]

Γ ` M : t Γ, x : t ` N : t′

Γ ` let x = M in N : t′

[TAPP ]
Γ ` V1 : t → t′ Γ ` V2 : t

Γ ` V1 V2 : t′
[TIF ]

Γ ` V : Bool Γ ` M1 : t Γ ` M2 : t

Γ ` if V then M1 else M2 : t

[TOP ]
Γ ` V1 : Int Γ ` V2 : Int

Γ ` V1 ? V2 : Int
[TGT ]

Γ ` V1 : Int Γ ` V2 : Int

Γ ` V1 > V2 : Bool

[TFST, TSND]
Γ ` V : t1 × t2

Γ ` πi(V ) : ti (i = 1, 2)

Figure 1. Typing rules for PCFv

The inductive type Instruction, ranged over by i, is defined by

i := Swap | Dup | PushVn | Op ? | PushC c | PushRC c | App |
Ret | Sel (c1, c2) | Join | MkPair | Fst | Snd | Eq

where c ranges over Code, the set of lists of instructions, n ranges
over integers, and ? over binary operations on integers. The set
Value of runtime values, ranged over by v is defined by

v := n | CL (e, c) | RCL (e, c) | PR (v1, v2)

where e ranges over Env, defined to be list Value. So a Value is
either an integer literal, a closure containing an environment and
some code, a recursive closure, or a pair values. We also define

Stack = list Value
Dump = list (Code× Env× Stack)
CESD = Code× Env× Stack× Dump

CESD is the set of configurations of our virtual machine. A
configuration 〈c, e, s, d〉 comprises the code to be executed, c, the
current environment, e, an evaluation stack s and a call stack, or
dump, d.

The deterministic one-step transition relation 7→ between con-
figurations is defined in Figure 2. There are many configurations
with no successor, such as those in which the next instruction is
Swap but the the stack depth is less than two; we say such configu-
rations are stuck or terminated. (So there is no a priori distinction
between normal and abnormal termination.) We write cesd 7→k

to mean that the configuration cesd takes at least k steps without
getting stuck, and say it diverges, written cesd 7→ω if it can always
take a step:

cesd 7→ω def⇐⇒ (∀k, cesd 7→k)

Conversely, we say cesd terminates, and write cesd 7→∗  , if it
does not diverge:

cesd 7→∗ def⇐⇒ ¬(cesd 7→ω).

4.2 Compiling PCFv to SECD
The compiler comprises two mutually-inductive functions mapping
(typed) PCFv values and expressions into Code. We overload L· M
for both of these functions, whose definitions are shown in Figure 3.

5. Logical Relations
In this section we define logical relations between components of
the low-level SECD machine and elements of semantic domains,
with the intention of capturing just when a piece of low-level code
realizes a semantic object. In fact, there will be two relations, one
defining when a low-level component approximates a domain ele-
ment, and one saying when a domain element approximates a low-
level component. These roughly correspond to the soundness and
adequacy theorems that one normally proves to show a correspon-
dence between an operational and denotational semantics, but are
rather more complex.

Following the general pattern of biorthogonality sketched above,
we work with (predicates on) substructures of complete configura-
tions. On the SECD machine side, complete configurations are ele-
ments of CESD, whilst the substructures will be elements of Value
and of Comp, which is defined to be Code × Stack. If v : Value
then we define bv : Comp to be ([], [v]), the computation compris-
ing an empty instruction sequence and a singleton stack with v on.
Similarly, if c : Code then bc : Comp is (c, []).

The basic plugging operation on the low-level side is · on ·,
taking an element of Comp, the computation under test, and an
element of CESD, thought of as a context, and combining them
to yield a configuration in CESD:

(c, s) on 〈c′, e′, s′, d′〉 = 〈c ++ c′, e′, s ++ s′, d′〉
We also have an operation · ^ · that appends an element of Env
onto the environment component of a configuration:

e ^ 〈c′, e′, s′, d′〉 = 〈c′, e ++ e′, s′, d′〉

5.1 Approximating Denotational By Operational
The logical relation expressing what it means for low-level compu-
tations to approximate denotational values works with step-indexed
entities. We write iValue for N× Value, iComp for N× Comp and



〈Swap :: c, e, v1 :: v2 :: s, d〉 7→ 〈c, e, v2 :: v1 :: s, d〉
〈Dup :: c, e, v :: s, d〉 7→ 〈c, e, v :: v :: s, d〉

〈PushVn :: c, [v1, . . . , vk], s, d〉 7→ 〈c, [v1, . . . , vk], vn :: s, d〉
〈PushNn :: c, e, s, d〉 7→ 〈c, e, n :: s, d〉

〈PushC bod :: c, e, s, d〉 7→ 〈c, e, CL (e, bod) :: s, d〉
〈PushRC bod :: c, e, s, d〉 7→ 〈c, e, RCL (e, bod) :: s, d〉

〈App :: c, e, v :: CL (e′, bod) :: s, d〉 7→ 〈bod , v :: e′, [], (c, e, s) :: d〉
〈App :: c, e, v :: RCL (e′, bod) :: s, d〉 7→ 〈bod , v :: RCL (e′, bod) :: e′, [], (c, e, s) :: d〉

〈Op ? :: c, e, n2 :: n1 :: s, d〉 7→ 〈c, e, n1 ? n2 :: s, d〉
〈Ret :: c, e, v :: s, (c′, e′, s′) :: d〉 7→ 〈c′, e′, v :: s′, d〉

〈Sel (c1, c2) :: c, e, v :: s, d〉 7→ 〈c1, e, s, (c, [], []) :: d〉 (if v 6= 0)
〈Sel (c1, c2) :: c, e, 0 :: s, d〉 7→ 〈c2, e, s, (c, [], []) :: d〉

〈Join :: c, e, s, (c′, e′, s′) :: d〉 7→ 〈c′, e, s, d〉
〈MkPair :: c, e, v1 :: v2 :: s, d〉 7→ 〈c, e, PR (v2, v1) :: s, d〉
〈Fst :: c, e, PR (v1, v2) :: s, d〉 7→ 〈c, e, v1 :: s, d〉
〈Snd :: c, e, PR (v1, v2) :: s, d〉 7→ 〈c, e, v2 :: s, d〉

〈Eq :: c, e, v1 :: v2 :: s, d〉 7→ 〈c, e, 1 :: s, d〉 (if v1 = v2)
〈Eq :: c, e, v1 :: v2 :: s, d〉 7→ 〈c, e, 0 :: s, d〉 (if v1 6= v2)

Figure 2. Operational Semantics of SECD Machine

Values:

Lx1 : t1, . . . , xn : tn ` xi : tiM = [PushV i]

LΓ ` true : BoolM = [PushN 1]

LΓ ` false : BoolM = [PushN 0]

LΓ ` n : IntM = [PushNn]

LΓ ` 〈V1, V2〉 : t1 × t2M = LΓ ` V1 : t1M++LΓ ` V2 : t2M++[MkPair]

LΓ ` Fix f x = M : t → t′M = [PushRC (LΓ, f : t → t′, x : t ` M : t′M++[Ret])]

Expressions:

LΓ ` [V ] : tM = LΓ ` V : tM
LΓ ` let x = M in N : t′M = [PushC (LΓ, x : t ` N : t′M++[Ret])] ++LΓ ` M : tM++[App]

LΓ ` V1 V2 : t′M = LΓ ` V1 : t → t′M++LΓ ` V2 : tM++[App]

LΓ ` if V then M1 else M2 : tM = LΓ ` V : BoolM++[Sel ((LΓ ` M1 : tM++[Join]), (LΓ ` M2 : tM++[Join]))

LΓ ` V1 ? V2 : IntM = LΓ ` V1 : IntM++LΓ ` V2 : IntM++[Op ?]

LΓ ` V1 > V2 : BoolM = LΓ ` V1 : IntM++LΓ ` V2 : IntM++[Op (λ(n1, n2).n1 > n2 ⊃ 1 | 0)]

Figure 3. Compiler for PCFv

iCESD for N×CESD and define an Env-parameterized observation
O e over pairs of indexed computations from iComp and indexed
contexts from iCESD:

O e (i, comp) (j, cesd)
def⇐⇒ (comp on (e ^ cesd)) 7→min(i,j)

So, given an environment e, O e holds of an indexed computation
and an indexed context just when the configuration that results
from appending the environment e and the code and stack from
the computation onto the corresponding components of the context
steps for at least the minimum of the indices of the iComp and the
iCESD. We also define an observation on pairs of indexed values
and indexed contexts by lifting values to computations:

O e (i, v) (j, cesd)
def⇐⇒ O e (i, bv) (j, cesd)

Now we follow the general pattern of orthogonality, but with some
small twists. We actually have a collection of observations, indexed
by environments, made over step-indexed components of configu-

rations. And each observation gives rise to two, closely related, Ga-
lois connections: one between predicates on (indexed) values and
predicates on (indexed) contexts, and the other between those on
(indexed) computations and (indexed) contexts. So there are four
contravariant maps associated with each e : Env. Our definitions
use these two of them:

↓e (·) : P(iValue) → P(iCESD)

↓e (P ) = {jcesd | ∀iv ∈ P, O e iv jcesd}
⇑e (·) : P(iCESD) → P(iComp)

⇑e (Q) = {icomp | ∀jcesd ∈ Q, O e icomp jcesd}

To explain the notation: down arrows translate positive predicates
(over values and computations) into negative ones (over contexts),
whilst up arrows go the other way. We use single arrows for the
operations relating to values and double arrows for those relating
to computations.



Now we can start relating the low-level machine to the high-
level semantics. If D is a cpo and RD i ⊆ Value×D is a N-indexed
relation between machine values and elements of D then define the
indexed relation [RD ]n ⊆ Value×D⊥ by

[RD ]n = {(v, dv) | ∃d ∈ D, [d] = dv ∧ (v, d) ∈ RDn}

If, furthermore, S is a cpo and RS i ⊆ Env×S an indexed relation
between machine environments and elements of S, then we define
an indexed relation

(RS
C→ RD⊥)i ⊆ Comp× (S ⇒ D⊥)

= {(comp, df) | ∀k ≤ i, ∀(e, de) ∈ RSk,
(k, comp) ∈⇑e (↓e ({(j, v) | (v, df de) ∈ [RD ]j}))}

which one should see as the relational action of the lift monad,
relative to a relation on environments. The definition looks rather
complex, but the broad shape of the definition is ‘logical’: relating
machine computations to denotational continuous maps just when
RS -related environments yield [RD ]-related results. Then there
is a little extra complication caused by threading the step indices
around, but this is also of a standard form: computations are in
the relation at i when they take k-related arguments to k-related
results for all k ≤ i. Finally, we use biorthogonality to close up on
the right hand side of the arrow; rather than making an intensional
direct-style definition that the computation ‘yields’ a value v that is
related to the denotational application df de , we take the set of all
such related results, flip it across to an orthogonal set of contexts
with ↓e (·) and then take that back to a set of computations with
⇑e (·).

A special case of indexed relations between machine environ-
ments and denotational values is that for the empty environment.
We define Ii ⊆ Env × 1, where 1 is the one-point cpo, by Ii =
{([], ∗)}. We can now define the ‘real’ indexed logical relation of
approximation between machine values and domain elements

Et
i ⊆ Value× JtK

where t is a type and i is a natural number index like this:

EInt
i = {(n, n) | n ∈ N}

EBool
i = {(0, false)} ∪ {(n + 1, true) | n ∈ N}

Et×t′

i = {(PR (v1, v2), (dv1, dv2)) | (v1, dv1) ∈ Et
i ∧

(v2, dv2) ∈ Et′
i }

Et→t′
i = {(f, df) | ∀k ≤ i, ∀(v, dv) ∈ Et

k,

(([App], [v, f ]), λ∗ : 1.df dv) ∈ (I
C→ (Et′)⊥)k}

This says that machine integers approximate the corresponding
denotational ones, the machine zero approximates the denotational
‘false’ value, and all non-zero machine integers approximate the
denotational ‘true’ value, reflecting the way in which the low-
level conditional branch instruction works and the way in which
we compile source-level booleans. Pair values on the machine
approximate denotational pairs pointwise.

As usual, the interesting case is that for functions. The definition
says that a machine value f and a semantic function df are related
at type t → t′ if whenever v is related to dv at type t, the
computation whose code part is a single application instruction
and whose stack part is the list [v, f ] is related to the constantly
(df dv) function, of type 1 ⇒ Jt′K⊥, by the monadic lifting of the
approximation relation at type t′.

Having defined the relation for values, we lift it to environments
in the usual pointwise fashion. If Γ is x1 : t1, . . . , xn : tn then
EΓ

i ⊆ Env× JΓK is given by

EΓ
i = {([v1, . . . , vn], (d1, . . . , dn)) | ∀l, (vl, dl) ∈ Etl

i }

For computations in context, we define EΓ,t
i ⊆ Comp × (JΓK ⇒

JtK⊥) using the monadic lifting again

EΓ,t
i = (EΓ C→ (Et)⊥)i

These relations are antimonotonic in the step indices and monotone
in the domain-theoretic order (we also switch to infix notation for
relations at this point):

Lemma 1.

1. If v Et
i d, d v d′ and j ≤ i then v Et

j d′.
2. If eEΓ

i ρ, ρ v ρ′ and j ≤ i then eEΓ
j ρ′.

3. If comp EΓ,t
i f , f v f ′ and j ≤ i then comp EΓ,t

j f ′.

The non-indexed versions of the approximation relations are
then given by universally quantifying over the indices.

v �t d
def⇐⇒ ∀i, v Et

i d

e �Γ ρ
def⇐⇒ ∀i, eEΓ

i ρ

comp �Γ,t df
def⇐⇒ ∀i, comp EΓ,t

i df

Note that the relation on computations extends that on values:

Lemma 2. If v �t d then bv �[],t (λ∗ : 1.[d]).

5.2 Approximating Operational By Denotational
Our second logical relation captures what it means for a denota-
tional value to be ‘less than or equal to’ a machine computation.
This way around we will again use biorthogonality, but this time
with respect to the observation of termination. This is intuively rea-
sonable, as showing that the operational behaviour of a program
is at least as defined as some domain element will generally in-
volve showing that reductions terminate. We will not use opera-
tional step-indexing to define the relation this way around, but an
explicit admissible closure operation will play a similar rôle.

For e ∈ Env, comp ∈ Comp and cesd ∈ CESD our termination
observation is defined by

T e comp cesd
def⇐⇒ (comp on (e ^ cesd)) 7→∗ 

which we again lift to values v ∈ Value:

T e v cesd
def⇐⇒ T e bv cesd

and again the observations generate two e-parameterized Galois
connections, one between predicates on values and predicates on
contexts, and the other between predicates on computations and
predicates on contexts. Once more we use two of the four maps:

↓e(·) : P(Value) → P(CESD)

↓e(P ) = {cesd | ∀v ∈ P, T e v cesd}
⇑e(·) : P(CESD) → P(Comp)

⇑e(Q) = {comp | ∀cesd ∈ Q, T e comp cesd}

to define a relational action for the lift monad. If S and D are cpos,
RS ⊆ Env× S and RD ⊆ Value×D, then define

(RS
B→ RD⊥) ⊆ Comp× (S ⇒ D⊥)

= {(comp, df) | ∀(e, de) ∈ RS , ∀d, [d] = (df de)
=⇒ comp ∈ ⇑e(↓e({v | (v, d) ∈ RD}))}

which follows a similar pattern to our earlier definition, in using
biorthogonality on the right hand side of the arrow: starting with
all values related to d, flipping that over to the set of contexts that
terminate when plugged into any of those values and then coming
back to the set of all computations that terminate when plugged into
any of those contexts.



Now we can define the second logical relation

Dt ⊆ Value× JtK

by induction on the type t:

DInt = {(n, n) | n ∈ N}
DBool = {(0, false)} ∪ {(n + 1, true) | n ∈ N}

Dt×t′ = {(PR (v1, v2), (dv1, dv2)) | (v1, dv1) ∈ Dt ∧

(v2, dv2) ∈ Dt′}

Dt→t′ = {(f, df) | ∀(v, dv) ∈ Dt,

(([App], [v, f ]), λ∗ : 1.df dv) ∈ (I
B→ (Dt′)⊥)}

This relation also lifts pointwise to environments. For Γ = x1 :
t1, . . . , xn : tn define DΓ ⊆ Env× JΓK by

DΓ = {([v1, . . . , vn], (dv1, . . . , dvn)) | ∀l, (vl, dvl) ∈ Dtl}

and then for computations in context, DΓ,t ⊆ (JΓK ⇒ JtK⊥) is
given by

DΓ,t = (DΓ B→ (Dt)⊥)

The D relations are all down-closed on the denotational side:

Lemma 3.

1. If v Dt d and d′ v d then v Dt d′

2. If eDΓ ρ and ρ′ v ρ then eDΓ ρ′

3. If comp DΓ,t f and f ′ v f then comp DΓ,t f ′

However, for a fixed v, it turns out that {d | v Dt d} is not
always closed under taking limits of chains (see Appendix B for
a more detailed explanation), which would prevent our compiler
correctness proof going through in the case of recursion. We solve
this problem by taking the Scott-closure. The closed subsets of
a cpo D are those that are both down-closed and closed under
limits of ω-chains. The closure Clos(P ) of a subset P ⊆ D is
the smallest closed subset of D containing P . So we define

v �t dv
def⇐⇒ dv ∈ Clos({d | v Dt d})

e �Γ de
def⇐⇒ de ∈ Clos({d | eDΓ d})

comp �Γ,t df
def⇐⇒ df ∈ Clos({d | comp DΓ,t d})

Again, the relation for computations extends that for values:

Lemma 4. If v �t d then bv �[],t (λ∗ : 1.[d]).

5.3 Realizability and Equivalence
Having defined the two logical relations, we can clearly put them
together to define relations expressing that a machine value, envi-
ronment or computation realizes a domain element:

v |=t d
def⇐⇒ v �t d ∧ v �t d

e |=Γ de
def⇐⇒ e �Γ de ∧ e �Γ de

comp |=Γ,t df
def⇐⇒ comp �Γ,t df ∧ comp �Γ,t df.

and these relations naturally induce typed relations between ma-
chine components. We just give the case for computations

Γ ` comp1
�∼ comp2 : t

def⇐⇒ ∃df ∈ (JΓK⇒ JtK⊥), comp1 |=Γ,t df ∧ comp2 |=Γ,t df

and we overload this notation to apply to simple pieces of code too:

Γ ` c1
�∼ c2 : t

def⇐⇒ Γ ` bc1
�∼ bc2 : t

There seems no general reason to expect that the �∼ relations are
transitive (though we have no concrete counterexample), so we

apply a transitive closure operation to get a low-level notion of
equivalence ∼:

Γ ` comp1 ∼ comp2 : t
def⇐⇒ Γ ` comp1

�∼+ comp2 : t

So now we have a notion of what it means for a piece of
SECD machine code to be in the semantic interpretation of a source
language type, and what it means for two pieces of code to be
equal when considered at that type. Clearly, we are going to use
this to say something about the correctness of our compilation
scheme, but note that the details of just what code the compiler
produces have not really shown up at all in the definitions of our
logical relations: it is only the interfaces to compiled code – the
way in which integers, booleans and pairs are encoded and the
way in which function values are tested via application – that are
mentioned in the logical relation. In fact, equivalence classes of the
∼ relations can be seen as defining a perfectly good compositional
‘denotational’ semantics for the source language in their own right.

A feature of this semantics is that there are no statements about
what (non-observable) intermediate configurations should look
like. For example, we never say that when a function is entered
with a call stack that looks like ‘x’, then eventually one reaches
a configuration that looks like ‘y’. At the end of the day, all we
ever talk about is termination and divergence of complete configu-
rations, which we need to connect with the intended behaviour of
closed programs of ground type; this we do by considering a range
of possible external test contexts, playing the role of top-level con-
tinuations.

If c ∈ Code then we say c diverges unconditionally if

∀cesd , (bc on cesd) 7→ω

The following says that if a piece of code realizes the denotational
bottom value at any type, then it diverges unconditionally:

Lemma 5 (Adequacy for bottom). For any c ∈ Code and type t, if

c |=[],t (λ∗ : 1.⊥JtK)

then c diverges unconditionally.

For ground type observations, we say a computation comp
converges to a particular integer value n if plugging it into an
arbitrary context equiterminates with plugging n into that context:

∀cesd , bn on cesd 7→∗ =⇒ comp on cesd 7→∗ 
∧ bn on cesd 7→ω =⇒ comp on cesd 7→ω .

And we can then show that if a piece of code realizes a non-bottom
element [n] of JIntK⊥ in the empty environment, then it converges
to n:

Lemma 6 (Ground termination adequacy). For any c ∈ Code, if

c |=[],t (λ∗ : 1.[n])

then bc converges to n.

Adequacy also holds for observation at the boolean type, with a
definition of convergence to a value b that quantifies over those test
contexts cesd that terminate or diverge uniformly for all machine
values representing b.

We finally show the compositionality of our realizability seman-
tics.

Lemma 7 (Compositionality for application). For any cf, cx ∈
Code and df ∈ JΓK⇒ (JtK⇒ Jt′K⊥)⊥, dx ∈ JΓK⇒ JtK⊥, if

cf |=Γ,t→t′ df ∧ cx |=Γ,t dx

then

cf ++ cx ++[App] |=Γ,t′ λ de : JΓK. (df de)g (dx de)

where g denotes the lifted (Kleisli) application.



6. Applications
In this section, we illustrate the kind of results one can establish
using the logical relations of the previous section.

6.1 Compiler Correctness
Our motivating application was establishing the functional correct-
ness of the compiler that we presented earlier.

Theorem 1.
1. For all Γ,V ,t, if Γ ` V : t then

LΓ ` V : tM �Γ,t [ JΓ ` V : tK ]

2. For all Γ,M ,t, if Γ ` M : t then

LΓ ` M : tM �Γ,t JΓ ` M : tK

The two parts are proved simultaneously by induction on typing
derivations, as in most logical relations proofs. In the case for
recursive functions, there is a nested induction over the step indices.

Theorem 2.
1. For all Γ,V ,t, if Γ ` V : t then

LΓ ` V : tM �Γ,t [ JΓ ` V : tK ]

2. For all Γ,M ,t, if Γ ` M : t then

LΓ ` M : tM �Γ,t JΓ ` M : tK

This is another simultaneous induction on typing derivations.
This time, the proof for recursive functions involves showing that
each of the domain elements in the chain whose limit is the denota-
tion is in the relation and then concluding that the fixpoint is in the
relation by admissibility.

Corollary 1.
1. For all Γ,V ,t, if Γ ` V : t then

LΓ ` V : tM |=Γ,t [ JΓ ` V : tK ]

2. For all Γ,M ,t, if Γ ` M : t then

LΓ ` M : tM |=Γ,t JΓ ` M : tK

So the compiled code of a well-typed term always realizes
the denotational semantics of that term. A consequence is that
compiled code for whole programs has the correct operational
behaviour according to the denotational semantics:

Corollary 2. For any M with [] ` M : Int,

• If J[] ` M : IntK = ⊥ then L[] ` M : IntM diverges uncondi-
tionally.

• If J[] ` M : IntK = [n] then L[] ` M : IntM converges to n.

which follows by the adequacy lemmas above. And of course, by
composing with the result that the denotational semantics is ade-
quate with respect to the operational semantics of the source lan-
guage, one obtains another corollary, that the operational semantics
of complete source programs agrees with that of their compiled ver-
sions. It is this last corollary that is normally thought of as compiler
correctness, but it is Corollary 1 that is really interesting, as it is that
which allows us to reason about the combination of compiled code
with code from elsewhere.

6.2 Low-level Equational Reasoning
In this section we give some simple examples of typed equivalences
one can prove on low-level code. We first define some macros for
composing SECD programs. If c, cf, cx ∈ Code then define

LAMBDA(c) = [PushC (c ++[Ret])]

APP(cf, cx) = cf ++ cx ++[App]

6.2.1 Example: Commutativity of addition
Define the following source term

plussrc = (Fix f x = [Fix g y = x + y])

and its compiled code

pluscode(Γ) = LΓ ` plussrc : Int→ Int→ IntM.

Now we can show the following:

Lemma 8. For any Γ, for any c1, c2 ∈ Code, and dc1, dc2 ∈
JΓK⇒ JIntK⊥, if

c1 |=Γ,Int dc1 and c2 |=Γ,Int dc2

then
Γ ` APP(APP(pluscode Γ, c1), c2)

∼ APP(APP(pluscode Γ, c2), c1) : Int

In other words, for any code fragments c1, c2 that are in the in-
terpretation of the source language type Int, manually composing
those fragments with the code produced by the compiler for the cur-
ried addition function in either order yields equivalent behaviour of
type Int.

6.2.2 Example: First projection
Define the source term

projfstsrc = (Fix f x = [Fix g y = x])

and the compiled code

projfstcode(Γ , t , t ′) = LΓ ` projfstsrc : t → t′ → tM

then

Lemma 9. For any Γ, t,t, for any c1, c2 ∈ Code and dc1 ∈ JΓK⇒
JtK⊥ and dc2 ∈ JΓK⇒ Jt′K⊥, if

c1 |=Γ,t dc1 and c2 |=Γ,t′ dc2

and furthermore

∀de ∈ JΓK, ∃dv ∈ Jt′K (dc2 de) = [dv]

which says that the code c2 realizes some total denotational com-
putation of type t′ in context Γ, then

Γ ` APP(APP(projfstcode(Γ, t, t′), c1), c2) ∼ c1 : t.

This says that the compiled version of projfstsrc behaves like
the first projection, provided that the second argument does not
diverge.

6.2.3 Example: Optimizing iteration
Our last example is slightly more involved, and makes interesting
use of the non-functional equality test in the target language. We
start by compiling the identity function on integers

idsrc = Fix id x = x

idcode(Γ) = LΓ ` idsrc : Int→ IntM

and then define a higher-order function appnsrc that takes a func-
tion f from integers to integers, an iteration count n and an integer
v, and returns f applied n times to v. We present the definition in
ML-like syntax rather than our ANF language to aid readability:

appnsrc = fun f =>
letrec apf n =
fun v =>
if n > 0
then f (apf (n-1) v)
else v



and we let

appncode(Γ) =
LΓ ` appnsrc : (Int→ Int) → Int→ Int→ IntM

Now we define a handcrafted optimized version, appnoptcode(Γ)
in the SECD language, which would, if one could write it, corre-
spond to ML-like source code looking something like this:

fun f => fun n => fun v =>
if f =α idcode(Γ)
then v
else appnsrc f n v

The optimized code checks to see if it has been passed the literal
closure corresponding to the identity function, and if so simply
returns v without doing any iteration. We are then able to show
that for any Γ,

Γ ` appnoptcode(Γ) ∼ appncode(Γ)
: (Int→ Int) → Int→ Int

showing that the optimized version, which could not be written in
the source language, is equivalent to the unoptimized original.

7. Discussion
We have given a realizability relation between the domains used to
model a simply-typed functional language with recursion and the
low level code of an SECD machine with non-functional features.
This relation was used to establish a semantic compiler correctness
result and to justify typed equational reasoning on handcrafted
low-level code. The relations make novel use of biorthogonality
and step-indexing, and the work sheds interesting new light on the
interaction of these two useful constructions.

As we said in the introduction, there are many other compiler
correctness proofs in the literature, but they tend not to be so
compositional or semantic in character as the present one. The
classic work on the VLISP verified Scheme compiler by Guttman
et al. (1995) is very close in character, being based on relating
a denotational semantics to, ultimately, real machine code. The
untyped PreScheme language treated in that work is significantly
more realistic than the toy language of the present work, though
the proofs were not mechanized. The denotational semantics used
there was in CPS and the main emphasis was on the behaviour of
complete programs. Chlipala (2007) has also used Coq to formalize
a correctness relation between a high-level functional language and
low-level code, though in that case the source language is total and
so can be given an elementary semantics in Sets.

For ML-like languages (pure or impure), contextual equivalence
at higher types is highly complex, depending subtly on exactly what
primitives one allows. This is why, as we said in the introduction,
we feel that fully abstract compilation might not be quite the right
thing to aim for. For example, Longley (1999) shows that there
are extensionally pure (and even useful) functionals that are only
defineable in the presence of impure features, such as references.
Adding such functionals is not conservative – they refine contextual
equivalence at order four and above in pure CBV languages – yet
it seems clear that they will be implementable in many low-level
machines. Complicating one’s specifications to rule out these ex-
otic programs in pursuit of full abstraction is not obviously worth-
while: it seems implausible that any compiler transformations or
information flow policies will be sensitive to the difference. As an-
other example, the presence of strong reflective facilities at the low-
level, such as being able to read machine code instructions, might
well make parallel-or defineable; this would obviously break full

abstraction with respect to the source language, but we might well
wish to allow it.4

The case against full abstraction becomes stronger when one
considers that one of our aims is to facilitate semantically type safe
linking of code produced from different programming languages.
There is a fair degree of ‘wiggle room’ in deciding just how strong
the semantic assumptions and guarantees should be across these
interfaces. They should be strong enough to support sound and
useful reasoning from the point of view of one language, but not
insist on what one might almost think of as ‘accidental’ properties
of one language that might be hard to interpret or ensure from the
point of view of others.

The Coq formalization of these results was pleasantly straight-
forward. Formalizing the SECD machine, compiler, logical rela-
tions and examples, including the compiler correctness theorem,
took a little over 4000 lines, not including the library for domain
theory and the semantics of the source language. The extra burden
of mechanized proof seems fairly reasonable in this case, and the
results, both about the general theory and the examples, are suffi-
ciently delicate that our confidence in purely paper proofs would
be less than complete.

There are many obvious avenues for future work, including
the treatment of richer source languages and type systems, and
of lower-level target languages. We intend particularly to look at
source languages with references and polymorphism and at a target
machine like the idealized assembly language of our previous work.
We would also like to give low-level specifications that are more
independent of the source language - the current work doesn’t
mention source language terms, but does still talk about particular
cpos. We would like to express essentially the same constraints in a
more machine-oriented relational Hoare logic which might be more
language neutral and better suited for independent verification. It
would also be interesting to look at type systems that are more
explicitly aimed at ensuring secure information flow.
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A. The Problem With Realizing Recursion
This appendix gives a concrete example of how defining seman-
tics for functional types as sets of untyped programs can run into
problems in the case that the source language includes recursion
and the untyped target includes non-functional operations. By non-
functional operations, we particularly mean operations that exam-
ine the actual syntax or code of functional terms. The example we
take here is a syntactic equality test: an operation that takes two ar-

guments and returns true if the two (possibly functional) terms are
syntactically equal and otherwise returns false.

Definition of VULE. As an example of a target language, we
consider the call-by-value untyped lambda calculus with a syntactic
equality test (VULE). We give the formal definition and operational
semantics of VULE below. We fix a countable set V of variables.
The set of values Val and the set of terms Term with variables in
V are mutually inductively defined by the following rule:

Val := x

| λx. t

Term := v

| t s

| u ≡α v

| ERROR

where x ∈ V, u, v ∈ Val, t, s ∈ Term. As usual, we assume that
the appplication is left-associative. FVar(t) for any term t denotes
the set of free variables in t, and t [x 7→ s] the capture-avoiding
substitution of the term s for the variable x in the term t.

We also define some syntactic sugar for boolean operation and
recursion (implemented via a CBV fixed point combinator).

TRUE , λx. λy. x y

FALSE , λx. λy. y x

if t then s1 else s2 , t (λx. s1) (λx. s2)`
x 6∈ FVar(s1) ∪ FVar(s2)

´
rec t , λx. (λy. t (λz. y y z))

(λy. t (λz. y y z)) x`
x, y 6∈ FVar(t), z 6= y

´
The small-step call by value operational semantics of VULE is

given as follows:

t  t′ =⇒ t s  t′ s

s  s′ =⇒ v s  v s′

(λx. t) v  t [x 7→ v]

u ≈α v =⇒ u ≡α v  TRUE

u 6≈α v =⇒ u ≡α v  FALSE

ERROR v  ERROR

where x ∈ V, u, v ∈ Val, t, t′, s, s′ ∈ Term and where u ≈α v
means that u is alpha-equivalent to v. For convenience, we define
the multi-step relation +

 by setting t
+
 t′ iff the term t reaches

t′ in one or more steps.
Although we have used lambda-encodings of booleans, condi-

tionals and recursion, so as to be both concrete and minimal, the
argument we shall make does not depend on these details. In fact
we will only rely on some elementary properties of our encodings.
The following hold for any v ∈ Val and t, s1, s2 ∈ Term:

(Prop 1) TRUE, FALSE and rec t are values;

(Prop 2) if TRUE then s1 else s2
+
 s1;

(Prop 3) if FALSE then s1 else s2
+
 s2;

(Prop 4) (rec t) v
+
 t (rec t) v.

The problem. We now define the problem. Let Type be the set
of simple types defined by the rule

T ∈ Type := Bool | T → T .

As usual, the type constructor → is right-associative. Now we con-
sider what happens if we try to give a semantics to these types as



sets of closed VULE terms that admit recursively-defined func-
tions. Whatever the details, we would expect the following, very
minimal, conditions to be satisfied by the interpretation of types
J−K : Type → P(Term):

(Asm 1) TRUE, FALSE ∈ JBoolK.
(Asm 2) Given a value u ∈ JA1 → . . . → An → BK and values

v1 ∈ JA1K . . . vn ∈ JAnK, the application of u to the vis does
not go wrong: u v1 . . . vn

+
 / ERROR.

(Asm 3) For a value u, if u v
+
 v for all values v ∈ JAK, then

u ∈ JA → AK.

We now show that, rather distressingly, for any semantics J−K
satisfying the above conditions, the fixed point combinator Y de-
fined by

Y , λf. rec f

is not in the set

J((Bool→ Bool) → Bool→ Bool) → Bool→ BoolK.

Let the value F be defined by

F , λg. λf. if f ≡α (rec g) then ERROR else f

and observe the following facts about the behaviour of F :

(Obs 1): For any value v ∈ Val,

(rec F ) v
+
 F (rec F ) v

+
 


ERROR if v ≈α rec rec F
v otherwise

(Obs 2): (rec rec F ) TRUE
+
 (rec F ) (rec rec F ) TRUE

+
 

ERROR TRUE  ERROR

(Obs 3): Y (rec F ) TRUE  (rec rec F ) TRUE
+
 ERROR

From these observations, we can conclude that

(Con 1): rec rec F 6∈ JBool→ BoolK because TRUE ∈ JBoolK
(Asm 1), (rec rec F ) TRUE

+
 ERROR (Obs 2), and well-

typed applications don’t go wrong (Asm 2).
(Con 2): rec F ∈ J(Bool→ Bool) → Bool→ BoolK because

rec F behaves as the identity on all values except rec rec F
(Obs 1), and since rec rec F is not in JBool→ BoolK
(Con 1), rec F must behave as the identity on all values that
are in JBool→ BoolK, we get the conclusion by (Asm 3).

(Con 3): Now we see that

Y 6∈ J((Bool→ Bool) → Bool→ Bool) → Bool→ BoolK

because

Y (rec F ) TRUE
+
 ERROR (Obs 3)

rec F ∈ J(Bool→ Bool) → Bool→ BoolK (Con 2)
TRUE ∈ JBoolK (Asm 1)

and well-typed applications don’t go wrong (Asm 2).

This is not at all what we wanted! One would expect (Con 2)
to be false, since F is clearly highly suspicious, and then the
blameless Y could have the expected type. Our analysis of the
problem is that (Asm 3) is the only one of our assumptions that
could be modified in order to get the expected result. In short,
just testing with ‘good’ arguments is actually insufficient grounds
for concluding that a function is good: we need some extra tests
on ‘partially good’ values, which is just what step-indexing will
supply.

B. On the non-closure of Dt

The reason {d | v Dt d} is not always closed under taking limits
of chains is essentially that (·)⊥⊥ does not preserve meets. In
particular \

i

`
P⊥⊥

i

´
=

“ [
i

(P⊥
i )

”⊥
⊃

“ \
i

Pi

”⊥⊥
with the last inclusion following from contravariance and the strict
inclusion [

i

`
P⊥

i

´
⊂

“ \
i

Pi

”⊥
.

Now let 〈dfi〉 be a chain of elements of Jt1 → t2Kwithtidfi = df ,
such that for all i and for all dv ∈ Jt1K, dfi dv A ⊥. Then we claim
that in general, there is a strict inclusion

{f | ∀i, f Dt1→t2 dfi} ⊃ {f | f Dt1→t2 df}
Expanding the definitions, f being in the right-hand set above
means exactly that for all v, dv such that v Dt1 dv,

(([App], [v, f ]), λ∗. df dv) ∈ (I
B→ Dt2

⊥ )

which expands to

∀d, d = [df dv] ⇒ ([App], [v, f ]) ∈ ⇑(↓({w | w Dt2 d}))

or, equivalently (because of the non-⊥ assumption),

([App], [v, f ]) ∈ ⇑(↓({w | ∀d, d = [df dv] ⇒ w Dt2 d}))

which is to say, ([App], [v, f ]) is in

⇑(⇓({ bw | ∀d, d = [df dv] ⇒ w Dt2 d})). (1)

Using similar reasoning, one can deduce that f being in the left-
hand side of our inclusion is equivalent to saying that for all v, dv
such that v Dt1 dv, the computation ([App], [v, f ]) is in\

i

⇑(⇓({ bw | ∀d, d = [dfi dv] ⇒ w Dt2 d})). (2)

But there is in general a strict inclusion between the set in (1) and
that in (2). By down-closure,

{ bw | ∀d, d = [df dv] ⇒ w Dt2 d}
⊆

T
i{ bw | ∀d, d = [dfi dv] ⇒ w Dt2 d}

so

⇑(⇓({ bw | ∀d, d = [df dv] ⇒ w Dt2 d}))
⊆ ⇑(⇓(

T
i{ bw | ∀d, d = [dfi dv] ⇒ w Dt2 d}))

⊂
T

i ⇑(⇓({ bw | ∀d, d = [dfi dv] ⇒ w Dt2 d}))
by the general property of biorthogonals above.

To address this issue, we can either add in ‘just enough’ limits or
close up under all limits. The first version of our definitions looked
like

v �t dv
def⇐⇒ ∃〈di〉, dv v

G
i

di ∧ ∀i, v Dt di

which adds limits of arbitrary chains to (and down-closes) the right-
hand side of the relation. The resulting relation may still not be
closed under limits of chains, but actually works perfectly well for
our purposes, as it does contain limits of all chains arising in the
semantics of functions in our language. (And we even proved all
the theorems in Coq using this definition. . . ) Nevertheless, it seems
mathematically more natural to work with Scott-closed sets, so we
have now adopted the definition using Clos(·) shown in the main
text.
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