
SHOVEL: A SAT-based Tool for Information Flow Alarm Classification

Jong-Gwon Kim
Seoul Nat’l Univ.

Korea
jgkim@ropas.snu.ac.kr

Woosuk Lee
Georgia Tech

USA
woosuk.lee@cc.gatech.edu

Jaeseung Choi
Seoul Nat’l Univ.

Korea
jschoi@ropas.snu.ac.kr

Chung-Kil Hur
Seoul Nat’l Univ.

Korea
gil.hur@sf.snu.ac.kr

Kwangkeun Yi
Seoul Nat’l Univ.

Korea
kwang@ropas.snu.ac.kr

Abstract—We present a tool, called SHOVEL, that assists
the user to quickly classify, as true or false, alarms reported
by information flow analyzers. Specifically, SHOVEL helps the
user by finding a shortest function call-return path from the
source to the sink that satisfies a given user constraint. In this
paper, we empirically show that our approach is very effective
by classifying 351 alarms for 42 open-source C programs and
identifying 48 true alarms with crash bugs, three of which were
assigned CVE numbers. We also report the patterns of using
SHOVEL during our manual alarm classification.

SHOVEL finds a shortest path using an off-the-shelf MaxSAT
solver taking as user constraint a Boolean formula on the
call/return edges of the call graph. For this, we develop a novel
algorithm that encodes the constrained shortest path problem
into a Boolean formula in a counter-example guided refinement
fashion. Our algorithm is very easy to implement but also very
efficient. In our empirical study, SHOVEL responded mostly
within a few seconds even for programs of 100K LOC.

Keywords-static analysis; software reliability; error diagno-
sis; maximum satisfiability; alarm classification

I. INTRODUCTION

One of the main practical problems with using static
analyzers is that identifying false alarms is highly time-
consuming. Since static analysis problems are mostly un-
decidable, all static analyzers produce (often many) false
alarms. To classify alarms as true or false, one may some-
times have to carefully examine the whole source code,
which is very tedious and time-consuming. This high cost
of manual alarm classification has been one of the major
reasons for the underuse of static analysis tools [21], [24].

In this paper, we present a tool, called SHOVEL, that can
greatly help the user to determine which alarms are true
for information flow analyses. We assume a static analyzer
generates the call graph of an input program and reports
a set of node pairs in the graph. Each pair of nodes,
called source and sink, is an alarm that information of
our interest may flow between the two nodes (e.g., taint
flow [16], resource leak [22], privacy leak [23]). In this
setting, SHOVEL efficiently finds a shortest well-formed call-
return path from the source to the sink that satisfies a user
constraint given as a Boolean formula on the call/return
edges of the graph.

The reason why SHOVEL finds paths in the abstract
domain of call graphs with Boolean constraints rather than

Algorithm 1 User Interaction Loop
Global Input G: call graph, fsrc: source, fsnk: sink
Function ClassifyAlarm()

output YES: true alarm, NO: false alarm
1: µ := true // Initialize
2: loop
3: p := SHOVEL(µ) // Find a shortest path
4: if p = UNSAT then return NO
5: δ := UserConstraint(p) // Find a refinement
6: if δ = true then return YES
7: µ := µ ∧ δ // Refine
8: end loop

in a more concrete domain, for example, of control-flow
graphs with constraints in more expressive logic is twofold.
First, since the size of a call graph is much smaller than that
of a control-flow graph, SHOVEL can scale well to large
programs. Indeed, SHOVEL responds mostly within a few
seconds even for C programs of 100K LOC. Second, since a
user constraint is given as a Boolean formula, SHOVEL can
use an off-the-shelf MaxSAT [5] solver to find a shortest
path satisfying the constraint. We use a MaxSAT sovler to
find a minimal solution of a Boolean formula in terms of
the number of the variables assigned true.

Moreover, we empirically show that call graph paths
and Boolean constraints are not too abstract to be used:
we manually classify alarms using SHOVEL to find many
new bugs in various open-source C programs. We applied
SHOVEL to two kinds of static analysis problems. One is to
check whether tainted user information flows into a format
string argument of library functions such as printf. The
other is to check whether tainted user information with
integer overflow flows into the size argument of malloc.
We used SHOVEL to classify 351 alarms for 42 open-source
C programs and identified 48 true alarms with crash bugs,
three of which were assigned CVE numbers [10], [11], [12].

Throughout the paper, we present (i) how we manually
identify true/false alarms using SHOVEL and (ii) how we
develop SHOVEL using a MaxSAT solver.

A. Manual Alarm Classification using SHOVEL

We interactively use SHOVEL to decide whether a given



Algorithm 2 Main Loop of SHOVEL

Global Input G: call graph, fsrc: source, fsnk: sink
Function SHOVEL(µ)

input User constraint µ
output UNSAT or a shortest path satisfying µ
1: ϕ := µ ∧ PathEncoding(µ) // Initialize
2: loop
3: p := FindMinSAT(ϕ) // Solve
4: if p = UNSAT or WellFormed(p) then return p
5: ϕ := ϕ ∧ PathRefine(p) // Refine
6: end loop

alarm is true or not as in Algorithm 1. An alarm is given
as a source-sink pair of nodes (fsrc, fsnk) in the call graph
G and we decide whether there is tainted information flow
(henceforce called simply taint flow) from fsrc to fsnk in the
original program. First, we set the user constraint µ to be
true (i.e., no constraint) (line 1) and find a shortest well-
formed path p from fsrc to fsnk satisfying µ using SHOVEL
(line 3). When there is no such path, we conclude that the
given alarm is false (line 4). Otherwise we examine the
source code to decide whether there is taint flow along the
path p (line 5). In case of yes, we discover a true bug and
stop (line 6). Otherwise, we find a reason why p is spurious,
from which we derive a general condition δ that excludes p
but includes all (or most) valid paths (i.e., with taint flow)
(line 5). Then we refine the user constraint µ with δ (line 7)
and repeat the process until we succeed to classify the alarm.

Through our empirical study, we show that our approach
is practical making the following observations.

• It is not hard for the user to recover the concrete control
flow from a given rather abstract call-return path. The
reason is because the user just needs to figure out the
control flow inside each function, which is not so hard
since the function size is usually not too big.

• Boolean logic is expressive enough to describe our user
constraints. In Section III, we give the patterns of the
user constraints we have used in detail.

• We could derive general (and sound) constraints based
on our intuition and understanding about the program.
Inferring such general constraints is the most important
role of the user, which can be hardly done by automatic
tools.

B. Algorithm of SHOVEL using a MaxSAT Solver

Finding a shortest path satisfying a Boolean constraint is
in general at least NP-complete in the size of the constraint.
The reason is simple. Consider the constraint that the path
should visit all the functions in the call graph with only
function calls (i.e., no returns). This constraint can be easily
encoded as a Boolean formula whose size is proportional to
that of the graph. Then the problem of finding a shortest path

𝑓 𝑔 ℎ 𝑖

𝑎
𝑏 𝑐

𝑗

(A) A call graph
𝑓 𝑔 ℎ 𝑖

𝑎
𝑏 𝑐

(C) Path folding

𝑓 ⇢ 𝑔 → 𝑎 → 𝑏 ⇢ 𝑎 → 𝑐 ⇢ 𝑎 ⇢ 𝑔 → ℎ → 𝑖 → ℎ ⇢ 𝑖

(B) A well-formed path

Figure 1. Examples of call graph and well-formed path

under the constraint becomes the Hamiltonian path problem,
which is NP-complete in the size of the graph.

To solve this hard problem, we develop a novel algorithm
using a MaxSAT solver. The idea is to represent edges of the
call graph as Boolean variables and encode the condition for
well-formed paths as a Boolean formula on the variables.
Then we can find a shortest path by finding a minimal
solution of the formula using a MaxSAT solver.

More precisely, since it is hard to exactly encode the
path condition, we use the so-called counter example guided
refinement approach using sound but not complete encodings
(i.e., including all well-formed paths but not excluding
all ill-formed ones) as in Algorithm 2. We initialize the
Boolean formula ϕ with the user constraint µ and our initial
encoding PathEncoding(µ) of well-formed paths (line 1).
Then we find a minimal solution p of the formula ϕ using
a MaxSAT solver (line 3). Since our encoding is sound, if
ϕ is unsatisfiable or p is a well-formed path, then we have
a correct answer and thus return p (line 4). However, since
our encoding is not complete, the minimal solution p may
be an ill-formed path. In that case, we update our encoding
ϕ with our sound refinement PathRefine(p) guided by the
counter example p (line 5) and repeat the process until we
succeed to find a correct answer.

C. Our Contribution

• We develop a novel algorithm for soundly and ef-
ficiently finding a shortest call-return path satisfying
a Boolean constraint using an off-the-shelf MaxSAT
solver. Our soundness proof is available at the project
website.

• Using SHOVEL and the static analyzer SPARROW [30],
[26], we found 48 crash bugs, three of which were
assigned CVE numbers [10], [11], [12]

• We summarize the user constraint patterns that we have
used in our experiment.

II. OVERVIEW

We present the main ideas of the paper using concrete
examples.



A. Boolean Representation using Backbone-Branch Decom-
position

We first illustrate how we represent a well-formed path
as an assignment to Boolean variables.

Consider the call graph in Figure 1.(A), where the nodes
and edges represent functions and possible calls between
them. The graph also implicitly implies that there is a return
edge w →·· v for each call edge v → w. Then consider
the well-formed path from f to i depicted in Figure 1.(B),
where the solid and dashed arrows represent function calls
and returns respectively.

This path is well-formed because every pair of corre-
sponding call-return edges is well-matched in the sense that
they are in the opposite direction between the same pair of
functions. Specifically, in Figure 1.(B), the nested underlines
denote all corresponding call-return pairs in the path, each
of which is in the opposite direction. This notion of well-
formedness captures the property that every invoked function
should return to its caller. An example of ill-formed path is
g → h→·· i, where the corresponding call g → h and return
h →·· i are not in the opposite direction (i.e., the invoked
function h does not return to its caller g).

The first problem with Boolean encoding of such well-
formed paths is to soundly and efficiently encode the well-
formedness condition. Since, as we just have seen, corre-
sponding call-return pairs can be nested (i.e., defined by a
context-free grammar), it is not obvious how to express such
a property in Boolean logic.

Our solution to the problem is to obtain well-formedness
by construction via what we call backbone-branch decom-
position.

Backbone-Branch Decomposition The decomposition of a
well-formed path is to classify every edge in the path into
two categories: the edges in all corresponding call-return
pairs, called branches, and those in the rest, called backbone.
This decomposition can be well illustrated by folding all
call-return pairs in the branches. For instance, the example
path can be folded as in Figure 1.(C), where f →·· g → h→ i
is the backbone and the others are branches.

The backbone can be further decomposed into two: the
return backbone consisting of return edges, followed by
the call backbone consisting of call edges. For example,
in Figure 1.(C), the backbone is decomposed into f →·· g
followed by g → h → i. Such decomposition is possible
because there cannot be any call edge immediately followed
by a return edge in the backbone, which would form a branch
if any.

Boolean Representation With the decomposition, we can
obtain well-formedness for free by separately represent-
ing the three components (i.e., return/call backbones and
branches). Specifically, we represent a well-formed path
using three Boolean variables xrw,v, x

c
v,w, x

b
v,w for each edge

v → w in the call graph. The idea is that the variable xrw,v

fd_read dico_log syslog_log_printer

src sink

(A) Initial path

(B) After enforcing that syslog_log_printer should be invoked by dico_vlog in the backbone

(D) After enforcing that dicod_inetd should not be called before config_parse in main

(6 fcns)

fd_read dico_vlog syslog_log_printer

src sink

(12 fcns)

log_write

fd_read

syslog_log_printer

src

sink

(C) After enforcing that assign_locus should be visited

(6 fcns)
yyparse dico_vlog

(2 fcns)

yylexparse_line_cppassign_locus

config_

parse
main

dicod_

inetd

fd_read

syslog_log_printer

src

sink

(8 fcns)
yyparse dico_vlog

(2 fcns)

yylexparse_line_cppassign_locus

config_

parse
main

dicod_

server

config_

diag

(E) After enforcing that dicod_server should not be called before config_parse in main

UNSAT

Figure 2. Shortest paths in GNU dicod-2.0 found by SHOVEL

indicates whether the return edge w →·· v is included in the
return backbone of the path; xcv,w whether v → w in the call
backbone; and xbv,w whether the pair v ←··→ w in the branches.
For example, the well-formed path in Figure 1 is represented
by assigning truth values to the following variables:

xrf,g, x
c
g,h, x

c
h,i, x

b
g,a, x

b
a,b, x

b
a,c, x

b
i,h .

Note that we can avoid encoding well-formedness by
using a single branch variable for a call-return pair. Also,
note that we encode the image of a call-return path rather
than the path itself. For example, two different call-return
paths f → g →·· f → h→·· f and f → h→·· f → g →·· f have
the same Boolean representation. However, this abstraction
is not problematic for the user to recover a concrete control
flow.

B. Manual Alarm Classification using SHOVEL

Before we present how we develop SHOVEL, we first
illustrate how we use SHOVEL in alarm classification.

To give a high-level idea, we present how we classified
a format string vulnerability alarm for GNU dicod-2.0. The
alarm consists of the source function fd_read, which takes
tainted user input via the system call read, and the sink
function syslog_log_printer, which passes a format
string to the library function vsnprintf. Our goal is
to determine whether the tainted information from read
flows into the format string argument of vsnprintf in an
insecure way.

Step 1 To this end, we first obtained a shortest path using
SHOVEL, which is depicted in Figure 2.(A). By examining
information flow along this path, we found that log_write
passes the constant string "%.*s" to dico_log as shown
below, which blocks taint flow.



log_write(...){
...
dico_log(p->level, 0, "%.*s", size, buf);
...

}

Based on this observation, we derived a general constraint
that excludes the path as follows. First we checked all the
call sites of dico_log using the source code browsing
tool CSCOPE and found that a constant string is always
passed to dico_log, which blocks tainted information
flow. Thus we can derive the constraint that taint propa-
gation paths should not contain the call from dico_log to
syslog_log_printer in the backbone.

Then we further generalized the constraint as follows. By
examining all the call sites of syslog_log_printer,
we found out that all the callers except dico_vlog passes
a constant string to syslog_log_printer in a simi-
lar way as in dico_log. From this we can derive the
constraint that taint propagation paths should contain the
call from dico_vlog to syslog_log_printer in the
backbone.

Step 2 With this constraint, we obtained the shortest path
given in Figure 2.(B) using SHOVEL. By examining the path
using CSCOPE, we made the following observations. First,
config_diag is the only caller of dico_vlog. Second,
in config_diag, tainted information may flow from the
argument fmt and the structure field locus->file to the
function dico_vlog, as shown below.
config_diag(..., const char *fmt, ...){

...
asprintf(&newfmt, "%s:%d:warning: %s",

locus->file, locus->line, fmt);
...
dico_vlog(category, errcode, newfmt, ap);
...

}

Third, a constant string is passed to config_diag for the
fmt argument at all its call sites, and thus locus->file
is the only source of taint since locus->line is of integer
type. Finally, assign_locus is the only function that
stores a value to a structure field with name file.

From these observations we can easily derive the con-
straint that taint propagation paths should visit the function
assign_locus. This constraint can be encoded by taking
the disjunction of all Boolean variables for incoming and
outgoing edges of assign_locus.

Step 3 With this additional constraint, we obtained the
shortest path given in Figure 2.(C) using SHOVEL. By
examining the path using CSCOPE, we observed that the
path is infeasible because, in the main function, the call to
config_parse comes before the call to dicod_inetd.
From this we can derive the constraint that the backbone
should not include both the return from dicod_inetd to
main and the call from main to config_parse at the

sink

src

f1 f2 f3 f4 f5 f6 f7

f8f9f10f11f12f13 f14

f15

Figure 3. A running example for Boolean encoding

same time.

Step 4 With the additional constraint, we obtained the
shortest path given in Figure 2.(D) using SHOVEL. Similarly
as in Step 3, dicod_server cannot be called before
config_parse in the main function and thus we have
the constraint that the backbone should not include both the
return from dicod_server to main and the call from
main to config_parse at the same time.

Step 5 With this additional constraint, SHOVEL finally an-
swers that there is no such path satisfying all the constraints
given so far. Therefore we can conclude that the alarm from
fd_read to syslog_log_printer is false.

C. Boolean Encoding of Well-formed Paths

We now illustrate how to soundly encode and refine well-
formed paths as a Boolean formula (i.e., PathEncoding and
PathRefine of Algorithm 2) using the running example of a
call graph given in Figure 3.

Our key idea is to encode a certain property Φ(V ) for a
set of functions V that every well-formed path should satisfy
when passing through V , and apply Φ to carefully chosen
sets of functions.

Encoding of Φ The property Φ(V ) is straightforward and
easy to encode. For example, for V = { f5 } in the call
graph in Figure 3, one of the sub-properties of Φ(V ) says
that if the return backbone of any well-formed path enters
V , then its return or call backbone should exit V . This can
be easily encoded as follows:

xr4,5 ∨ xr6,5 =⇒ xr5,4 ∨ xr5,6 ∨ xc5,4 ∨ xc5,6 .

The full definition of Φ(V ) is given in Figure 4. The
formula Init(V ) states that when V includes the source
but not the sink, the return or call backbone should exit V
(see (1)); and similarly for the opposite case (see (2)). The
formula IO(V ) states that when V does not include the sink,
if the return backbone enters V , the return or call backbone
should exit V and if the call backbone enters V , the call
backbone should exit V (see (3)). The formula OI(V ) states
similarly for the opposite case (see (4)). The formula BR(V )
states that when V includes neither the source nor the sink,
if the branches exit V , then either the branches enter V or
the backbone should pass through V (see (5)).

It is not hard to see that Φ(V ) is sound1 (i.e., contains
every well-formed path from fsrc to fsnk) for an arbitrary

1The proof of soundness is available at the project website.



Φ(V ) = Init(V ) ∧ IO(V ) ∧OI(V ) ∧ BR(V )

Init(V ) =


•→◦
R(V ) ∨

•→◦
C(V ) if fsrc ∈ V, fsnk /∈ V (1)

◦→•
R(V ) ∨

◦→•
C(V ) if fsrc /∈ V, fsnk ∈ V (2)

true otherwise

IO(V ) =


(
→•
R(V )⇒

•→◦
R(V ) ∨

•→◦
C(V )) ∧ if fsnk /∈ V (3)

(
→•
C (V )⇒

•→◦
C(V ))

true otherwise

OI(V ) =


(
•→
R(V )⇒

◦→•
R(V )) ∧ if fsrc /∈ V (4)

(
•→
C (V )⇒

◦→•
R(V ) ∨

◦→•
C(V ))

true otherwise

BR(V ) =

{•→
B (V )⇒

◦→•
B(V ) ∨ RC(V ) if fsrc, fsnk /∈ V (5)

true otherwise
where RC(V ) =

→•
R(V ) ∨

•→
R(V ) ∨

→•
C (V ) ∨

•→
C (V )

For (L, l) ∈ { (R, r), (C, c), (B, b) },
•→
L (V ) =

∨
{xlv,w | v ∈ V }

→•
L (V ) =

∨
{xlv,w |w ∈ V }

•→◦
L (V ) =

∨
{xlv,w | v ∈ V,w /∈ V }

◦→•
L (V ) =

∨
{xlv,w | v /∈ V,w ∈ V }

Figure 4. Definition of Φ(V ) for source fsrc and sink fsnk.

set V of functions because the properties we encode are
straightforward. Thus the conjunction of Φ(V )’s for arbitrary
choices of V is also sound.

Application of Φ We now define PathEncoding(µ) and
PathRefine(p) of Algorithm 2 by applying Φ to well chosen
sets of functions:

PathEncoding(µ) =
∧
{Φ(V ) | V ∈ InitGrps(µ) }

PathRefine(p) =
∧
{Φ(V ) | V ∈ RefiGrps(p) } ∧ Not(p)

where Not(p) is the Boolean formula that negates exactly
the solution p. We add Not(p) in order to formally guarantee
that PathRefine(p) excludes p.

Then we illustrate how to find good collections of func-
tions for InitGrps and RefiGrps with a running example.
Consider the call graph in Figure 3 with f1 source and f13
sink together with the user constraint µ given by

µ = ¬xr2,3 ∧ ¬(xc10,9 ∨ xb10,9) ∧ (xc15,14 ∨ xb15,14) .

Basic Initial Groupings Our basic idea is to apply Φ
to every singleton set in the call graph G. In the running
example, we have the following groupings:

InitGrps(µ) = { {f1}, . . . , {f15} }

In this case, a minimal solution of µ ∧ PathEncoding(µ)

with size 8 is given as follows:

sink

src

f1 f2 f3 f4 f5 f6 f7

f8f9f10f11f12f13 f14

f15

(CE1)

The main reason for the solution being ill-formed is that the
path can be disconnected by making cycles.

Advanced Initial Groupings In order to alleviate the
disconnection problem, we apply Φ to additional function
sets derived by means of logical inference from µ and SCC
(Strongly Connected Component) computation. The details
are as follows.

First, we find return edges v →·· w such that their absence
in the return backbone is derivable from the user constraint µ
(i.e., µ ⇒ ¬xrv,w provable). Then we compute all SCCs of
the sub-graph of the original call graph that consists of only
and all the return edges except those we just derived from
µ. Then we apply Φ to those SCCs. In the running example,
since we can derive ¬xr2,3 from µ, we compute the SCCs
from the return edges of the call graph in Figure 3 except
f2 →·· f3, which results in the following (non-singleton)
groupings:

{f3, . . . , f12}, {f14, f15}

Second, we perform a similar process for call backbone
variables. We find call edges v → w such that µ ⇒ ¬xcv,w
is provable and then compute the SCCs from the call edges
of the call graph except those just found. In the running
example, we can derive ¬xc10,9 from µ and obtain the
following (non-singleton) SCCs:

{f2, . . . , f8}, {f9, . . . , f12}, {f14, f15}

Finally, we perform a similar process for branch variables.
We find call edges v → w such that µ⇒ ¬xbv,w is provable
and conduct the same process as before. In the running
example, we can derive ¬xb10,9, which results in the same
SCCs as for the call backbone.

By taking all the groupings together, we have:

InitGrps(µ) = { {f1}, . . . , {f15}, {f3, . . . , f12}, {f14, f15},
{f2, . . . , f8}, {f9, . . . , f12} }

This time a minimal solution of µ∧ PathEncoding(µ) with
size 12 is given as follows:

sink

src

f1 f2 f3 f4 f5 f6 f7

f8f9f10f11f12f13 f14

f15

(CE2)

This path is still ill-formed but better than the counter exam-
ple (CE1) obtained by the basic groupings. Also note that
the path (CE1) does not satisfy this advanced initial formula



Φ(InitGrps(µ)) because, for example, the path enters but
does not exit the group {f2, . . . , f8}.

Basic Refinement Groupings Now we show how to refine
the initial groupings using a counter example. The basic idea
is to simply apply Φ to the SCCs computed from the counter
example. More specifically, we compute SCCs separately for
the return backbone, the call backbone and the branches. For
the counter example (CE2) above, we have the following
non-singleton SCCs:

Return backbone : None
Call backbone : {f2, f3}, {f8, f9}

Branches : {f14, f15}
Thus to the initial groupings, we add

RefiGrps(CE2) = { {f2, f3}, {f8, f9}, {f14, f15} }

and find a minimal solution using a MaxSAT solver, which
is of size 14 and given as follows:

sink

src

f1 f2 f3 f4 f5 f6 f7

f8f9f10f11f12f13 f14

f15

(CE3)

By applying the same refinement process again to the
counter example (CE3), we have

RefiGrps(CE3) = { {f3, f4}, {f7, f8}, {f14, f15} }

and the following minimal solution of size 15:

sink

src

f1 f2 f3 f4 f5 f6 f7

f8f9f10f11f12f13 f14

f15

(SOL)

This path is finally well-formed and thus a shortest path
satisfying the user constraint µ.

Advanced Refinement Groupings We can improve the basic
refinement groupings to make bigger progress in a single
refinement step. The idea is to take larger groups than the
SCCs of the counter example by including their neighbor
functions. To maximize efficiency, however, we have to care-
fully select neighbors. The details of our selection scheme
is given in Appendix VII.

Here we illustrate the high-level idea using the running
example. Recall that for the counter example (CE2) we
obtain the groupings {f2, f3}, {f8, f9}, {f14, f15} by com-
puting SCCs. Now we enlarge the groupings by adding those
neighbors that are chosen by our selection scheme. The
result is as follows:

RefiGrps(CE2) = { {f2, f3}, {f8, f9}, {f14, f15},
{f2, f3, f4}, {f7, f8, f9} }

where we add to {f2, f3} one of its neighbors, f4, and to
{f8, f9} one of its neighbors, f7.

With this advanced refinement groupings, we directly find
the well-formed path (SOL) from the counter example (CE2)
in one step. Note that the path (CE3) does not satisfy this
advanced refinement formula Φ(RefiGrps(CE2)) because,
for example, the path enters but does not exit the group
{f2, f3, f4}.

III. USER CONSTRAINT PATTERNS

In this section, we summarize the user constraint patterns
that we have used in our experiment.

First of all, our patterns apply around a function, we say f
throughout the section, and are sound only when every taint
flow from the source to the sink should pass through f .
Though one may think this condition may seriously restrict
the applicability of our patterns, it turns out that it was not
problematic most of the time in our experiment. The reason
is because we apply the patterns to functions near the source
or the sink, which are likely to satisfy the condition.

However, we also have a work-around even when the
condition fails, which occasionally happened during our
experiment. The idea is to first find a Boolean condition
ρ such that every taint flow satisfying ρ passes through f ;
then put the user constraint µ derived by our patterns under
the premise ρ (i.e., ρ⇒ µ).

It is important to note that the patterns presented here may
not be sound in a certain situation though they are sound in
most cases. Thus before applying one of the patterns, the
user has to check whether it is (likely to be) sound under
the current situation, which is usually easy in our experience.

A. Examining functions that f calls

This pattern is to examine functions invoked inside f .

f(..) {.. g1(..); .. g2(..); .. g3(..); ..}

By examining the code of f we observe either (i) that taints
may flow from argument values of f (or the source point
inside f ) to only particular functions (suppose g1, g2, g3
here) typically when f is near the source; or (ii) that taints
may flow from only particular functions (suppose g1, g2,
g3 here) to return values of f (or the sink point inside f )
typically when f is near the sink. Then by examining each
function (here g1, g2, g3), we determine whether taint flow
gets blocked in it. For example, suppose we discover that
g2 blocks taint flow.

Finally, we give the constraint, in case of (i), that in
the backbone there should be a call from f to one of the
functions that do not block taint flow; and in case of (ii)
a return to f from one of those functions. In the example,
the constraint is given by xcf,g1 ∨ x

c
f,g3

in case of (i) and
xrg1,f ∨ x

r
g3,f

in case of (ii).

B. Examining functions that calls f

This pattern is to examine call sites of f . For example,
suppose using a source browsing tool we find that only g1,



g2, g3 invoke f .

g1(..) { .. f(..); .. }
g2(..) { .. f(..); .. }
g3(..) { .. f(..); .. }

Then by examining each function (here g1, g2, g3), we
determine either (i) whether taints may flow from the
function’s argument values to f typically when f is near
the sink; or (ii) whether taints may flow from f to the
function’s return values typically when f is near the source.
For example, suppose we discover that taint flow is blocked
in g2.

Finally, we give the constraint, in case of (i), that in
the backbone there should be a call to f from one of the
functions that do not block taint flow; and in case of (ii)
a return from f to one of those functions. In the example,
the constraint is given by xcg1,f ∨ x

c
g3,f

in case of (i) and
xrf,g1 ∨ x

r
f,g3

in case of (ii).

C. Examining a call/return chain along the path

This pattern is to examine a call/return chain along
the given shortest path and exclude the chain from the
backbone if it blocks taint flow (e.g., by sanitizing the
taint). Specifically we have four cases:
(i) a call chain starting from f (e.g., f → g1 → g2);
(ii) a return chain ending in f (e.g., g2 →·· g1 →·· f );

f(..) { .. g1(..); .. }
g1(..) { .. g2(..); .. }

(iii) a call chain ending in f (e.g., g1 → g2 → f );
(iv) a return chain starting from f (e.g., f →·· g2 →·· g1).

g1(..) { .. g2(..); .. }
g2(..) { .. f(..); .. }

Boolean encoding of the constraints excluding these call
chains is easy. For example, the four example chains can be
excluded by ¬(xcf,g1 ∧x

c
g1,g2), ¬(x

r
g2,g1 ∧x

r
g1,f

), ¬(xcg1,g2 ∧
xcg2,f ), and ¬(xrf,g2 ∧ x

r
g2,g1), respectively.

D. Examining functions that update a particular variable

This pattern is to find all the places where a particular
global variable or structure field is updated. We usually find
such places using a source browsing tool by searching for
the name of the variable or field. We use this pattern when
we observe by examining f that taints should be read from
a particular variable/field and thus taint flow should pass
through one of the places where the variable/field is updated.

f(..) { .. x = name; .. }
g1(..) { .. name = y; .. }
g2(..) { .. name = z; .. }

or
f(..) { .. x = a->name; .. }

g1(..) { .. b->name = y; .. }
g2(..) { .. c->name = z; .. }

png_default

_read_data

png_read

_end

rwpng_read_image24

_libpng

src sink

(A) Initial path

(B) After enforcing that png_set_IHDR should be visited

(D) After enforcing that png_read_end should not return to rwpng_read_image24_libpng

png_read_chunk

_header

png_read

_data

png_handle

_IHDR
png_set_IHDR

png_default

_read_data

png_read

_end

rwpng_read_image24

_libpng

src sink

png_read_chunk

_header

png_read

_data

png_set_IHDR

png_default

_read_data

png_handle

_IHDR

rwpng_read_image24

_libpng
src sink

png_crc

_read

png_read

_data

png_read

_end

png_set_IHDR

png_default

_read_data

png_handle

_IHDR

rwpng_read_image24

_libpng
src sink

png_crc

_read

png_read

_data

png_read

_info

(C) After enforcing that png_crc_read should return to png_handle_IHDR in the backbone, 

or png_handle_IHDR should invoke png_crc_read in the branch

Figure 5. Shortest paths in pngquant-2.7.0 found by SHOVEL

For example, suppose we found that the global variable or
structure field name is updated only in g1 and g2. Then we
can easily encode the constraint that either g1 or g2 should be
visited by taking the disjunction of all Boolean variables of
the three type (i.e., xr, xc, xb) for all incoming and outgoing
edges of g1 and g2.

E. Examining the order between two function calls

This pattern is to exclude an infeasible function call
order. For example, consider the following code.

f(..) { .. g1(..); .. g2(..); .. }

Suppose the backbone of the given shortest path constraints
the chain g2 →·· f → g1, which is infeasible because g1
should be invoked before g2 is invoked. In this case we can
exclude the chain by giving the constraint ¬(xrg2,f ∧ x

c
f,g1

).
Similarly we exclude a path whose backbone includes a

call edge f → g1 for the code below, where input is the
original taint source and f cannot be invoked twice in any
taint flow.

f(..) { .. g1(..); .. input(..); .. }

One can easily see that the path is infeasible and can exclude
it by the constraint ¬xcf,g1 .

Also we exclude a path whose backbone includes a
return edge g1 →·· f for the code below, where output is
the final taint sink and f cannot be invoked twice in any
taint flow.

f(..) { .. output(..); .. g1(..); .. }

One can easily see that the path is infeasible and can exclude
it by the constraint ¬xrg1,f .



IV. EXAMPLE OF FINDING A VULNERABILITY

We demonstrate how we efficiently found an in-
teger overflow vulnerability from pngquant-2.7.0 with
CVE number [12] using SHOVEL. The source func-
tion of the alarm we classified is png_read_data,
which reads tainted data from a PNG file with
the library function fread. The sink function is
rwpng_read_image24_libpng, which calls malloc
with rowbytes * mainprog_ptr->height as al-
location size. Our goal is to determine whether there
is taint flow from the taint source to rowbytes
and mainprog_ptr->height in the sink function
rwpng_read_image24_libpng because such taint
flow may cause allocating an overflown size block, which
can lead to a security hole.

Step 1 We first obtained a shortest path using SHOVEL,
which is depicted in Figure 5.(A). By browsing the
source code with CSCOPE, we found that rowbytes
and mainprog_ptr->height used in the sink func-
tion are defined with info_ptr->rowbytes and
info_ptr->height respectively. Also, we observed
png_set_IHDR must be visited to define these fields.
Therefore we could derive a constraint that taint flow paths
should visit the function png_set_IHDR.

Step 2 With this additional constraint, we obtained the next
path given in Figure 5.(B) from SHOVEL. By investigating
the path using CSCOPE, we made the following two observa-
tions. First, in order to read in tainted input, png set IHDR
should be called by png handle IHDR as in the given call
path. Second, png_handle_IHDR calls png_crc_read
to read tainted data into buf and this buffer is used to
evaluate the argument for png_set_IHDR as shown below.
png_handle_IHDR(info_ptr, ...){

char buf[13];
png_crc_read(buf, ...);
...
height = *(uint*)(buf + 4);
...
png_set_IHDR(info_ptr, ..., height, ...);

}

From these observations, we inferred the constraint that
png_crc_read should return to png_handle_IHDR
either by the backbone or by a branch.

Step 3 After adding this constraint, we got the shortest path
illustrated in Figure 5.(C) using SHOVEL. We could observe
that the return edge from png_read_end to the sink
function rwpng_read_image24_libpng is infeasible.
This is because inside rwpng_read_image24_libpng,
the call to png_read_end comes after the malloc call.
From this we can derive the constraint that the backbone
should not include the return from png_read_end to
rwpng_read_image24_libpng.

Step 4 With this additional constraint, SHOVEL finds the

Program LOC Func Edge Alm Qry Res(s)
rand-1.0.4 313 10 11 1 2 0.1
fpgatools-0.0/sort seq 425 2 1 1 1 0.1
mp3rename-0.6 559 7 6 1 1 0.1
ghostscript-8.71/genconf 1K 12 15 1 1 0.1
vtprint-2.0.2 1K 14 14 1 2 0.1
devio-1.2 1K 37 87 1 1 0.1
bbe-0.2.2 2K 45 88 3 9 0.1
enum-1.1 4K 48 61 1 2 0.1
tiptop-2.2 5K 136 200 4 13 0.1
uni2ascii-4.14 5K 27 26 1 1 0.1
splitvt-1.6.6 6K 121 245 14 28 0.1
pal-0.4.3 7K 120 238 3 4 0.1
rplay-3.3.2 7K 78 174 1 1 0.1
rptp-3.3.2 7K 78 174 5 11 0.1
cdparanoia-3.10.2 12K 222 544 9 24 0.1
shntool-3.0.10 16K 263 755 7 27 0.3
blktrace-1.0.5 17K 148 247 2 4 0.1
dvi2ps-5.1j 20K 593 1572 25 50 0.5
texinfo-6.0/ginfo 23K 505 1707 0(48) 0 0.0
erlang-13.b.3/erl call 23K 157 305 3 9 0.1
sdop-0.61 23K 166 513 10 38 0.1
zoem-08-248 25K 448 1444 9 36 1.5
latex2rtf-2.3.8 27K 564 2240 9 35 4.6
less-481 27K 453 1255 36 76 0.4
rrdtool-1.4.8 34K 264 698 4 21 0.2
dico-2.0 45K 911 1977 6 44 0.3
dicod-2.0 55K 911 1977 8 36 0.5
daemon-0.6.4 58K 253 543 8 23 0.1
a2ps-4.14 64K 759 1452 22 120 0.6
afbackup-3.5.3 66K 262 799 9 27 0.3
glpk-4.38 95K 1186 4577 6 12 1.1
gnuplot-4.2.6 111K 1815 8627 62(93) 123 5.0
putty-0.65 123K 867 2372 17 66 1.3
TOTAL 927K 290 848 1.3

† The three longest response time spent on generating a path
are 25.6, 6.3 and 6.2 seconds.
† The three longest alarm classification processes each required
9, 9 and 8 times of querying to SHOVEL.

Table I
THE OVERALL EFFECTIVENESS OF SHOVEL IN CLASSIFYING FORMAT

STRING VULNERABILITY ALARMS

call path given in Figure 5.(D). Finally, this path turned out
to carry tainted information from the source to the sink and
we could be able to find an exploit and get a CVE number
for the vulnerability.

V. EXPERIMENTS

We empirically show the effectiveness of our method on
classifying format string vulnerability alarms and integer
overflow vulnerability alarms from open source C programs.
During this experiment, we were able to find new format
string vulnerabilities in 19 programs, and new integer over-
flow bugs in 5 programs. Two format string vulnerabilities
from latex2rtf-2.3.8 and a2ps-4.14 and one integer overflow
vulnerability from pngquant-2.7.0 were assigned CVE num-
bers.

Setting We used SHOVEL to classify alarms generated from
SPARROW [30], [26], a state-of-the-art static analyzer that



Program LOC Func Edge Alm Qry Res(s)
rand-1.0.4 313 10 11 1 1 0.1
enum-1.1 4K 48 61 2 4 0.1
tiptop-2.2 5K 136 200 2 4 0.1
shntool-3.0.10 16K 263 755 19 65 0.3
blktrace-1.0.5 17K 148 247 3 6 0.2
sdop-0.61 23K 166 513 9 14 0.1
libpng-1.6.21/gregbook 41K 224 525 12 36 0.2
pngquant-2.7.0 45K 444 1001 10 46 0.4
dico-2.0 45K 911 1977 3 6 0.1
TOTAL 200K 61 182 0.3

† The three longest response time spent on generating a path
are 0.9, 0.7 and 0.5 seconds.
† The three longest alarm classification processes all required
7 times of querying to SHOVEL.

Table II
THE OVERALL EFFECTIVENESS OF SHOVEL IN CLASSIFYING INTEGER

OVERFLOW VULNERABILITY ALARMS

aims to verify the absence of fatal bugs in C programs. Since
SPARROW is designed based on Abstract Interpretation [7],
its analysis is sound in design. The analyzer detects several
kinds of errors including format string bugs and integer
overflow bugs. Note that other analyzers also can be used
because our method is analyzer-independent.

For MinSAT solving, we use the MaxSAT solver Open-
WBO [28] with the underlying SAT solver MiniSAT
2.0 [15].

We performed expriments on a Linux 3.10 system using
only a single core of Intel Xeon 3.5GHz box with 32GB
RAM.

Experimental Evaluation We evaluated our approach on
classifying format string vulnerability alarms from 405 open
source C programs. The programs were collected from the
official UBUNTU package archive from 15 categories (e.g.,
editors, text processing, network, administration utilities,
etc.). SPARROW analyzed the collected benchmark and re-
ported 290 alarms in 33 programs. The LOCs of these
programs range from several hundreds to over 100K, and
among the 290 alarms 30 alarms are true.

For expreiment on integer overflow vulnerability alarms,
we selected a different benchmark since the number of
alarms were relatively larger than that of format string vul-
nerability. From the previously mentioned UBUNTU pack-
age, we selected 7 programs whose number of alarms
were moderate. And we added 2 more programs (libpng-
1.6.21/gregbook and pngquant-2.7.0) related to libpng [27]
library, since several interger overflow vulnerabilities were
previously found in this library [9], [8]. SPARROW reported
61 alarms from these 9 programs, among which we classified
18 alarms as true.

Table I and II respectively show the expreimental results
of classifying format string vulnerability alarms and integer
overflow vulnerability alarms. The column labeled Alarms
shows the number of alarms reported by the SPARROW. The

number of functions (Func) and the number of call edges
(Edges) indicate the size of statically estimated call-graphs.
Qry column shows the total number of times that we queried
to SHOVEL during the classification of program’s alarms.
Lastly, the column labeled Res shows the average time spent
by SHOVEL for finding the shortest path that satisfies the
user constraint.

The experiment shows that the user-interaction based
approach can greatly help the user to classify alarms in
most of the times. We have successfully classified 351
alarms and identified 48 true bugs (all but one of them were
previously unknown bugs) in 25 programs. For most of these
alarms, a small number of user feedbacks (2.93 in average,
9 in maximum) were sufficient to determine its trueness.
This was possible because we could easily derive a general
user constraint from the provided call path. It is true that
there were cases where our user-interaction based method
does not properly work. For 31 alarms from gnuplot-4.2.6
and 48 alarms from texinfo-6.0/ginfo, we were not able to
derive a general condition with the patterns we discussed in
Section III.

We observed that SHOVEL is efficient in finding the
shortest path that satisfies user constraints. The average
response time spent by SHOVEL to find a call path is about
1.3 seconds for format string vulnerability benchmarks and
0.3 seconds for integer overflow vulnerability benchmarks.
Our advanced refinement grouping iterated once or more for
shntool-3.0.10, latex2rtf-2.3.8. For four alarms from shntool-
3.0.10, our algorithm iterated 11, 2, 2 and 2 times. For three
alarms from latex2rtf-2.3.8, the algorithm iterated 7, 7 and
1 times. In these cases, the biggest SCC consists of 427
functions out of total 564 functions.

VI. RELATED WORK

CFL-reachability Our work is closely related to context-
free language (CFL) reachability problem for program anal-
ysis [31], [3], [2], [35]. For a given directed labeled graph
and a context-free grammar (CFG), the CFL reachability
problem is to find pairs of vertices (u, v) where there exists
a path from u to v whose concatenation of labels is in the
language of the CFG.

It is easy to see that our notion of well-formedness can be
defined by a CFG. In the context of CFL reachability, our
goal can be viewed as finding the shortest CFL reachable
path from source to sink satisfying some constraints on
edges (i.e., user’s constraints). To the best of our knowledge,
we know of no algorithm for solving the constrained shortest
CFL reachability problem. Reps et al. [31] proposed a
polynomial algorithm for the CFL reachability problem,
which however does not find a shortest one. Osbert et al. [3]
proposed a polynomial algorithm for finding a shortest CFL
reachable path, but the algorithm does not consider any



constraint.

SMT for graph properties There are prior works that use
SMT solvers for finding graphs satisfying constraints such
as reachability, shortest-paths, minimum spanning tree [4],
[17]. However, these approaches cannot handle reachability
constraints for cyclic graphs, whereas our work can handle
them (we even handled SCCs with 400 nodes).

Answer Set Programming Unlike SAT, Answer Set Pro-
gramming (ASP) [1], [18], [19], [29], [33] can encode reach-
ability constraints in cyclic graphs. Boolean constraints on
edges also can be encoded. The resulting logic encoding is
always both sound and complete, but checking satisfiability/-
validity of ASP formulas is computationally more expensive
than checking propositional formulas (SAT) in general. For
example, Agostino et al. [14] conducted experiments using
two SAT-based AST solvers, called SMODELS [29] and
CMODELS [19], for the hamiltonian path problem. For a
relatively small-sized graph instance (named 2xp30.4 in the
paper, #nodes = 60, #edges = 318), SMODELS exceeded
180 minutes time limit, and CMODELS spent about an hour
and half.

Inlining-based Approaches A simple and immediate solu-
tion to our problem is simply removing calls and returns by
inlining all function calls a fixed number of times as in [20],
[6], [34]. Thus, it has one kind of edges between nodes, so
that they can avoid encoding the constraint of matched calls
and returns.

But this simple solution is not applicable for two reasons:
potentially exponential-size encoding, and unsoundness for
programs with recursive function calls. Our method is both
effective and sound in the presence of cycles in call-graphs.

Supporting Manual Inspection of Alarms The work by
Zhu et al [36] is most closely related to our user-interactive
approach to information flow analysis alarms. When source
code of libraries is missing, their technique infers a smallest
set of must-not-flow requirements on library functions that
are sufficient to ensure that a given program is free of source-
sink errors via abductive inference [13]. Their system con-
tains a refinement loop where partially confirmed inferred
specification will lead to another minimal specifications.

Their approach is similar to our work in the sense that
both approaches aim to filter out false positives minimizing
user interactions. But their method does not aim to display
feasible paths as ours. So it is not helpful for understanding
and finding real errors.

Osbert et al. [2] automated sanitizer placement for pre-
venting runtime information flow errors. They also aim to
minimize user-interaction to find appropriate instrumentation
points. But also, their method is not helpful in understanding
true alarms.

In addition, our work can be combined with other tech-
niques for a more sophisticated interface to reduce alarm

investigation efforts. Non-statistical clustering techniques
group alarms of the same root causes [25], [26]. Those
techniques can be used to reduce the number of alarms to
inspect. Semantic slicing using abstract dependences [30],
[32] can be used to highlight only relevant parts of resulting
call-graphs.

Supplementary Material The soundness proof, the crash
bugs and the details of user interaction in our experiment are
all available at the project website: http://sf.snu.ac.kr/shovel

VII. APPENDIX

Definition of Advanced Initial Groupings
InitGrps(µ)

def
= { {v} | v ∈ G }
∪ SCC(R(µ)) ∪ SCC(C(µ)) ∪ SCC(B(µ))

where
R(µ)

def
= { v →·· w ∈ G } \ { v →·· w | µ⇒ ¬xrv,w }

C(µ)
def
= { v → w ∈ G } \ { v → w | µ⇒ ¬xcv,w }

B(µ)
def
= { v → w ∈ G } \ { v → w | µ⇒ ¬xbv,w }

Definition of Advanced Refinement Groupings
RefiGrps(p)

def
=

SCC(R(p)) ∪ SCC(C(p)) ∪ SCC(B(p))

∪ {V ∪
↔
NB(V,SrcTgt(R(p) ∪ C(p))) |

V ∈ SCC(R(p)) ∪ SCC(C(p)) }
∪ {V ∪

→
NB(V,SrcTgt(R(p) ∪ C(p) ∪B(p))) |

V ∈ SCC(B(p)) ∨ V = B(p) }
where
R(p)

def
= { v →·· w | xrv,w ∈ p }

C(p)
def
= { v → w | xcv,w ∈ p }

B(p)
def
= { v → w | xbv,w ∈ p }

SrcTgt(X)
def
= { v, w | v → w ∈ X ∨ v →·· w ∈ X }

↔
NB(V,W )

def
= { v /∈W | (v → w or v →·· w) ∈ G ∧ w ∈ V }

→
NB(V,W )

def
= { v /∈W | v → w ∈ G ∧ w ∈ V }

REFERENCES

[1] Chitta Baral. Knowledge Representation, Reasoning, and
Declarative Problem Solving. Cambridge University Press,
New York, NY, USA, 2003.

[2] Osbert Bastani, Saswat Anand, and Alex Aiken. Interactively
verifying absence of explicit information flows in android
apps. In Proceedings of the 2015 ACM SIGPLAN Interna-
tional Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2015, pages 299–
315, New York, NY, USA, 2015. ACM.

[3] Osbert Bastani, Saswat Anand, and Alex Aiken. Specifica-
tion inference using context-free language reachability. In
Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL
’15, pages 553–566, New York, NY, USA, 2015. ACM.

http://sf.snu.ac.kr/shovel


[4] Sam Bayless, Noah Bayless, Holger H. Hoos, and Alan J. Hu.
Sat modulo monotonic theories. In Proceedings of the Twenty-
Ninth AAAI Conference on Artificial Intelligence, AAAI’15,
pages 3702–3709. AAAI Press, 2015.

[5] A. Biere, A. Biere, M. Heule, H. van Maaren, and T. Walsh.
Handbook of Satisfiability: Volume 185 Frontiers in Artificial
Intelligence and Applications. IOS Press, Amsterdam, The
Netherlands, The Netherlands, 2009.

[6] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool
for checking ansi-c programs. In In Tools and Algorithms for
the Construction and Analysis of Systems, pages 168–176.
Springer, 2004.

[7] Patrick Cousot and Radhia Cousot. Abstract interpretation:
A unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages, POPL ’77, pages 238–252, New
York, NY, USA, 1977. ACM.

[8] Cve-2013-7353. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2013-7353.

[9] Cve-2013-7354. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2013-7354.

[10] Cve-2015-8106. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2015-8106.

[11] Cve-2015-8107. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2015-8107.

[12] Cve-2016-5735. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2016-5735.

[13] Isil Dillig, Thomas Dillig, and Alex Aiken. Automated error
diagnosis using abductive inference. In Proceedings of the
33rd ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’12, pages 181–192, New
York, NY, USA, 2012. ACM.

[14] Agostino Dovier, Andrea Formisano, and Enrico Pontelli. An
empirical study of constraint logic programming and answer
set programming solutions of combinatorial problems. J. Exp.
Theor. Artif. Intell., 21(2):79–121, June 2009.

[15] Niklas Een, Alan Mishchenko, and Niklas Sorensson. Ap-
plying logic synthesis for speeding up sat. In Proceedings
of the 10th International Conference on Theory and Applica-
tions of Satisfiability Testing, SAT’07, pages 272–286, Berlin,
Heidelberg, 2007. Springer-Verlag.

[16] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P.
Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N. Sheth.
Taintdroid: An information-flow tracking system for realtime
privacy monitoring on smartphones. In Proceedings of the
9th USENIX Conference on Operating Systems Design and
Implementation, OSDI’10, pages 1–6, Berkeley, CA, USA,
2010. USENIX Association.

[17] Martin Gebser, Tomi Janhunen, and Jussi Rintanen. Sat
modulo graphs: Acyclicity. In Proceedings of the 14th
European Conference on Logics in Artificial Intelligence -
Volume 8761, pages 137–151, New York, NY, USA, 2014.
Springer-Verlag New York, Inc.

[18] Martin Gebser, Benjamin Kaufmann, André Neumann, and
Torsten Schaub. Clasp: A conflict-driven answer set solver.
In Proceedings of the 9th International Conference on Logic
Programming and Nonmonotonic Reasoning, LPNMR’07,
pages 260–265, Berlin, Heidelberg, 2007. Springer-Verlag.

[19] Enrico Giunchiglia, Yuliya Lierler, and Marco Maratea. An-
swer set programming based on propositional satisfiability.
Journal of Automated Reasoning, 36:345–377, 2006.

[20] William R. Harris, Sriram Sankaranarayanan, Franjo Ivančić,
and Aarti Gupta. Program analysis via satisfiability modulo
path programs. In Proceedings of the 37th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’10, pages 71–82, New York, NY, USA,
2010. ACM.

[21] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and
Robert Bowdidge. Why don’t software developers use static
analysis tools to find bugs? In Proceedings of the 2013
International Conference on Software Engineering, ICSE ’13,
pages 672–681, Piscataway, NJ, USA, 2013. IEEE Press.

[22] Yungbum Jung and Kwangkeun Yi. Practical memory leak
detector based on parameterized procedural summaries. In
Proceedings of the 7th International Symposium on Memory
Management, ISMM ’08, pages 131–140, New York, NY,
USA, 2008. ACM.

[23] Jinyung Kim, Yongho Yoon, Kwangkeun Yi, and Junbum
Shin. ScanDal: Static analyzer for detecting privacy leaks in
android applications. In Hao Chen, Larry Koved, and Dan S.
Wallach, editors, MoST 2012: Mobile Security Technologies
2012. IEEE, May 2012.

[24] L. Layman, L. Williams, and R. S. Amant. Toward reducing
fault fix time: Understanding developer behavior for the
design of automated fault detection tools. In First Inter-
national Symposium on Empirical Software Engineering and
Measurement (ESEM 2007), pages 176–185, Sept 2007.

[25] Wei Le and Mary Lou Soffa. Path-based fault correlations. In
Proceedings of the Eighteenth ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE
’10, pages 307–316, New York, NY, USA, 2010. ACM.

[26] Woosuk Lee, Wonchan Lee, and Kwangkeun Yi. Sound non-
statistical clustering of static analysis alarms. In Proceed-
ings of the 13th International Conference on Verification,
ModChecking, and Abstract Interpretation, VMCAI’12, pages
299–314, Berlin, Heidelberg, 2012. Springer-Verlag.

[27] Libpng. http://www.libpng.org/.

[28] Ruben Martins, Vasco Manquinho, and Ins Lynce. Open-wbo:
A modular maxsat solver,. In Carsten Sinz and Uwe Egly,
editors, Theory and Applications of Satisfiability Testing, SAT
2014, volume 8561 of Lecture Notes in Computer Science,
pages 438–445. Springer International Publishing, 2014.

[29] Ilkka Niemelä, Patrik Simons, and Tommi Syrjänen. Smodels:
A system for answer set programming. CoRR, cs.AI/0003033,
2000.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-7353
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-7353
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-7354
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-7354
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-8106
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-8106
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-8107
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-8107
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5735
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5735
http://www.libpng.org/


[30] Hakjoo Oh, Kihong Heo, Wonchan Lee, Woosuk Lee, and
Kwangkeun Yi. Design and implementation of sparse global
analyses for c-like languages. In Proceedings of the 33rd
ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI ’12, pages 229–238, New
York, NY, USA, 2012. ACM.

[31] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise
interprocedural dataflow analysis via graph reachability. In
Proceedings of the 22Nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’95, pages
49–61, New York, NY, USA, 1995. ACM.

[32] Xavier Rival. Abstract dependences for alarm diagnosis. In
Proceedings of the Third Asian Conference on Programming
Languages and Systems, APLAS’05, pages 347–363, Berlin,
Heidelberg, 2005. Springer-Verlag.

[33] A. M. Smith and M. Mateas. Answer set programming
for procedural content generation: A design space approach.
IEEE Transactions on Computational Intelligence and AI in
Games, 3(3):187–200, Sept 2011.

[34] John Whaley and Monica S. Lam. Cloning-based context-
sensitive pointer alias analysis using binary decision dia-
grams. In Proceedings of the ACM SIGPLAN 2004 Confer-
ence on Programming Language Design and Implementation,
PLDI ’04, pages 131–144, New York, NY, USA, 2004. ACM.

[35] Xin Zheng and Radu Rugina. Demand-driven alias analysis
for c. In Proceedings of the 35th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’08, pages 197–208, New York, NY, USA,
2008. ACM.

[36] Haiyan Zhu, Thomas Dillig, and Isil Dillig. Automated
inference of library specifications for source-sink property
verification. In Proceedings of the 11th Asian Symposium on
Programming Languages and Systems - Volume 8301, pages
290–306, New York, NY, USA, 2013. Springer-Verlag New
York, Inc.


	Introduction
	Manual Alarm Classification using Shovel
	Algorithm of Shovel using a MaxSAT Solver
	Our Contribution

	Overview
	Boolean Representation using Backbone-Branch Decomposition
	Manual Alarm Classification using Shovel
	Boolean Encoding of Well-formed Paths

	User Constraint Patterns
	Examining functions that f calls
	Examining functions that calls f
	Examining a call/return chain along the path
	Examining functions that update a particular variable
	Examining the order between two function calls

	Example of Finding a Vulnerability
	Experiments
	Related Work
	Appendix
	References

