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Abstract

Defining a relaxed memory model has been a major challenge for a couple of decades.
The challenge stems from a sharp conflict between the two desiderata for relaxed
memory models, usability and efficiency. Usability requires a model to be sensible and
understandable, allowing programmers to use the model for developing and reasoning
about concurrent programs. Efficiency requires amodel to be efficiently implementable,
i.e., it validates common compiler transformations and can be efficiently mapped to
hardware. While the two desiderata are the key principles in designing a relaxed
memory model, a significant challenge exists in balancing between them.

This dissertation thoroughly understands the desiderata for relaxed memory
models, identifies inherent conflicts between them, and resolves the conflicts at a
minimal price. The first part of this dissertation presents PS 2.0, the first relaxed
memory model that provably supports compiler transformations based on global
analyses. PS 2.0 redesigns the key components of the promising semantics (PS) by Kang
et al. and validates global value optimization and register promotion, while preserving
the known results for PS, such as data-race-freedom guarantees. PS 2.0 also resolves the
problem of the inefficiency in compiling read-modify-write (RMW) operations of PS
to Armv8, which requires an unintended extra fence. The second part investigates the
problem of developing an in-order memory model that executes instructions following
their program order, placing emphasis on amenability to reasoning and verification.
We demonstrate that an in-order model can validate all the compiler optimizations
performed on single-threaded code by utilizing the distinction between an in-order
source model and an out-of-order intermediate representation model. For atomics, we
propose a pragmatic solution for mapping relaxed writes, for which reordering with
previous reads should be prevented, with negligible performance overhead.

Keywords: concurrency, relaxed memory models, operational semantics, compiler
optimizations, formal methods
Student Number: 2017-23151
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Chapter I

Introduction

Concurrency is crucial in modern software for fully utilizing multiple cores or pro-
cessors. Although most programmers avoid data races in their programs (e.g., by
using locks), concurrent programming with benign races is required for implementing
non-blocking algorithms or synchronization primitives. The problem is that such
programs cannot assume simple semantics such as interleaving execution or sequen-
tial consistency (SC) due to relaxed behaviors arising from optimizations performed
by compilers and hardware. While the effect of these optimizations are invisible in
single-threaded programs (imagine the reordering of two independent memory ac-
cesses), they become visible in concurrent programs where multiple threads access a
shared memory location at the same time. A relaxed memory model (or a weak memory
model) is the semantics of concurrent programs describing the relaxed behaviors in
an abstract way.

Defining a relaxed memory model has been a major challenge in programming
languages for a couple of decades. The challenge stems from a tension between the two
desiderata for relaxed memory models, efficiency and usability. Efficiency requires
a memory model to be efficiently implementable meaning that the model should
validate common compiler transformations and can be efficiently mapped to hardware
architectures. Usability allows programmers to understand and use a memory model
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for programming and reasoning. For this, a model should admit reasoning principles
such as data-race-freedom (DRF) guarantees, and it should be simple enough for
broad programmers to understand. While the two desiderata are the key principles
in designing a relaxed memory model, it has been known that there is a significant
challenge in balancing between them [7, 65, 33, 44, 17, 42, 37, 26, 55].

One of the challenges in defining a relaxed memory model has been to properly
capture load buffering (LB) behavior:

𝑎 ∶= 𝑋rlx //1

𝑌 rlx ∶= 1
𝑏 ∶= 𝑌 rlx //1

𝑋rlx ∶= 𝑏
(LB)

Here, 𝑎 and 𝑏 are thread-local variables, and 𝑋 and 𝑌 are shared memory locations
initialized to 0. We also assume that all memory accesses here are relaxed atomics of
C/C++ (i.e., rlx). Then, the annotated outcome 𝑎 = 𝑏 = 1 can be observed once the
two instructions of the first thread are reordered by compilers or hardware. Indeed,
such reordering is allowed by architectures like Arm and Power, and LB is actually
observed on some Arm CPUs.

The problem is that the C/C++ memory model allows the same behavior for the
following variant of the LB program above:

𝑎 ∶= 𝑋rlx //1

𝑌 rlx ∶= 𝑎
𝑏 ∶= 𝑌 rlx //1

𝑋rlx ∶= 𝑏
(OOTA)

As every thread simply copies the value it reads, both threads are not supposed to read
any other value than 0 from thememory. However, the annotated behavior, often called
out-of-thin-air, is allowed in C11 [8], breaking the basic invariant-based reasoning
above. To solve this problem, multiple solutions [33, 15, 55, 26, 29] has been proposed.
However, these models employ complex mechanisms for distinguishing LB example
from OOTA example. Moreover, the models often adopt different guiding principles
for their design, overlooking other requirements for relaxed memory models.

This dissertation thoroughly understands the desiderata for relaxed memory
models in terms of efficiency and usability, identifies inherent conflicts between them,
and proposes memory models that resolve the conflicts at a minimal price. Specifically,
the first part of this dissertation focuses on efficiency and presents the first relaxed
memory model that provably supports compiler transformations based on certain
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analyses that analyze multiple threads. In the second part, we observe that an in-
order memory model that executes instructions simply following the program code
can be implemented with only a negligible performance overhead. Note that all the
main results of this dissertation are fully mechanized in the Coq proof assistant [25].
The supplementary material for this dissertation including the mechanized proofs is
available online [1].

In the following, we summarize the two parts of this dissertation.

Inter-thread optimizations in relaxed memory concurrency (Chapter III).

Despitemany years of research, there had been no relaxedmemorymodel that properly
supports inter-thread optimizations, namely compiler transformations whose validity
depend on some compiler analyses that analyze multiple threads (e.g., global analyses
that analyze the whole program). Some examples of such transformations include
(𝑖) removal of null pointer or array bound checks based on a global value analysis;
and (𝑖𝑖) register promotion that converts shared memory variables that happen to
be accessed by only one thread to thread-local variables. The latter is particularly
useful when thread-safe libraries are used by a single thread, and it is also crucial in
languages like Java that have only atomic accesses, However, supporting inter-thread
optimizations in relaxed memory models is challenging due to a subtle interaction
between inter-thread and intra-thread (or simply, “local”) optimizations. For instance, a
local optimization, such as dead store elimination, may change a global analysis result,
thereby enabling a new inter-thread optimization that was invalid before the local
optimization. Then, this inter-thread optimization may further enable other intra-
or inter-thread optimizations. Therefore, a naive approach, such as incorporating
global analyses in the memory model, cannot fully support intra- and inter-thread
transformations.

To address this challenge, we developed the promising semantics 2.0 model (PS2)
that provably supports the above-mentioned inter-thread optimizations, without losing
any thread-local optimizations allowed for the original PS [33]. PS2 made two major
changes to PS. First, it redesigned the key components of the original PS model,
promises and certification, to validate compiler transformations based on global value-
range analysis. Second, to support register promotion, PS2 introduced reservations,
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which allow a thread to reserve a memory location so it can exclusively perform an
atomic read-modify-write (RMW) operation to that location. The reservations also
resolve the problem with the sub-optimal compilation of PS to Armv8 that required
an unintended fence for mapping relaxed RMWs.

This chapter contains the text and figures of the following paper:

[44] Sung-Hwan Lee, Minki Cho, Anton Podkopaev, Soham Chakraborty, Chung-Kil
Hur, Ori Lahav, Viktor Vafeiadis. Promising 2.0: Global Optimizations in Relaxed
Memory Concurrency. In PLDI 2020.

An in-order semantics for relaxedmemory concurrency (Chapter IV). Recent
proposals of relaxed memory models employ an out-of-order semantics for efficiency,
in particular, to support load-store reordering that is allowed by modern hardware
architectures. On the contrary, an in-order model, which executes a program following
the order of instructions in the program code, is more suitable for reasoning and
verification. Indeed, verification for an in-order weak memory model RC11 [37] has
been extensively studied, and multiple tools and techniques, such as program logics
and model checkers, have been developed.

In this chapter, we investigate the problem of developing an in-order semantics
for relaxed memory concurrency at a minimal cost. As a result, we propose the first
solution that fully supports non-atomic accesses without any performance overhead
while assuming an in-order source semantics. In particular, our model validates all
compiler optimizations on non-atomics performed in single-threaded code, including
load introduction, which is notoriously difficult to support in an in-order model. The
key idea in this approach is to split the semantics into two models: (𝑖) vRC11, an
in-order source model accounting for reasoning and verification; and (𝑖𝑖) PSIR, an
out-of-order intermediate representation (IR) model accounting for compiler transfor-
mations. Crucially, we formally proved the soundness of the (identity) mapping from
vRC11 to PSIR. Roughly speaking, this is possible because vRC11 adopts a catch-fire
semantics (as the C/C++11 memory model and RC11 do) that invokes an undefined

behavior for data races. Then, the catch-fire of vRC11 sufficiently accounts for any
program behavior allowed by an out-of-order execution under PSIR. Notably, vRC11
is proven to be stronger than RC11, and thus all the verification tools and techniques
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developed for RC11 can also be applied to verification under vRC11. Note that the
IR model PSIR is based on PS2, and thus, PSIR supports inter-thread optimizations
studied in the first part.

Unfortunately, for atomic accesses, we proved that any in-order source model
that supports all optimizations on non-atomics could never allow the reordering
of a non-atomic/relaxed read followed by a relaxed write. Nevertheless, existing
compilers do not perform this kind of optimization. Still, this is allowed by mainstream
hardware architectures. Therefore, we proposed a pragmatic solution for mapping
PSIR to hardware architectures that would entail almost no performance overhead.
Specifically, we found that load-store reordering is observed only on a few hardware
implementations and learned from hardware engineers that the performance impact
of load-store reordering is rather limited in the Arm CPU design. Accordingly, we
suggested introducing a new kind of store instructions called strong stores that is
never reordered with previous load instructions. Then, a relaxed write in PSIR can be
soundly mapped to a strong store of hardware. We formally verified the soundness
of mapping PSIR to the operational model for Armv8 [59] extended with the strong
stores.

This chapter contains the text and figures of the following paper:

[42] Sung-Hwan Lee, Minki Cho, Roy Margalit, Chung-Kil Hur, Ori Lahav. Putting
Weak Memory in Order via a Promising Intermediate Representation. In PLDI

2023.

Outline. The rest of this dissertation is structured as follows. Chapter II introduces
preliminaries including the promising semantics by Kang et al. [33] and data-race-
freedom guarantees for concurrent programs. Chapter III and Chapter IV presents
the two parts as described above. Finally, Chapter V concludes this dissertation and
discusses some future directions.
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Chapter II

Background

1 The Promising Semantics

In this section, we introduce the promising semantics (PS) of Kang et al. [33]. For
simplicity, we present only a fragment of PS containing only three kinds of memory
accesses: relaxed (the default mode), release writes (rel), and acquire reads (acq). Read-
modify-write (RMW) instructions, such as compare-and-swap (CAS) and fetch-and-add
(FADD), carry two access modes—one for the exclusive read and one for the write. We
put aside other access modes, fences, and release sequences, as they are orthogonal to
the contribution of this paper. We refer the reader to [33] for the full PS model.

Domains We assume non-empty sets Loc of locations and Val of values. We also
assume a set Time of timestamps, which is totally and densely ordered by < with 0 as
its minimum. (In our examples, we take non-negative rational numbers as timestamps
with their usual ordering.) A view, 𝑉 ∈ View ≜ Loc → Time, records the largest known
timestamp for each memory location. A timestamp interval is a pair of timestamps
(𝑓 , 𝑡] with 𝑓 < 𝑡 or 𝑓 = 𝑡 = 0. It represents the range of timestamps from (but not
including) 𝑓 up to and including 𝑡.
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Memory In PS, the memory is a set ofmessages representing all previously executed
writes. A message 𝑚 is of the form ⟨𝑋@(𝑓 , 𝑡], 𝑣, 𝑉m⟩, where 𝑋 ∈ Loc is the location,
𝑣 ∈ Val is the stored value, (𝑓 , 𝑡] is a timestamp interval, and 𝑉m ∈ View is the message
view. The latter is used to model release-acquire synchronization and will be explained
shortly. Initially, the memory consists of an initialization message for every location
carrying the value 0, the interval (0, 0], and the bottom view ⊥ ≜ 𝜆𝑋. 0. We require
that any two messages with the same location in memory have disjoint timestamp
intervals. The timestamp (also called the “to”-timestamp) of a massage ⟨𝑋@(𝑓 , 𝑡], 𝑣, 𝑉m⟩
is the upper bound 𝑡 of the message’s timestamp interval. The lower bound 𝑓 , called
the “from”-timestamp, is used to model the atomicity of RMW operations as explained
below.

Machine State PS is an operational model where threads execute in an interleaved
fashion. The machine state is a pair Σ = ⟨ , 𝑀⟩, where  assigns a thread state 𝑇 to
every thread and𝑀 is a (global) memory. A thread state is a triple 𝑇 = ⟨𝜎, 𝑉 , 𝑃⟩ where
𝜎 is the local store recording the values of its local variables, 𝑉 ∈ View is the thread
view, and 𝑃 is a set of messages representing the thread’s outstanding promises.

Relaxed Reads and Writes Thread views are instrumental in providing correct
semantics to memory accesses. The thread view, 𝑉 , records the “knowledge” of each
thread, i.e., the timestamp of the most recent message that it has observed for each
location. It is used to forbid a thread to read from a (stale) message 𝑚 if the thread is
aware of a “newer” message, i.e., when 𝑉 (𝑋 ) is greater than the message’s timestamp.
Similarly, when a thread adds messages of location 𝑋 to the memory, it has to pick a
timestamp 𝑡 for the added message that is greater than its view of 𝑋 (𝑉 (𝑋 ) < 𝑡):

read. A thread can read from memory 𝑀 by simply observing a message
⟨𝑋@(𝑓 , 𝑡], 𝑣, _⟩ ∈ 𝑀 provided that 𝑉 (𝑋 ) ≤ 𝑡, and updating its view for 𝑋 to 𝑡.

write. A thread adds a new message 𝑚 = ⟨𝑋@(𝑓 , 𝑡], 𝑣, ⊥⟩ to the memory where
the timestamp 𝑡 is greater than the thread’s view of 𝑋 (𝑉 (𝑋 ) < 𝑡) and there is no other
message with the same location and overlapping timestamp interval in the memory.
Relaxed writes set the message view to ⊥, which maps each location to timestamp 0.

The following example illustrates how timestamps of messages and views interact.

7



Note that we assume that both threads start with the initial thread view that maps 𝑋
and 𝑌 to 0, and that every location is initialized to 0: the initial memory only contains
messages ⟨𝑋@(0, 0], 0, ⊥⟩ and ⟨𝑌 @(0, 0], 0, ⊥⟩.1

𝑋rlx ∶= 1
𝑎 ∶= 𝑌 rlx //0

𝑌 rlx ∶= 1
𝑏 ∶= 𝑋rlx //0

(SB)

Here, both threads are allowed to read from the initialization messages, 0. When
thread 1 performs the write to 𝑋 , it will add a message ⟨𝑋@(𝑓 , 𝑡], 0, ⊥⟩ by choosing
some 𝑡 > 𝑓 ≥ 0. During this write, thread 1 should increase its view of 𝑋 to 𝑡, while
maintaining 𝑉 (𝑌 ) to be 0 as it was. Hence, thread 1 is still allowed to read 0 from 𝑦 in
the subsequent execution. As thread 2 can be executed in the same way, both threads
are allowed to read 0.

Relaxed RMWs Read-modify-write (RMW) operations are essentially a pair of
accesses to the same location—a read followed by a write—with an additional atomicity
guarantee: the read reads from a message that immediately precedes the one added by
the write. PS employs timestamp intervals (rather than single timestamps) to enforce
atomicity.

update. When a thread performs an RMW, it first reads a message ⟨𝑋@(𝑓 , 𝑡], 𝑣, ⊥⟩,
and then writes the updated message with “from”-timestamp equal to 𝑡, i.e., a message
of the form ⟨𝑋@(𝑡, 𝑡′], 𝑣′, ⊥⟩. This results in consecutive messages (𝑓 , 𝑡], (𝑡, 𝑡′], forbid-
ding other writes to be later placed between the two messages (recall that messages
with the same location must have disjoint timestamp intervals).

This constraint, in particular, means that two competing RMWs cannot read from
the same message, as the following “parallel increment” example demonstrates.2

𝑎 ∶= FADD(𝑋, 1) //0 𝑏 ∶= FADD(𝑋, 1) //0 (Upd)

Without loss of generality, suppose that thread 1 executed first. As it performs an
RMW operation, it must “attach” the message it adds to an existing message. Since

1In all our code examples, we assume that all memory accesses are relaxed (rlx memory order)
unless annotated otherwise.

2Here and henceforth, we assume that RMW instructions such as FADD and CAS return the value
that was read during the read-modify-write operation (before the update).
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the only existing message in this stage is the initial one ⟨𝑋@(0, 0], 0, ⊥⟩, thread 1 will
first add a message 𝑚 = ⟨𝑋@(0, 𝑡], 1, ⊥⟩ with some 𝑡 > 0 to the memory. Then, the
RMW of thread 2 cannot also read from the initial message because its interval would
overlap with the (0, 𝑡] interval of 𝑚. Therefore, the annotated behavior is forbidden.
More abstractly speaking, the timestamps intervals of PS express a dense total order
on messages to the same location together with immediate adjacency constraints on
this order, which are required for handling RMW operations.

Release and Acquire Accesses To provide the appropriate semantics to release and
acquire accesses, PS uses the message views. Indeed, a release write should transfer the
current knowledge of the thread to other threads that read the message by an acquire
read. Thus, (𝑖) a release write operation puts the current thread view in the message
view of the added message; and (𝑖𝑖) an acquire read operation incorporates the view
of the message being read in the thread view (by taking the pointwise maximum).

read is defined the same as before, except that when the thread performs an
acquire read, it increases its view to contain not only the (“to”) timestamp of the
message read but also the view of that message.

write is defined as before, except that release writes record the thread view in
the message being added, whereas relaxed writes record the ⊥ view.

As a result, the acquiring thread is confined in its future reads at least as the
releasing thread was confined when it “released” the message being “acquired”. As a
simple example, consider the following:

𝑋rlx ∶= 1
𝑌 rel ∶= 1

𝑎 ∶= 𝑌 acq //1

if 𝑎 = 1 then
𝑏 ∶= 𝑋rlx //0

(MP)

Here, if thread 2 reads 1 from 𝑌 , which is written by thread 1, both threads are
synchronized through release and acquire. Thus, thread 2 obtains the knowledge of
thread 1, namely its view for 𝑋 is increased to include the timestamp of 𝑋rlx ∶= 1 of
thread 1. Therefore, after reading 1 from 𝑌 , thread 2 is not allowed to read the initial
value 0 from 𝑋 .

Release/acquire RMW operations also transfer thread views via message views as
release writes and acquire reads do.
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Promises The main novelty of PS lies in its way to enable the reordering of a read
followed by a write (of different locations), needed to explain the outcome of the LB
program in §11. Thus, besides step-by-step program execution, PS allows threads to
non-deterministically promise their future writes. This is done by simply adding a
message (whose interval does not overlap with that of any existing message to the
same location) to the memory. Later, the execution of write instructions may also fulfill
an existing promise (rather than add a message to the memory). Thread promises are
kept in the thread state, and removed when the promise is fulfilled. Naturally, at the
end of the execution all promises must be fulfilled.

promise. At any point, a thread can add a message to both its set of promises and
the memory.

fulfill. A thread can fulfill its promise by executing a (non-release) write in-
struction, by removing a message from the thread’s set of promises. PS does not allow
release writes to be promised, i.e., a promise cannot be fulfilled through a release write
instruction.

In the LB program above, thread 1 may promise 𝑌 rlx ∶= 1 at first. This allows
thread 2 to read 1 from 𝑌 and write it back to 𝑋 . Then, thread 1 can read 1 from 𝑋 ,
which was written by thread 2, and fulfill its promise.

Certification To ensure that promises do not make the semantics overly weak,
each sequence of steps by a thread (before “yielding control to the scheduler”) has
to be certified: the thread that took the steps should be able to fulfill all its promises
when executed in isolation. Indeed, revisiting the LB program above, note that at the
point of promising 𝑌 rlx ∶= 1 (in the very beginning of the run), thread 1 can run and
perform 𝑌 rlx ∶= 1 without any “help” of other threads.

Certification (i.e., the thread-local run fulfilling all outstanding promises of the
thread) is necessary to avoid “thin-air reads” as demonstrated by the LB program given
in Chapter I. As every thread simply copies the value it reads, both threads are not
supposed to read any other value than 0 from the memory. However, the annotated
behavior, often called out-of-thin-air, is allowed in C11 [8]. In PS, if a thread could
promise without certification, this behavior would be allowed by the same execution as
the one for LB. However, with the certification requirement, thread 1 cannot promise
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𝑌 rlx ∶= 1, as, when running in isolation, thread 1 will only write 𝑌 rlx ∶= 0.
PS requires a certification to exist for every future memory (i.e., any memory that

extends the current memory). In §4, we explain the reason for this condition and its
consequences.

Machine Step A thread configuration ⟨𝑇 ,𝑀⟩ can take one of read,write,update,
promise, and fulfill steps, denoted by ⟨𝑇 ,𝑀⟩ −→ ⟨𝑇 ′, 𝑀 ′⟩. In addition, a thread
configuration is called consistent if for every future memory 𝑀future of 𝑀 , there exist
𝑇 ′ and 𝑀 ′ such that (where 𝑇 .prm denotes the set of outstanding promises in thread
state 𝑇 ):

⟨𝑇 ,𝑀future⟩ −→∗ ⟨𝑇 ′, 𝑀 ′⟩ ∧ 𝑇 ′.prm = ∅

In turn, the machine step is defined as follows:

⟨ (𝜏), 𝑀⟩ −→+ ⟨𝑇 ′, 𝑀 ′⟩
⟨𝑇 ′, 𝑀 ′⟩ is consistent

⟨ , 𝑀⟩ −→ ⟨ [𝜏 ↦ 𝑇 ′], 𝑀 ′⟩

We note that the machine step is completely thread-local: it is only determined by
the local state of the executing thread and the global memory, independently of the
other threads’ states. Thread-locality is a key design principle of PS. It is what makes
PS conceptually well-behaved, and, technically speaking, it allows one to prove the
validity of various local program transformations, which are performed by compilers
and/or hardware, using standard thread-local simulation arguments.

To show a concrete example, we list the execution steps of PS leading to the
annotated behavior of the LB program (items prefixed with "C" represent certification
steps):

(1) Thread 1 promises ⟨𝑌 @(1, 2], 1, ⊥⟩.

(C1) Starting from an arbitrary extension of the current memory, thread 1 reads
⟨𝑋@(0, 0], 0, ⊥⟩, the initial message of 𝑋 .

(C2) Thread 1 fulfills its promise ⟨𝑋@(1, 2], 1, ⊥⟩.

(2) Thread 2 reads ⟨𝑌 @(1, 2], 1, ⊥⟩.
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(3) Thread 2 writes ⟨𝑋@(1, 2], 1, ⊥⟩.

(4) Thread 1 reads ⟨𝑋@(1, 2], 1, ⊥⟩.

(C1) Starting from an arbitrary extension of the current memory, Thread 1
fulfills its promise ⟨𝑌 @(1, 2], 1, ⊥⟩.

(5) Thread 1 fulfills its promise ⟨𝑌 @(1, 2], 1, ⊥⟩.

2 Data-race-freedom Guarantees

Data-race-freedom guarantees are the fundamental programmability guarantees that
ensure a simple and strong semantics such as sequential consistency (SC) for programs
that avoid data-races. For example, DRF-SC ensures that data-race-free programs only
exhibit behaviors allowed under SC semantics. Here, it is crucial that the data-race-
freedom can be checked under the strong semantics SC, so the clients of DRF-SC
are only required to understand SC semantics but not the underlying complext weak
memory model. Therefore, DRF guarantees make concurrent programming easier and
more accessible by allowing most programmers who avoid races in their programs to
assume strong semantics, such as SC, instead of understanding the full complextiy of
weak memory.

Recent studies have proposed more refined DRF guarantees that ensure a weaker
semantics such as release/acquire (RA) given a relaxed notion of data-race-freedom
premise [15, 33]. In particular, DRF-RA guarantee ensures RA semantics (i.e., executing
every read as an acquire read and every write as an release write) for programs that,
under RA semantics, have no data race involving accesses weaker than release and
acquire accesses (e.g., relaxed accesses).

In the context of the promising semantics, data races can be naturally defined as
states in which two different threads can access the same location and at least one of
these accesses is writing. Then, for example, by analyzing the MP example under RA
semantics, one can easily observe that the only race is on the rel/acq accesses to 𝑌 .
(Importantly, such analysis safely ignores promises, since promises are not allowed
under RA.) Then, DRF-RA implies that MP has only RA behaviors. In contrast, in the
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LB example, non-RA behaviors are possible, and, indeed, under RA semantics, there
are races on relaxed accesses (to both 𝑋 and 𝑌 ).

Another important DRF property for PS is DRF-PF that ensures promise-free (PF)
semantics, obtained by forbidding promise step, for programs without data races
involving promisible writes. In Chapter IV, we observe that the proof of the soundness
of mapping the in-order source model based on PF to the out-of-order IR model based
on PS is essentially similar to the proof of DRF-PF. DRF-PF also serves as a building
block for proving DRF-RA for PS.

Lately, a modular notion of DRF guarantees have been proposed [24] and estab-
lished for PS [17]. These DRF theorems, often called “local” DRF (LDRF), are proposed
to overcome a global nature of traditional DRF guarantees that are only applicable
when the whole program avoids data races. In contrary, LDRF ensures strong seman-
tics for accesses to a certain set of memory locations  when the program has no
race between accesses to  assuming the strong semantics for accesses to . For
establishing LDRF guarantees for PS, Cho et al. [17] adopts a bit different notion of
data races. Specifically, an access to a location 𝐿 by a thread 𝜏 is considered racy if
there is a message to 𝐿 with the timestamp higher than 𝜏’s view of 𝐿. In Chapter IV,
we adopt a similar notion for defining data races between non-atomic accesses.

In Chapter III, DRF-RA provides us with the main guideline for making sure that
our semantics is not overly weak (i.e., we exclude any semantics that breaks DRF-RA).
DRF-RA also serves as a main step towards “DRF-Lock”, which states that properly
locked programs have only sequentially consistent semantics.3

3The more standard DRF-SC is not applicable here since PS lacks SC accesses. The extension of PS
with SC accesses is left to future work.
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Chapter III

Inter-thread Optimizations in Relaxed

Memory Concurrency

3 Introduction

While there are multiple partial solutions to the problem of defining a proper semantics
for relaxed memory concurrency [33, 15, 27, 48, 56], none of them properly supports
inter-thread optimizations, namely program transformations whose validity depend
on some analyses that analyze multiple threads. Examples of such transformations are
(𝑖) removal of null pointer checks based on global null-pointer analysis; (𝑖𝑖) removal
of array bounds checks based on global size analysis; and (𝑖𝑖𝑖) register promotion, i.e.,
converting accesses to a shared variable that happens to be used by only one thread
to local accesses. The latter is particularly useful when thread-safe libraries are used
by a single thread, and it is also crucial in languages like Java that have only atomic
accesses, but is also useful for C/C++. For instance, in single-threaded programs, it
allows the removal of locks, as well as the promotion to register accesses of inlined
function calls of concurrent data-structures.

The desire to support inter-thread optimizations in concurrent programming
languages goes at least as back as 15 years ago with the Java memorymodel (JMM) [48].
In fact, the very first JMM “causality test case” is centered around value-range analysis.
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Assuming all variables are initialized to 0, JMM allows the annotated outcome of the
following example:

𝑎 ∶= 𝑋rlx //1

if 𝑎 ≥ 0 then
𝑌 rlx ∶= 1

𝑏 ∶= 𝑌 rlx //1

𝑋rlx ∶= 𝑏
(JMM1)

“Decision: Allowed, since interthread compiler analysis could determine that

𝑋 and 𝑌 are always non-negative, allowing simplification of 𝑎 ≥ 0 to true,
and allowing write 𝑌 rlx ∶= 1 to be moved early.” [31]

Supporting inter-thread optimizations, however, is rather challenging because
of their interaction with intra-thread (or local) transformations. Inter-thread opti-
mizations generally depend on invariants deduced by some global analyses but these
invariants need not hold in the source program; they might hold after some local
transformations have been applied. In the following example, (only) after the local
elimination of the overwritten 𝑋rlx ∶= 42 assignment, the condition 𝑎 < 10 becomes
a global invariant, and so can be simplified to true as in JMM1.

𝑎 ∶= 𝑋rlx //1

if 𝑎 < 10 then
𝑌 rlx ∶= 1

𝑋rlx ∶= 42
𝑏 ∶= 𝑌 rlx //1

𝑋rlx ∶= 𝑏
(LB-G)

In more complex cases, an inter-thread optimization may enable a local transformation,
which may further enable another inter-thread optimization, which may enable an-
other local optimization, and so on. As a result, supporting both intra- and inter-thread
transformations is very difficult, and none of the solutions so far has managed to fully
support global analyses along with all the expected intra-thread transformations.

In this chapter, we present the first memory model that solves this challenge:
(𝑖) it allows the aforementioned inter-thread optimizations (value-range analysis and
register promotion); (𝑖𝑖) it validates the thread-local compiler optimizations that are
validated by the C/C++11 model [37] (e.g., roach-motel reorderings [67]); (𝑖𝑖𝑖) it can
be efficiently mapped to the mainstream hardware platforms (x86, POWER, Armv7,
Armv8, RISC-V); and (𝑖𝑣) it supports reasoning principles in the form of DRF guar-
antees, allowing programmers to resort to simpler well-behaved models when data
races are appropriately restricted. In developing our model we mainly use (i)–(iii) to
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conclude that some behavior should be allowed; while (iv) tells us which behaviors
must be forbidden.

As a starting point, we take the promising semantics (PS) of Kang et al. [33], a
concurrency semantics that satisfies almost all our desiderata. It supports almost all
C/C++11 features, all expected thread-local compiler optimizations, and several DRF
theorems. In addition, Podkopaev et al. [57] established the correctness of a mapping
from PS to hardware.1 The main drawback of PS is that it does not support inter-thread
optimizations.

PS is an operational semantics which represents shared memory as a set of mes-
sages (i.e., writes). To support out-of-order execution, PS employs a non-standard step,
allowing a thread to promise to perform a write in the future, which enables other
threads to read from it before the write is actually executed.

The technical challenge resides in identifying the exact conditions on such promise
steps so that basic guarantees (like DRF and no “thin-air values”) are maintained.

In PS, these conditions are completely thread-local: the thread performing the
promise must be able to run in isolation from all extensions of the current state and
fulfill all its outstanding promises. While thread-locality is useful, quantifying over
all extensions of the current state prevents optimizations based on global analyses
because some extensions may well not satisfy the invariant produced by the analysis.

Checking for promise fulfillment only from the current state without extension
enables global analysis, but breaks the DRF guarantee (see §5). Our solution is therefore
to check promise fulfillment for a carefully crafted extension of the current state, which
we call capped memory. Because capped memory does not contain any new values, it
is consistent with optimizations based on global value analysis. However, it still does
not allow optimizations like register promotion.

To support register promotion, we introduce reservations, which allow a thread to
secure an exclusive right to perform an atomic read-modify-write instruction reading
from a certain message without fixing the value that it will write (because, for example,
that might not have yet been resolved). In addition, reservations resolve a problem
with the compilation of PS to Armv8, whose intended mapping of RMWs was unsound

1Albeit, the mapping of RMWs to Armv8 contains one more barrier (“ld fence”) than intended because
the intended mapping is unsound.
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and required an extra fence [57].2

With these two new concepts, we are able to retain the thread-local nature of PS
and yet fully support inter-thread optimizations and the intended mapping of RMWs
along with all the results available for PS. Our redesigned PS2 model is the first weak
memory model that achieves these results. To establish confidence in our model, we
have formalized our key results in the Coq proof assistant.

Outline In the rest of this chapter, we first review why the PS does not support
inter-thread optimizations (§4). We then present our PS2 model both informally in
an incremental fashion (§5) and formally all together (§6). In §7, we establish the
correctness of mappings from PS2 to hardware, and show that PS2 supports all the
local transformations and reasoning principles known to be allowed by PS, as well as
register promotion, and the introduction of ‘assert’ statements for invariants derived
by a global analysis. The mechanization of our main results in Coq is available in [43].

4 Problem Overview

As we will shortly demonstrate, the main challenge in PS is to come up with an
appropriate thread-local condition for certifying the promises made by a thread.
Maintaining thread-locality is instrumental in proving correctness of many compiler
transformations, but is difficult to achieve given that promises of different threads
may interact.

As we briefly mentioned above, PS requires a certification to exist for any memory
that extends the current memory. We start by explaining why certifying promises
only from the current memory (without quantifying over all future memories) is not
good enough. Kang et al. [33] observed that such model may deadlock: the promising
thread may fail to fulfill its promise since the memory was changed since the promise
was made. In this work, we observe that a model that requires certifying promises
only from the current memory has much more severe consequences. It actually breaks

2Our current mechanized proof requires a fake control dependency from relaxed fetch-and-add
instructions, which is currently not added by standard compilers. We believe that the compilation from
our model without this dependency is sound as well, and leave the formal proof to a future work (see
also §7.5).
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the DRF-RA guarantee as illustrated below:

𝑎 ∶= FADDacqrel(𝑋, 1) //0

if 𝑎 = 0 then
𝑌 rlx ∶= 1

𝑏 ∶= FADDacqrel(𝑋, 1) //0

if 𝑏 = 0 then
𝑐 ∶= 𝑌 rlx //1

if 𝑐 = 1 then
𝑋rlx ∶= 0

(CDRF)

Under RA semantics only one thread can enter the if-branch, and the only race is
between the two FADDs. Hence, tomaintain DRF-RA,we need to disallow the annotated
behavior where both threads read 0 from 𝑋 . To prevent this behavior, we need to
disallow thread 1 to promise 𝑌 ∶= 1 in the beginning of the run. Indeed, by reading
such a promise, thread 2 can write 𝑌 ∶= 0, and then, thread 1 can succeed its RMW to
𝑋 and fulfill its outstanding promise. However, if we completely ignore the possible
interference by other threads, thread 1 may promise 𝑌 ∶= 1, as it can be certified in a
local run of thread 1 that starts from the initial memory and reads the initial message
of 𝑋 .

Abstractly, what went wrong is that two threads compete on the same resource
(i.e., to perform an RMW reading from the initialization message); one of them makes
a promise assuming it will get the resource first but the other thread wins the com-
petition in the actual run. This not only causes deadlock (which is semantically
inconsequential), but also breaks DRF-RA.

To address this, PS followed a simple approach: it required that threads certify
their promises starting from any extension of the current memory. One such particular
extension is the memory that will arise when the required resource is acquired by
some other thread. Hence, this condition does not allow threads to promise writes
assuming they will win a competition on some resource.

Revisiting CDRF, PS’s certification condition blocks the promise of 𝑌 ∶= 1. For
example, when certifying against𝑀future that, in addition to the initialization messages,
consists of a message 𝑚 = ⟨𝑋@(0, _], 42, _⟩, thread 1 is forced to read from 𝑚 when
performing its FADD, and cannot fulfill its promise. Since 𝑀future is a possible future
memory of the initial memory, thread 1 cannot promise 𝑌 ∶= 1.

PS’s future memory quantification maintains the thread-locality principle and
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suffices for establishing DRF-RA. However, next, we demonstrate that this very conser-
vative over-approximation of possible interference is too strong to support inter-thread
optimizations, and it is also the source of unsoundness of the intended compilation
scheme to Armv8.

Value-Range Analysis PS does not support inter-thread optimizations based on
value-range analysis. To see this, consider a variant of the LB-G program above that
does not have the redundant write to 𝑋 in thread 2 and has a CAS instruction to 𝑋
instead of the read in thread 1.

𝑎 ∶= CAS(𝑋, 0, 1) //1

if 𝑎 < 10 then
𝑌 rlx ∶= 1

𝑏 ∶= 𝑌 rlx //1

𝑋rlx ∶= 𝑏
(GA)

In PS, the annotated behavior is disallowed. Indeed, to obtain this behavior, thread 1
has to promise 𝑌 rlx ∶= 1. This promise, however, cannot be certified for every future
memory 𝑀future. For example, if, in addition to the initialization messages, the future
memory 𝑀future consists of a single message of the form ⟨𝑋@(0, _], 57, _⟩, then the
CAS instruction can only read 57, and the write 𝑌 rlx ∶= 1 is not executed. However,
by observing the global invariant 𝑋 < 10 ∧ 𝑌 < 10, a global compiler analysis may
transform this program to the following:

𝑎 ∶= CAS(𝑋, 0, 1) //1

𝑌 rlx ∶= 1
𝑏 ∶= 𝑌 rlx //1

𝑋rlx ∶= 𝑏

Now, the annotated behavior is allowed (the promise 𝑌 rlx ∶= 1 is not blocked any-
more), rendering the optimization unsound. This is particularly unsatisfying because
PS ensures that 𝑋 < 10 is globally valid in this program (via its “invariant logic” [33,
§5.5]), but does not allow an optimizing compiler to make use of this fact.

Register Promotion A similar problem arises for a different kind of inter-thread
optimization, namely register promotion:

𝑎 ∶= 𝑋rlx //1

𝑐 ∶= FADD(𝑍, 𝑎) //0

𝑌 rlx ∶= 1 + 𝑐

𝑏 ∶= 𝑌 rlx //1

𝑋rlx ∶= 𝑏
(RP)
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PS disallows the annotated behavior. Again, thread 1 cannot promise 𝑌 rlx ∶= 1, since
an arbitrary future memory may not allow it to read 𝑍 = 0 when performing the
RMW. (Note also the RMW writing 𝑍rlx ∶= 1 cannot be promised before 𝑌 rlx ∶= 1
since it requires to read 𝑋rlx ∶= 1 first.) Nevertheless, a global compiler analysis may
notice that 𝑍 is a local variable in the source program, and perform register promotion,
replacing 𝑐 ∶= FADD(𝑍, 𝑎) with 𝑐 ∶= 0 (since this FADD always returns 0). Now, PS
allows the annotated behavior (nothing blocks the promise 𝑌 rlx ∶= 1), rendering
register promotion unsound.

Unsound Compilation Scheme to Armv8 A different problem in PS, found while
formally establishing the correctness of compilation to Armv8 [57], is that the intended
mapping of RMWs to Armv8 is broken. In fact, this problem stems from the exact
same reason as the two problems above.

While PS disallows the annotated behavior of the RP program above, when follow-
ing the intended mapping to Armv8 [13], Armv8 allows the annotated behavior for
the target program.3 Roughly speaking, although the instructions cannot be reordered
at the source level, they can be reordered at the micro-architecture level. FADD is
effectively turned into two special instructions, a load exclusive followed by a store
exclusive. Since there is no dependency between the load of 𝑋 and the exclusive load
of 𝑍 , the two loads could be executed out of order. Similarly, the two stores could be
executed out of order, and so the store to 𝑌 could effectively be executed before the
load of 𝑋 , which in turn leads to the annotated behavior.

What went wrong? These three problems all arise because PS’s certification re-
quirement against every memory extension is overly conservative in approximating
the interference by other threads. The challenge lies in relaxing this condition in a
way that will ensure the soundness of inter-thread optimizations while maintaining
thread-locality.

As CDRF shows, simply relaxing the certification requirement by requiring cer-
tification only against the current memory is not an option. Another naive remedy

3Here the fact that no other thread accesses 𝑍 is immaterial. Armv8 allows this behavior also when,
say, a third thread executes 𝑍rlx ∶= 5.
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would be to restrict the certification to extensions of the current memory that can
actually arise in the given program. This approach, however, is bound to fail:

• First, due to the intricate interaction with local optimizations, a precise approxi-
mation of other threads effect on memory is too strong—we may have a preceding
local optimization that reduces the behaviors of the other threads. For instance,
consider the following program:

𝑎 ∶= CAS(𝑋, 0, 1) //1

if 𝑎 < 10 then
𝑌 rlx ∶= 1

𝑋rlx ∶= 42
𝑏 ∶= 𝑌 rlx //1

𝑋rlx ∶= 𝑏
(GA+E)

Here, 𝑋rlx ∶= 42 occurs in a possible future memory, but a compiler may soundly
eliminate this write.

• Second, this approach is not thread-local, and, since other threads may promise as
well, it immediately leads to troublesome cyclic reasoning: whether thread 1 may
promise a write depends on behavior of thread 2 that may include promise steps
that again depend on behavior of thread 1.

5 Solution Overview

In this section, we present the key ideas behind our modified PS model, which we call
PS2. Section 5.1 describes the notion of capped memory, which enables value-range
analysis, while §5.2 discusses reservations, an additional mechanism needed to support
register promotion and recover the correctness of the mapping to Armv8. Section 5.3
discusses our modeling of undefined behavior (which we use to formally specify value
range analysis). Finally, §5.4 describes certain trade-offs in our model.

5.1 Capped Memory

We note that PS’s certification against every memory extension is quantifying over
two aspects of possible interference: message values and message views.

We observe that quantifying only over message views suffices for DRF-RA. By
carefully analyzing CDRF, we can see that for DRF-RA, one has to make sure that
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during the certification of promises, no acquire-release RMW reads from a message
that already exists in the memory. Indeed, (𝑖) due to interference by other threads,
such RMW may not have the opportunity to read from that message in the actual
run; and (𝑖𝑖) such racy RMWs may exist (the DRF-RA assumption does not prevent
them). Together, (i) and (ii) invalidate the DRF-RA guarantee (as happens in CDRF).
We observe here that this is the only role of the future memory quantification that is
required for ensuring DRF-RA.

The conservative future memory quantification of PS indeed disallows such prob-
lematic RMWs during certification. In fact, even certification against memory exten-
sions that do not introduce new values in the future memory suffices for DRF-RA.
For example, in CDRF, when certifying against 𝑀future that, in addition to the initial-
ization messages, has a message form 𝑚 = ⟨𝑋@(0, _], 0, 𝑉m⟩ with 𝑉m(𝑌 ) ≥ 𝑡, thread
1 is forced to read 𝑚 when performing its FADD. Since it is an acquire FADD, it will
increase the thread view of 𝑌 to 𝑉m(𝑌 ), which will not allow it to fulfill its promise.
More generally, when a thread promises a message of the form ⟨𝑋@(𝑓 , 𝑡], 𝑣, 𝑉 ⟩ in the
current memory 𝑀 , there is always a possible memory extension 𝑀future of 𝑀 that
forces (non-promised) RMWs of location 𝑌 performed during certification (which read
from a message in 𝑀future) to read from a specific message 𝑚𝑌

future ∈ 𝑀future whose
view of 𝑋 is greater than or equal to 𝑡. When such RMWs are acquire RMWs, this will
force the thread to increase its view of 𝑋 to at least 𝑡, which, in turn, does not allow
the thread to fulfill its promise.

Remark 1. Completely disallowing release-acquire RMWs during certification is too
strong. We should allow them to read from local writes added during certification,
since no other thread can prevent them from doing so.

We further observe that value-range analysis concerns message values, but it is
insensitive to message views. As we saw for the GA program above, the conservative
future memory quantification of PS is doing too much: it forbids any promise that
depends on the value read by an RMW, which invalidates value-range analysis. How-
ever, we note that there is no problem in disallowing the following variant of GA that
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uses an acquire CAS instead of a relaxed one:

𝑎 ∶= CASacq(𝑋, 0, 1) //1

if 𝑎 < 10 then
𝑌 rlx ∶= 1

𝑏 ∶= 𝑌 rlx //1

𝑋rlx ∶= 𝑏
(GAacq)

Although value analysis may deduce that 𝑎 < 10 is always true, it cannot justify the
reordering of 𝑎 ∶= CASacq(𝑋, 0, 1) and 𝑌 rlx ∶= 1, since acquire accesses in general
cannot be reordered with subsequent accesses. In other words, an analysis that is
based solely of values does not give any information about the views of read messages,
so that any optimization based on such analysis cannot enable reordering of acquire
RMWs.

Based on these observations, it seems natural to replace the conservative future
memory quantification of PS with a requirement to certify against all extensions of
the current memory 𝑀 that employ values that already exist in 𝑀 (for each location).
While this approach makes value-range analysis sound and maintains DRF-RA, it is
still too strong for the combination of local and inter-thread optimizations. Indeed,
consider the following variant of the GA+E program above.

𝑋rlx ∶= 42
𝑋rlx ∶= 0
𝑓 𝑙𝑎𝑔rel ∶= 1

𝑓 ∶= 𝑓 𝑙𝑎𝑔rlx

if 𝑓 = 1 then
𝑎 ∶= CAS(𝑋, 0, 1) //1

if 𝑎 < 10 then
𝑌 rlx ∶= 1

𝑏 ∶= 𝑌 rlx //1

𝑋rlx ∶= 𝑏
(GA+E’)

In order for thread 2 to promise 𝑌 rlx ∶= 1, the write to 𝑓 𝑙𝑎𝑔 has to be executed first.
(Note that a release write cannot be promised.) Therefore, the value 42 for 𝑋 exists in
memory when the promise 𝑌 rlx ∶= 1 is made, but, to support both the elimination of
overwritten values and global value analysis, 𝑋rlx ∶= 42 should not be considered as
a possible extension of the current memory. We observe that it is enough, however, to
consider memory extensions whose additional messages only use values of maximal
messages (which were not yet overwritten) to each location.

Now, instead of quantifying over a restricted set of memory extensions, we identify
the most restrictive such extension, which we called the “capped memory”. This leads
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to a conceptually simpler certification condition, where certification is needed only
against one particular memory, which is uniquely determined by the current memory.
The capped memory �̂� of a memory 𝑀 is obtained by:

• Filling all “gaps” between existing messages so that non-promised RMWs can only
read from the maximal message of the relevant location. In other words, for every
two messages 𝑚1 = ⟨𝑋@(_, 𝑡], _, _⟩ and 𝑚2 = ⟨𝑋@(𝑓 , _], _, _⟩ with 𝑡 < 𝑓 and no
message in between, we block the space between 𝑡 and 𝑓 . (The exact mechanism to
achieve this, “reservations”, is discussed in §5.2.)

• For every location 𝑋 , attaching a “cap message” �̂�𝑋 with a globally maximal view

to the latest message to 𝑋 in 𝑀 :

�̂�𝑋 = ⟨𝑋@(𝑡𝑋 , 𝑡𝑋 + 1], �̂�𝑋 , �̂�𝑀⟩

where 𝑡𝑋 and �̂�𝑋 are the “to”-timestamp and the value of the message to 𝑋 in 𝑀
with the maximal “to”-timestamp, and �̂�𝑀 is given by:

�̂�𝑀 = 𝜆𝑌 . max{𝑡 | ⟨𝑌 @(_, 𝑡], _, _⟩ ∈ 𝑀}.

Fig. III.1 depicts an example of the capped memory construction. The shaded area
in �̂� represents the blocked space.

Starting from �̂� , any (non-promised) RMWs reading from a message in �̂� are
forced to read from the �̂�𝑋 messages (since the timestamp interval [0, 𝑡𝑋 ] is completely
occupied). Because these messages carry maximal views, acquire RMWs reading from
them cannot be executed during certification, as it will increase the thread view to
�̂�𝑀 , which, in turn, will prevent the thread from fulfilling its outstanding promises.

In turn, the new machine step is then simplified as follows:

⟨ (𝜏), 𝑀⟩ −→+ ⟨𝑇 ′, 𝑀 ′⟩ ∃𝑇 ′′. ⟨𝑇 ′, �̂� ′⟩ −→∗ ⟨𝑇 ′′, _⟩ ∧ 𝑇 ′′.prm = ∅

⟨ , 𝑀⟩ −→ ⟨ [𝜏 ↦ 𝑇 ′], 𝑀 ′⟩

Since the capped memory is clearly one possible future memory, the semantics
we obtain is clearly weaker than PS. It is (𝑖) weak enough to allow the annotated
behaviors of GA and RP above: certification against the capped memory will not lead
to 𝑎 ≥ 10 in GA and to 𝑐 ≠ 0 in RP; and, on the other hand, (𝑖𝑖) strong enough to forbid
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Figure III.1: An example of the capped memory

the annotated behavior of CDRF above: certification against the capped memory will
not allow the 𝑌 rlx ∶= 1 promise. In particular, by using the maximal messages for
constructing capped memory, thread 2 of GA+E’ can promise 𝑌 rlx ∶= 1 and certify it
while the message 𝑋rlx ∶= 42 (which is overwritten by 𝑋rlx ∶= 0) is in the memory.

Remark 2. The original PS quantification over all future memories could equivalently
quantify over all memories defined just like the capped memory, except for using
arbitrary values for the cap messages. Capped memory is more than that: it sets the
value of each cap messages to that of the corresponding maximal message.

5.2 Reservations

While capped memory suffices for justifying the weak outcomes of the examples seen
so far, it is still too strong to support register promotion and to validate the intended
mapping to Armv8. Consider the following variant of RP that uses an acquire RMW
in thread 1.

𝑎 ∶= 𝑋rlx //1

𝑐 ∶= FADDacq(𝑍, 𝑎) //0

𝑌 rlx ∶= 1

𝑏 ∶= 𝑌 rlx //1

𝑋rlx ∶= 𝑏
(RPacq)

The weakening of PS presented in §5.1 disallows the annotated behavior. Thread 1
cannot promise 𝑌 rlx ∶= 1 because its certification has to execute a non-promised
acquire RMW reading from an existing message against the capped memory; and
also it cannot promise the RMW 𝑍rlx ∶= 1 before 𝑌 rlx ∶= 1 because its certification
requires reading𝑋rlx ∶= 1. Nevertheless, as for RP, a global analysis may notice that 𝑍
is accessed only by one thread and perform register promotion, yielding the annotated
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outcome. (Similarly, Armv8 allows the annotated behavior of the corresponding target
program.)

We note that the standard (Java) optimization of removing locks used by only one
thread requires to perform register promotion on local locations accessed by acquire
RMWs. Indeed, lock acquisitions are essentially acquire RMWs.

So, how can we allow such behaviors without harming DRF-RA? Our idea here is
to enhance PS by allowing one to declare which thread will win the competition to
perform an RMW reading from a given message 𝑚. Once such a declaration is made,
RMWs performed by other threads cannot read from 𝑚.

The technical mechanism for these declarations is simple: we add a “reservation”
step to PS, allowing a thread to reserve a timestamp interval that it plans to use later,
without committing on how it will use it (what value and view will be picked). Once
an interval is reserved, other threads are blocked from reusing timestamps in this
interval. Intuitively, a reservation corresponds to promising the “read part” of the
RMW, which confines the behavior of other threads. In particular, if a thread reserves
an interval (𝑡1, 𝑡2] attached to some message (𝑓 , 𝑡1], then other threads cannot read
from the (𝑓 , 𝑡1] message with an RMW operation.

Since reservations are included in the machine memory (just like normal writes
and promises), the semantics remains thread-local. Technically, reservations take
the form ⟨𝑋@(𝑓 , 𝑡]⟩ where 𝑋 ∈ Loc and (𝑓 , 𝑡] is a timestamp interval. To meet their
purpose, we allow attaching reservations only immediately after existing concrete
messages (𝑓 should be the “to”-timestamp of some existing message to the same
location). Threads are also allowed to cancel their reservations (provided they can still
certify their outstanding promises) if they no longer need to block an interval.

Remark 3. For the soundness of register promotion, a thread should be allowed to
cancel its reservations instead of fulfilling them. Consider the following variant of the
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RPacq program:

𝑎 ∶= 𝑋rlx //1

if 𝑎 = 1 then
𝑐 ∶= FADDacq(𝑍, 1)

else

𝑑 ∶= FADDacq(𝑊 , 1)
𝑌 rlx ∶= 1

𝑏 ∶= 𝑌 rlx //1

𝑋rlx ∶= 𝑏
⇝

𝑎 ∶= 𝑋rlx //1

𝑌 rlx ∶= 1
𝑏 ∶= 𝑌 rlx //1

𝑋rlx ∶= 𝑏

Here, a compiler may transform the program on the left to the program on the right by
promoting locations 𝑍 and𝑊 . However, if a reservation should always be fulfilled with
a concrete message eventually, this optimization is unsound because the annotated
behavior 𝑎 = 𝑏 = 1 can be introduced by the optimization. Indeed, to observe this
behavior before the optimization, thread 1 should be able to promise 𝑌 rlx ∶= 1 before
the read from 𝑋 . To certify this promise, thread 1 should make a reservation to 𝑊
because it has to perform an RMW to𝑊 during the certification. Then, once the thread
makes a reservation to 𝑊 for certifying the promise 𝑌 = 1, it can never be able to
read 1 from 𝑋 because the thread is enforced to enter the else-branch and fulfill the
reservation to 𝑊 . Therefore, PS2 allows a thread to cancel its reservations instead of
fulfilling them.

Returning to the RPacq program above, reservations allow the annotated outcome.
Thread 1 can first reserve the interval (0, 1] for 𝑍 . Then, it can promise 𝑌 rlx ∶= 1 and
certify its promise by using its own reservation to perform the RMW.

Intuitively, reservations are closer to the implementation of RMWs in Arm: re-
serving the read part of an RMW first and then writing the RMW at the reserved
space later corresponds to execution of a load exclusive first and a (successful) write
exclusive later.

Reservations are also used for defining the capped memory to fill the gaps between
messages to the same location (§5.1). In the presence of reservations, however, the
capped memory definition requires some care. First, the value of the cap messages �̂�𝑋

should be the value of the maximal concrete message to 𝑥 (reservations do not carry
values). Second, when constructing the capped memory for thread 𝜏, if the maximal
message to some location 𝑌 is a reservation of thread 𝜏 itself, then we do not add a
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cap message for 𝑌 . In effect, during certification, the thread can execute any RMW
on 𝑌 but only after filling the reserved space on 𝑌 . Other threads cannot execute an
RMW on reservations of thread 𝜏, and so cannot interfere with respect to 𝑌 .

5.3 Undefined Behavior

So far, we have described value-range optimizations by informally referring to a
global analysis performed by the compiler. For our formal development, we introduce
undefined behavior (UB). We note that UB, which is not supported in the original PS
model, is also useful in a broader context (e.g., to give sensible semantics to expressions
like 𝑋/0).

In order to formally define inter-thread optimizations, we include in our language
an abort instruction, abort, which causes UB. In turn, for a global invariant 𝐼 (formally
defined in §7.2), we allow the program transformation introducing at arbitrary program
points the instruction assert(𝐼 ), which is a syntactic sugar to if ¬𝐼 then abort.
This paves the way to further local optimizations, such as:

assert(𝑋 ∈ {0, 1})
𝑎 ∶= 𝑋rlx

if 𝑎 ∈ {0, 1} then 𝑐
⇝

𝑎 ∶= 𝑋rlx

𝑐

The standard semantics of UB is “catch-fire”: UB should be thought as allowing
any arbitrary sequence of operations. This enables common compiler optimizations
(e.g., if 𝑒 then 𝑐 else abort⇝ 𝑐). Nevertheless, to make sure the semantics is not
overly weak, like any thread step, for taking an abort-step, the certification condition
has to be satisfied (where the certifying thread may replace abort by any sequence
of operations).

Our formal condition for taking an abort-step is somewhat simpler: we require
that for every location𝑋 , the current view of the aborting thread for𝑋 should be lower
than the “to”-timestamp of all the outstanding promises for 𝑋 of that thread. We say a
thread is promise-consistent when this condition is met. Recall that a thread can take a
write step to a location 𝑋 when the thread view of 𝑋 is lower than the “to”-timestamp
of the writing message. In turn, considering that taking an abort-step is capable
of executing arbitrary write instructions, a thread is able to fulfill its outstanding
promises when aborting if and only if it is promise-consistent.
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5.4 Relaxed RMWs in Certifications

In PS2, we opted to allow relaxed RMWs (that were non-promised before and read
from a message that exists in the current memory) during certification of promises.
This design choice can cause execution deadlocks:

𝑎 ∶= FADD(𝑋, 1) //0

𝑌 rlx ∶= 1 + 𝑎
𝑏 ∶= FADD(𝑋, 1) (deadlock)

Suppose that the thread 1 promises 𝑌 rlx ∶= 1. This promise can be certified against
the capped memory by updating the cap message of 𝑋 (whose value is 0). Now, thread
2 can perform its RMW, and block thread 1 from fulfilling its promise. Although
allowing such deadlocks is awkward, they are inconsequential, since deadlocking runs
are discarded from the definition of observable behavior.

Similarly, this choice enables somewhat dubious behaviors that seem to invalidate
atomicity of relaxed RMWs: for instance, CDRF can have the annotated behavior if
one FADD is made rlx. Such behaviors are unavoidable if all (intra- and inter-thread)
optimizations allowed by PS2 are supported. To see this, consider the following variant
of CDRF:

𝑎 ∶= CAS(𝑋, 0, 1)
if 𝑎 ≤ 1 then
𝑌 rlx ∶= 1

𝑏 ∶= WCAS(𝑋, 0, 2)
if 𝑏 then
𝑐 ∶= 𝑌 rlx //1

if 𝑐 = 1 then
𝑋rlx ∶= 0

(CDRF-weak)

Here, a weak compare-and-swap operation WCAS is allowed to spuriously fail even if it
reads the exact value it expects to update.4 We assume that WCAS returns a boolean flag
representing whether the update was successful. PS2 allows this program to exhibit
the annotated behavior 𝑐 = 1, which requires both threads to succeed the updates to
𝑋 . This might seem to be an overly weak behavior: when thread 2 succeeds WCAS (and
updates 𝑋 to 2), it cannot read 1 from 𝑌 since thread 1 cannot update 𝑋 from 0 to 1.

However, this behavior is allowed after applying a sequence of intra- and inter-
thread optimizations. First, as shown in Fig. III.2, the program can be transformed into

4A weak compare-and-swap operation is analogous to compare_exchange_weak of C/C++.
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(1) (2) (3) (4)

𝑐 ∶= 𝑌 rlx

𝑏 ∶= WCAS(𝑋, 0, 2)
if 𝑐 = 1 then

if 𝑏 then
𝑋rlx ∶= 0

𝑐 ∶= 𝑌 rlx

if 𝑐 = 1 then
𝑏 ∶= WCAS(𝑋, 0, 2)
if 𝑏 then

𝑋rlx ∶= 0
else

_ ∶= WCAS(𝑋, 0, 2)

𝑐 ∶= 𝑌 rlx

if 𝑐 = 1 then
𝑏 ∶= WCAS(𝑋, 0, 2)
if 𝑏 then
𝑋rlx ∶= 0

else

_ ∶= 𝑋rlx

𝑐 ∶= 𝑌 rlx

if 𝑐 = 1 then
𝑏 ∶= WCAS(𝑋, 0, 0)

else

_ ∶= 𝑋rlx

(1) reorder an RMW 𝑏 ∶= WCAS(𝑋, 0, 0) follwed by a read 𝑐 ∶= 𝑌 rlx by introducing
a relaxed read in the else-branch;

(2) distribute the RMW to 𝑋 into both branches;

(3) replace the RMW 𝑏 ∶= WCAS(𝑋, 0, 0) in the else-branch with a relaxed read
since a weak compare-and-swap operation may always fail; and

(4) merge the RMW 𝑏 ∶= WCAS(𝑋, 0, 0) with a write 𝑋rlx ∶= 0, which is executed
only when the RMW succeeds.

Figure III.2: A sequence of thread-local optimizations applied to the second thread of
CDRF-weak program.

the following by applying local optimizations to thread 25:

𝑎 ∶= CAS(𝑋, 0, 1)
if 𝑎 ≤ 1 then
𝑌 rlx ∶= 1

𝑐 ∶= 𝑌 rlx

if 𝑐 = 1 then
𝑏 ∶= WCAS(𝑋, 0, 0)

else

_ ∶= 𝑋rlx

Here, a global invariant 𝑋 ≤ 1 ∧ 𝑌 ≤ 1 holds, and a branch condition 𝑎 ≤ 1 of thread 1
can be optimized away. Then, the RMW 𝑏 ∶= WCAS(𝑋, 0, 0) and the write 𝑌 rlx ∶= 1

5The third optimization that replaces a weak compare-and-swap operation with a read may not be
sound in general particularly under a liveness-aware semantics. Cho et al. [17] provides a more involved
version of this example that does not include this questionable optimization (see LDRF-PF-Fail example).
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can be reordered, and the behavior 𝑐 = 1 is allowed by a simple interleaving execution.
A stronger alternative would be to disallow relaxed RMWs during certification

unless they were promised before the certification, or they read from a message
that is added to the memory during certification. This can be easily achieved by
defining the capped memory (against which threads certify their promises) to include
a reservation instead of a cap message, which disallows to read from cap messages
during certification. The resulting model is deadlock-free and it supports all (intra-
and inter-thread) optimizations supported by PS2, except for the local reordering of a
relaxed RMW followed by a write. To see this consider the following example:

𝑎 ∶= FADD(𝑋, 1) //1

𝑌 rlx ∶= 1
𝑏 ∶= 𝑌 rlx //1

𝑋rlx ∶= 𝑏
(LB-RMW)

To read the annotated values, the run must start with thread 1 promising 𝑌 rlx ∶= 1.
Such a promise can only be certified if we allow relaxed RMWs that read an existing
message during certification. Nevertheless, reordering the two instructions in thread
1 clearly exhibits the annotated behavior. In particular, since ARMv8 performs such
reorderings, the mapping to ARMv8 should always include a dependency from relaxed
RMWs, thereby incurring some (probably small) overhead.

6 Formal Model

In this section, we present our formal model, called PS2, which combines and makes
precise the ideas outlined above. Here, we consider the full model including fences,
release sequences, and mechanisms for modifying existing promises (split and lower).
We refer the readers to [33] for the details of these additional features since they are
handled just like in PS.

To keep the presentation simple and abstract, we do not fix a particular pro-
gramming language syntax, and rather assume that the thread semantics is already
provided as a labeled transition system, with transition labels silent for a silent
thread transition with no memory effect, R(𝑜R, 𝑋 , 𝑣) for reads, W(𝑜W, 𝑋 , 𝑣) for writes,
RMW(𝑜R, 𝑜W, 𝑋 , 𝑣R, 𝑣W) for RMWs, F(𝑜F) for fences, fail for failing assertions, and
sys(𝑣) for a system calls.
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𝑣 ∈ Val value
𝑋, 𝑌 , 𝑍 ∈ Loc location
𝑜R ∈ {rlx, acq} read access mode
𝑜W ∈ {rlx, rel} write access mode
𝑜F ∈ {acq, rel, acqrel, sc} fence access mode
𝜏 ∈ Tid ≜ {𝜏1, 𝜏2, ...} thread identifier
𝑓 , 𝑡 ∈ Time ≜ {0} ∪ ℚ+ timestamp
𝑉 ∈ View ≜ Loc → Time view
𝑉rel ∈ Loc → View release view
𝑉cur ∈ View current view
𝑉acq ∈ View acquire view

𝑆 ∈ View sc view
𝑚 = ⟨𝑋@(𝑓 , 𝑡], 𝑣, 𝑉 ⟩ ∈ Msg message
𝑟 = ⟨𝑋@(𝑓 , 𝑡]⟩ ∈ Rsv reservation
𝑃 ⊆ Msg ∪ Rsv promise set
𝑀 ⊆ Msg ∪ Rsv memory
𝜎 program state
 = ⟨𝑉rel, 𝑉cur, 𝑉acq⟩ thread view
𝑇 = ⟨𝜎, , 𝑃⟩ ∈ Lts thread state
⟨𝑇 , 𝑆,𝑀⟩ thread configuration
 ∈ Tid → Lts thread state mapping
⟨ , 𝑆, 𝑀⟩ machine state

(memory: new)

⟨𝑃,𝑀⟩ 𝑚−→ ⟨𝑃,𝑀 ↩a 𝑚⟩

(memory: fulfill)
↩∈ {↩s ,↩l } 𝑃 ′ = 𝑃 ↩ 𝑚 𝑀 ′ = 𝑀 ↩ 𝑚

⟨𝑃,𝑀⟩ 𝑚−→ ⟨𝑃 ′ ⧵ {𝑚}, 𝑀 ′⟩

(read-helper)
𝑚 = ⟨𝑋@(_, 𝑡], _, 𝑉m⟩

𝑉cur(𝑋 ) ≤ 𝑡 𝑉𝑠 = [𝑋 ↦ 𝑡]
𝑉 ′
cur = 𝑉cur ⊔ 𝑉𝑠 ⊔ (𝑜R ⊒ acq ? 𝑉m)

𝑉 ′
acq = 𝑉acq ⊔ 𝑉𝑠 ⊔ (𝑜R ⊒ rlx ? 𝑉m)

⟨𝑉rel, 𝑉cur, 𝑉acq⟩
𝑜R,𝑚−−−→R ⟨𝑉rel, 𝑉 ′

cur, 𝑉
′
acq⟩

(write-helper)
𝑚 = ⟨𝑋@(𝑓 , 𝑡], _, 𝑉m⟩ 𝑓 < 𝑡
𝑉cur(𝑋 ) < 𝑡 𝑉𝑠 = [𝑋 ↦ 𝑡]

𝑉 ′
cur = 𝑉cur ⊔ 𝑉𝑠 𝑉 ′

acq = 𝑉acq ⊔ 𝑉𝑠
𝑉 ′
rel = 𝑉rel[𝑋 ↦ 𝑉rel(𝑋 ) ⊔ 𝑉𝑠 ⊔ (𝑜W ⊒ rel ? 𝑉 ′

cur)]
𝑉m = (𝑜W ⊒ rlx ? (𝑉 ′

rel(𝑋 ) ⊔ 𝑉𝑟))

⟨𝑉rel, 𝑉cur, 𝑉acq⟩
𝑜W,𝑉𝑟 ,𝑚−−−−−→W ⟨𝑉 ′

rel, 𝑉
′
cur, 𝑉

′
acq⟩

Figure III.3: Formal model (domains and auxiliary definitions for the PS2 model).

The variable 𝑜R ∈ { rlx, acq } denotes a read access mode, which is naturally
ordered by rlx ⊏ acq. Similarly, 𝑜W ∈ { rlx, rel } denotes a write accesse mode
ordered by rlx ⊏ rel, and 𝑜F ∈ { acq, rel, acqrel, sc } denotes a fence ordering. An
RMW label includes two access modes, a read mode and a write mode. These naturally
encode the syntax of the examples we discussed above, e.g.,

FADD → RMW(rlx, rlx, ...) FADDacq → RMW(acq, rlx, ...)

FADDacqrel → RMW(acq, rel, ...) FADDrel → RMW(rlx, rel, ...)

Next, we present the components of the PS2 model.
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(promise)
𝑚.view ∈ 𝑀 ′ k ∈ {a, s, l, c}
𝑃 ′ = 𝑃 ↩k 𝑝 𝑚 𝑀 ′ = 𝑀 ↩k 𝑚

⟨⟨𝜎, , 𝑃⟩, 𝑆, 𝑀⟩ −→ ⟨⟨𝜎, , 𝑃 ′⟩, 𝑆, 𝑀 ′⟩

(read)

𝜎
R(𝑜R,𝑋 ,𝑣)
−−−−−−−→ 𝜎′

𝑚 = ⟨𝑋@(_, 𝑡], 𝑣, _⟩ ∈ 𝑀  𝑜R,𝑚−−−→R ′

⟨⟨𝜎, , 𝑃⟩, 𝑆, 𝑀⟩ −→ ⟨⟨𝜎′, ′, 𝑃⟩, 𝑆, 𝑀⟩

(write)

𝜎
W(𝑜W,𝑋 ,𝑣)
−−−−−−−→ 𝜎′

𝑜W = rel ⇒ ∀𝑚′ ∈ 𝑃(𝑋 ). 𝑚′.view = ⊥
𝑚 = ⟨𝑋@(_, 𝑡], 𝑣, 𝑉m⟩

 𝑜W,𝑉𝑟 ,𝑚−−−−−→W ′ ⟨𝑃,𝑀⟩ 𝑚−→ ⟨𝑃 ′, 𝑀 ′⟩

⟨⟨𝜎, , 𝑃⟩, 𝑆, 𝑀⟩ −→ ⟨⟨𝜎′, ′, 𝑃 ′⟩, 𝑆, 𝑀 ′⟩

(update)

𝜎
RMW(𝑜R,𝑜W,𝑋 ,𝑣𝑟 ,𝑣𝑤)−−−−−−−−−−−−−→ 𝜎′

𝑜W = rel ⇒ ∀𝑚′ ∈ 𝑃(𝑋 ). 𝑚′.view = ⊥
𝑚𝑟 = ⟨𝑋@(_, 𝑡𝑟 ], 𝑣𝑟 , 𝑉𝑟⟩ ∈ 𝑀
𝑚𝑤 = ⟨𝑋@(𝑡𝑟 , 𝑡𝑤], 𝑣𝑤, 𝑉𝑤⟩

 𝑜R,𝑚𝑟−−−−→R
𝑜W,𝑉𝑟 ,𝑚𝑤−−−−−−→W ′ ⟨𝑃,𝑀⟩

𝑚W−−→ ⟨𝑃 ′, 𝑀 ′⟩

⟨⟨𝜎, , 𝑃⟩, 𝑆, 𝑀⟩ −→ ⟨⟨𝜎′, ′, 𝑃 ′⟩, 𝑆, 𝑀 ′⟩

(acq-fence)

𝜎
F(acq)
−−−−−→ 𝜎′ 𝑉 ′

cur = 𝑉acq

⟨⟨𝜎, ⟨𝑉rel, 𝑉cur, 𝑉acq⟩, 𝑃⟩, 𝑆, 𝑀⟩ −→
⟨⟨𝜎′, ⟨𝑉rel, 𝑉 ′

cur, 𝑉acq⟩, 𝑃⟩, 𝑆, 𝑀⟩

(rel-fence)

𝜎
F(rel)
−−−−−→ 𝜎′ 𝑉 ′

rel = 𝜆_.𝑉cur
∀𝑚 ∈ 𝑃. 𝑚.view = ⊥

⟨⟨𝜎, ⟨𝑉rel, 𝑉cur, 𝑉acq⟩, 𝑃⟩, 𝑆, 𝑀⟩ −→
⟨⟨𝜎′, ⟨𝑉 ′

rel, 𝑉cur, 𝑉acq⟩, 𝑃⟩, 𝑆, 𝑀⟩

(sc-fence)

𝜎
F(sc)
−−−−→ 𝜎′ 𝑆′ = 𝑉acq ⊔ 𝑆
∀𝑚 ∈ 𝑃. 𝑚.view = ⊥

⟨⟨𝜎, ⟨_, _, 𝑉acq⟩, 𝑃⟩, 𝑆, 𝑀⟩ −→
⟨⟨𝜎′, ⟨𝜆_.𝑆′, 𝑆′, 𝑆′⟩, 𝑃⟩, 𝑆′, 𝑀⟩

(system call)

𝜎
sys(𝑣)
−−−−−→ 𝜎′ 𝑆′ = 𝑉acq ⊔ 𝑆
∀𝑚 ∈ 𝑃. 𝑚.view = ⊥

⟨⟨𝜎, ⟨_, _, 𝑉acq⟩, 𝑃⟩, 𝑆, 𝑀⟩
sys(𝑣)
−−−−−→

⟨⟨𝜎′, ⟨𝜆_.𝑆′, 𝑆′, 𝑆′⟩, 𝑃⟩, 𝑆′, 𝑀⟩

(silent)

𝜎 silent−−−−−−→ 𝜎′

⟨⟨𝜎, , 𝑃⟩, 𝑆, 𝑀⟩ −→ ⟨⟨𝜎′, , 𝑃⟩, 𝑆, 𝑀⟩

(failure)

𝜎 fail−−−−→ 𝜎′

∀𝑚 ∈ 𝑃.  .cur(𝑚.loc) ≤ 𝑚.to

⟨⟨𝜎, , 𝑃⟩, 𝑆, 𝑀⟩ fail−−−−→ ⟨⟨⊥, ,∅⟩, 𝑆, 𝑀⟩

Figure III.4: Formal model (thread transitions).
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Time Time is a set of timestamps that is totally and densely ordered by < with a
minimum value, denoted by 0.

Views A view is a function 𝑉 ∶ View ≜ Loc → Time. We use ⊥ and ⊔ to denote the
natural bottom elements and join operations for views (pointwise extensions of the
timestamp 0 and max operation on timestamps).

Concrete Messages A concrete message takes the form 𝑚 = ⟨𝑋@(𝑓 , 𝑡], 𝑣, 𝑉m⟩ where
𝑋 ∈ Loc, 𝑣 ∈ Val, 𝑓 , 𝑡 ∈ Time, and 𝑉m ∈ View, such that 𝑓 < 𝑡 or 𝑓 = 𝑡 = 0, and
𝑉m(𝑋 ) ≤ 𝑡. We denote by 𝑚.loc, 𝑚.val, 𝑚.from, 𝑚.to, and 𝑚.view the components
of 𝑚.

Reservations A reservation takes the form 𝑚 = ⟨𝑋@(𝑓 , 𝑡]⟩, where 𝑋 ∈ Loc, and
𝑓 , 𝑡 ∈ Time such that 𝑓 < 𝑡. We denote by 𝑚.loc, 𝑚.from, and 𝑚.to the components
of 𝑚.

Messages A message is either a concrete message or a reservation. Two messages
𝑚1 and 𝑚2 are disjoint, denoted by 𝑚1 #𝑚2, if they have different locations or disjoint
timestamp intervals:

𝑚1 #𝑚2 ≜ 𝑚1.loc ≠ 𝑚2.loc ∨

𝑚1.to < 𝑚2.from ∨ 𝑚2.to < 𝑚1.from

Two sets 𝑀1 and 𝑀2 of messages are disjoint, denoted by 𝑀1 #𝑀2, if 𝑚1 #𝑚2 for every
𝑚1 ∈ 𝑀1 and 𝑚2 ∈ 𝑀2.

Memory A memory is a (nonempty) pairwise disjoint finite set of messages. We
write 𝑀(𝑋 ) for the sub-memory {𝑚 ∈ 𝑀 | 𝑚.loc = 𝑋 } and |𝑀 | for the set {𝑚 ∈
𝑀 | 𝑚 = ⟨_@(_, _], _, _⟩ } of concrete messages in 𝑀 .

Memory Operations Amemory𝑀 supports the following operations for a message
𝑚, where 𝑚.loc = 𝑋 , 𝑚.from = 𝑓 , 𝑚.to = 𝑡, and 𝑓 < 𝑡:
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• The additive insertion, denoted by 𝑀 ↩a 𝑚, is given by 𝑀 ∪ {𝑚}. It is only defined if
(𝑖) {𝑚} #𝑀 ; (𝑖𝑖) if𝑚 is a concrete message, then no message𝑚′ ∈ 𝑀 has𝑚′.loc = 𝑋
and 𝑚′.from = 𝑡; and (𝑖𝑖𝑖) if 𝑚 is a reservation, then there exists 𝑚′ ∈ 𝑀 with
𝑚′.loc = 𝑋 and 𝑚′.to = 𝑓 .

• The splitting insertion, denoted by𝑀 ↩s 𝑚, is only defined if 𝑚 is a concrete message
and there exists 𝑚′ in 𝑀 such that 𝑚′.loc = 𝑋 , 𝑚′.from = 𝑓 , and 𝑚′.to = 𝑡′ with
𝑡 < 𝑡′, in which case it is given by 𝑀⧵{𝑚′} ∪ {𝑚, ⟨𝑋@(𝑡, 𝑡′], 𝑣′, 𝑉 ′

m⟩}.

• The lowering insertion, denoted by 𝑀 ↩l 𝑚, is only defined if 𝑚 is a concrete
message ⟨𝑋@(𝑓 , 𝑡], 𝑣, 𝑉m⟩ and there exists 𝑚′ ∈ 𝑀 that is identical to 𝑚 except for
𝑚.view ≤ 𝑚′.view, in which case it is given by 𝑀⧵{𝑚′} ∪ {𝑚}.

• The cancellation, denoted by 𝑀 ↩c 𝑚, is given by 𝑀 ⧵ {𝑚}. It is only defined if 𝑚 is a
reservation in 𝑀 .

We use ↩a 𝑝 to denote an additive insertion into a set of promises, which does not
require the last condition of the additive insertion: for a memory 𝑃 and a reservation
𝑚, 𝑃 ↩a 𝑝 𝑚 is defined if {𝑚} #𝑀 . To simplify the presentation, we define↩s 𝑝 ,↩l 𝑝 , and
↩c 𝑝 to be the same as↩s ,↩l , and ↩c respectively.

Closed View Given a view 𝑉 and a memory𝑀 , we write 𝑉 ∈ 𝑀 if, for every𝑋 ∈ Loc,
we have 𝑉 (𝑋 ) = 𝑚.to for some concrete message 𝑚 ∈ �̂�(𝑋 ).

Thread Views A thread view is a triple  = ⟨𝑉rel, 𝑉cur, 𝑉acq⟩, where 𝑉rel ∈ Loc →
View and 𝑉cur, 𝑉acq ∈ View satisfying 𝑉rel(𝑋 ) ≤ 𝑉cur ≤ 𝑉acq for all 𝑋 ∈ Loc. We
denote by  .rel,  .cur, and  .acq the components of  .

Thread States A thread state is a triple 𝑇 = ⟨𝜎, 𝑉 , 𝑃⟩, where 𝜎 is a local state, 𝑉 is a
thread view, and 𝑃 is a memory.We denote by 𝑇 .st, 𝑇 .view, and 𝑇 .prm the components
of a thread state 𝑇 . We denote by 𝑇 .st, 𝑇 .view, and 𝑇 .prm the components of a thread
state 𝑇 .
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Thread Configuration Steps A thread configuration is a triple ⟨𝑇 , 𝑆,𝑀⟩, where 𝑇
is a thread state, 𝑆 is a timemap (the global SC timemap), and 𝑀 is a memory. We use
⊥ as a thread configuration after a failure.

To avoid repetition and simplify the presentation, we use the helper rules read-
helper and write-helper shown in Fig. III.3 for defining thread configuration steps.
These rules employ a couple of helpful notations: (𝑖) “[𝑋 ↦ 𝑡]” denotes a singleton
timemap assigning 𝑡 to 𝑋 and 0 to other locations; and (𝑖𝑖) “𝑐𝑜𝑛𝑑 ?𝑋” means 𝑋 if a
condition 𝑐𝑜𝑛𝑑 holds and ⊥ otherwise.

Now, Fig. III.4 presents the full list of thread configuration steps.
promise. A thread can take a promising step (promise rule) by picking one of

the memory operations and applying it to both the set of outstanding promises 𝑃 and
the memory 𝑀 .

read. In this step a thread reads the value of a location 𝑋 from a message 𝑚 ∈ 𝑀
and extend its view. Following the read-helper, the thread’s view of location 𝑋 is
extended to timestamp 𝑡. When the read is an acquire read, the view is also updated
by the message view 𝑅.

write and update. The write and the update steps cover two cases: a fresh write
tomemory (memory:new) and a fulfillment of an outstanding promise (memory:fulfill).
The latter allows to split the promise or lower its view before its fulfillment. When a
thread writes a message 𝑚 with location 𝑋 along with timestamp (_, 𝑡], 𝑡 extends the
thread’s view of location 𝑋 to memory 𝑀 . A release write step additionally ensures
that the thread has no outstanding promise on location 𝑋 . Moreover, a release write
attaches the updated thread view 𝑉 ′ to the message 𝑚. The update step is similar,
except that it first reads a message with a timestamp interval (_, 𝑡], and then, writes a
message with an interval (𝑡, _].

acq/rel/sc-fence. There are three rules acq-fence, rel-fence, and sc-fence for
modeling fences. A transition for an acquire-release fence (represented by a transition
label F(acqrel)) can be captured by taking the acq-fence-step followed by the rel-
fence-step. For release and sequentially consistent fences, a thread should make sure
that there is no outstanding promise before executing taking the step.

silent. A thread takes a silent-step to perform thread-local computation which
updates only the local thread state.

36



(machine: normal)
⟨ (𝜏), 𝑆, 𝑀⟩ −→∗ 𝑒−→ ⟨𝑇 ′, 𝑆′, 𝑀 ′⟩

⟨𝑇 ′, 𝑆′, �̂� ′𝑇 ′.prm⟩ −→∗ ⟨⟨_, _,∅⟩, _, _⟩

⟨ , 𝑆, 𝑀⟩ 𝑒−→ ⟨ [𝜏 ↦ 𝑇 ′], 𝑆′, 𝑀 ′⟩

(machine: ub)
⟨ (𝜏), 𝑆, 𝑀⟩ −→+ ⟨⟨⊥, _, _⟩, 𝑆′, 𝑀 ′⟩

⟨ , 𝑆, 𝑀⟩ −→ ⟨⊥, 𝑆′, 𝑀 ′⟩

Figure III.5: Formal model (machine transitions).

system call. A thread takes a system call-step that emits an event with the
call’s input and output values. Note that both PS and PS2 model system calls as
executing a sequentially consistent fence.

failure. A thread configuration ⟨𝑇 , 𝑆,𝑀⟩ is only allowed to fail if 𝑇 is promise-

consistent:
∀𝑚 ∈ 𝑇 .prm, 𝑇 .view.cur(𝑚.loc) ≤ 𝑚.to

Cap View and Messages The last message of a memory𝑀 to a location 𝑋 , denoted
by 𝑚𝑀,𝑋 , is given by:

𝑚𝑀,𝑋 ≜ arg max
𝑚∈𝑀(𝑋 )

𝑚.to

The cap view of a memory 𝑀 , denoted by �̂�𝑀 , is given by:

�̂�𝑀 ≜ 𝜆𝑋. 𝑚|𝑀 |,𝑋 .to

By definition, we have �̂�𝑀 ∈ 𝑀 . The cap message of a memory 𝑀 to a location 𝑋 ,
denoted by �̂�𝑀,𝑋 , is given by:

�̂�𝑀,𝑋 = ⟨𝑋@(𝑚𝑀,𝑋 .to, 𝑚𝑀,𝑋 .to + 1], 𝑚�̂�,𝑋 .val, �̂�𝑀⟩

Capped Memory The capped memory of a memory 𝑀 with respect to a set of
promises 𝑃 , denoted by �̂�𝑃 , is an extension of 𝑀 , constructed in two steps:

1. For every 𝑚1, 𝑚2 ∈ 𝑀 with 𝑚1.loc = 𝑚2.loc, 𝑚1.to < 𝑚2.to, and there is
no message 𝑚′ ∈ 𝑀(𝑚1.loc) such that 𝑚1.to < 𝑚′.to < 𝑚2.to, we include a
reservation ⟨𝑚1.loc@(𝑚1.to, 𝑚2.from]⟩ to �̂�𝑃 .

2. We include a cap message �̂�𝑀,𝑋 in �̂�𝑃 for every location 𝑋 unless 𝑚𝑀,𝑋 is a
reservation in 𝑃 .
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Consistency A thread configuration ⟨𝑇 , 𝑆,𝑀⟩ is called consistent if for a capped

memory �̂�𝑇 .prm of 𝑀 with respect to 𝑇 .prm and the timemap 𝑆 = �̂��̂�𝑇 .prm
of �̂�𝑇 .prm,

there exist 𝑇 ′, 𝑆′, 𝑀 ′ such that:

⟨𝑇 , 𝑆, �̂�𝑇 .prm⟩ −→∗ ⟨𝑇 ′, 𝑆′, 𝑀 ′⟩ ∧ 𝑇 ′.prm = ∅

Machine steps A machine state is a pair  = ⟨ , 𝑀⟩ consisting of a function 
assigning a thread state to every thread, and a memory 𝑀 . The initial state 0 (for a
given program) consists of the function  0 mapping each thread 𝑖 to its initial state
𝜎0
𝑖 , the ⊥ thread view (all timestamps are 0), and an empty set of promises; and the

initial memory 𝑀0 consisting of one message ⟨𝑋@(0, 0], 0, ⊥⟩ for each location 𝑋 . The
two kinds of machine steps are given in Fig. III.5. At each machine step, the thread
taking the step should check that it is consistent. In the machine: normal rule, the
consistency checking is inlined as the second premise. For the machine: failure
rule, there is no need for certification since an undefined behavior directly fulfills any
outstanding promises. Here, we use ⊥ as a machine state after a failure.

Behaviors To define what is externally observable during executions of a program
𝑝𝑟𝑜𝑔 , we use the system calls that 𝑝𝑟𝑜𝑔’s executions perform. More precisely, every
execution induces a sequence of system calls, and the set of behaviors of 𝑝𝑟𝑜𝑔 under
PS2, denoted J𝑝𝑟𝑜𝑔KPS2, consists of all such sequences induced by executions of 𝑝𝑟𝑜𝑔 .
When a fail occurs during the execution, J𝑝𝑟𝑜𝑔KPS2 consists of the sequence of
system calls performed before the failure followed by an arbitrary sequence of system
calls (reflecting an undefined behavior).

7 Results

We next present the results of PS2. Except for Theorems 6 to 8 (whose proofs are given
in §8), all other results are fully mechanized in the Coq proof assistant.
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7.1 Intra-thread Optimizations

A transformation 𝑝𝑟𝑜𝑔src ⇝ 𝑝𝑟𝑜𝑔 tgt is sound if it does not introduce behaviors under
any (parallel and sequential) context:

∀ , J[𝑝𝑟𝑜𝑔src]KPS2 ⊇ J[𝑝𝑟𝑜𝑔 tgt]KPS2.

PS2 allows all compiler transformations supported by PS. Additionally, it supports re-
placing abort by arbitrary code (more precisely, abort;𝐶1 ⇝ 𝐶2). Since assert(𝑒)
is defined as if ¬𝑒 then abort, the following transformations are valid:

1. assert(𝑒);𝐶 ⇝ assert(𝑒);𝐶[true/𝑒]

2. assert(𝑒) ⇝ skip

Thanks to thread-locality of PS and PS2, we proved a theorem that combines and
lifts the local simulation relations (almost without any reasoning on certifications)
between pairs of threads 𝑆𝑖, 𝑇𝑖 into a global simulation relation between the composed
programs 𝑆1 ∥ ... ∥ 𝑆𝑛 and 𝑇1 ∥ ... ∥ 𝑇𝑛. This theorem allows us to easily prove sound-
ness of the thread-local transformations using sequential and thread-local simulation
relations. See Kang [32] and our Coq formalization for more details.

7.2 Value-Range Optimizations

First, we provide a global value-range analysis and prove its soundness in PS2. A
value-range analysis is a tuple 𝐴 = ⟨𝐽 , 𝑆1, ... ,𝑆𝑛⟩, where 𝐽 ∈ Loc → (Val) represents
a set of possible values for each location and 𝑆𝑖 ⊆ State𝑖 a set of possible local states
of the underlying language (i.e., excluding the thread views) for each thread 𝑖. The
analysis is sound for a program 𝑝𝑟𝑜𝑔 if (i) the initial value for each location is in 𝐽
and the initial state of each thread 𝑖 in 𝑝𝑟𝑜𝑔 is in 𝑆𝑖; (ii) taking a step from each state
in 𝑆𝑖 necessarily leads to a state in 𝑆𝑖 assuming that it only reads a value in 𝐽 and
guaranteeing that it only writes a value in 𝐽 .

Now, we show that sound analysis for 𝑝𝑟𝑜𝑔 holds in every reachable state of 𝑝𝑟𝑜𝑔 .

Theorem 1 (Soundness of Value-Range Analysis). For a sound value-range analysis
⟨𝐽 , 𝑆1, ... ,𝑆𝑛⟩ for 𝑝𝑟𝑜𝑔 , if ⟨ , 𝑀⟩ is a reachable machine state for 𝑝𝑟𝑜𝑔 , then  (𝑖).st ∈ 𝑆𝑖
for every thread 𝑖, and 𝑚.val ∈ 𝐽 (𝑋 ) for every 𝑚 ∈ ⎦𝑀(𝑋 ).
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promote(𝑠, 𝑋𝑝 , 𝑟𝑝) ∶=
match 𝑠 with

∣ 𝑠1; 𝑠2 ⇒ promote(𝑠1, 𝑋𝑝 , 𝑟𝑝); promote(𝑠2, 𝑋𝑝 , 𝑟𝑝)
∣ if 𝑒 then 𝑠1 else 𝑠2 ⇒ if 𝑒 then promote(𝑠1, 𝑋𝑝 , 𝑟𝑝) else promote(𝑠2, 𝑋𝑝 , 𝑟𝑝)
∣ do 𝑠1 while 𝑒 ⇒ do promote(𝑠1, 𝑋𝑝 , 𝑟𝑝) while 𝑒
∣ 𝑟 ∶= 𝑋𝑝

𝑜 ⇒ 𝑟 ∶= 𝑟𝑝
∣ 𝑋 𝑜

𝑝 ∶= 𝑟 ⇒ 𝑟𝑝 ∶= 𝑟
∣ 𝑟 ∶= FADD𝑜1,𝑜2(𝑋𝑝 , 𝑣) ⇒ 𝑟𝑝 ∶= 𝑟𝑝 + 𝑣; 𝑟 ∶= 𝑟𝑝
∣ 𝑟 ∶= CAS𝑜1,𝑜2(𝑋𝑝 , 𝑣𝑜𝑙𝑑 , 𝑣𝑛𝑒𝑤) ⇒ if 𝑟𝑝 = 𝑣𝑜𝑙𝑑 then 𝑟𝑝 ∶= 𝑣𝑛𝑒𝑤; 𝑟 ∶= 1 else 𝑟 ∶= 0
∣ _ ⇒ 𝑠

Figure III.6: An algorithm for register promotion that promotes a memory location 𝑋𝑝

to a register 𝑟𝑝 in statements 𝑠.

Second, we prove the soundness of inter-thread optimizations based on sound
value-range analysis. An optimization based on a value-range analysis𝐴 = ⟨𝐽 , 𝑆1, ... ,𝑆𝑛⟩
can be seen as inserting assert(𝑒) at positions in thread 𝑖 when 𝑒 is always evaluated
to true. For this, we define a relation, inter_thread_opt(𝐴, 𝑝𝑟𝑜𝑔src, 𝑝𝑟𝑜𝑔 tgt), which
holds when 𝑝𝑟𝑜𝑔 tgt is obtained from 𝑝𝑟𝑜𝑔src by inserting valid assertions based on 𝐴.

Theorem 2 (Soundness of Inter-thread Optimizations). For a sound value-range
analysis 𝐴 of 𝑝𝑟𝑜𝑔src, and for 𝑝𝑟𝑜𝑔 tgt such that inter_thread_opt(𝐴, 𝑝𝑟𝑜𝑔src, 𝑝𝑟𝑜𝑔 tgt),
we have J𝑝𝑟𝑜𝑔srcKPS2 ⊇ J𝑝𝑟𝑜𝑔 tgtKPS2.

7.3 Register Promotion

We prove soundness of register promotion. As shown in Fig. III.6, we denote by
promote(𝑠, 𝑋 , 𝑟) the statement obtained from a statement 𝑠 by promoting the accesses
to memory location 𝑋 to accesses to register 𝑟 .

Theorem 3 (Soundness of Register Promotion). For a program 𝑠1∥ ... ∥𝑠𝑛, if memory
location 𝑋 is only accessed by 𝑠𝑖 (i.e., not occurring in 𝑠𝑗 for every 𝑗 ≠ 𝑖) and register 𝑟
is fresh in 𝑠𝑖 (i.e., not occurring in 𝑠𝑖), we have:

J𝑠1∥ ... ∥𝑠𝑛KPS2 ⊇ J𝑠1∥ ... ∥ promote(𝑠𝑖, 𝑋 , 𝑟) ∥ ... ∥𝑠𝑛KPS2.
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7.4 DRF Theorems

We prove four DRF theorems for PS2: DRF-Promise, DRF-RA, DRF-Lock-RA and
DRF-Lock-SC. First, we need several definitions:

• Promise-free (PF) semantics is the strengthening of PS2 obtained by revoking the
ability to make promises or reservations.

• Release-acquire (RA) is the strengthening of PF obtained by interpreting all memory
operations as if they have ra access mode.

• Sequential consistency (SC) is the strengthening of RA obtained by forcing every
read of a location 𝑋 to read from the message with location 𝑋 with the maximal
timestamp and every write to a location 𝑋 to write a message at a timestamp higher
than any other 𝑋 -message.

In the absence of promises, PS and PS2 coincide:

Theorem 4. PF is equivalent to the promise-free fragment of PS, and thus the same
holds for RA and SC.

We say that a machine state is rlx-race-free, if whenever two different threads
may take a non-promise step accessing the same location and at least one of them is
writing, then both are ra accesses.

Theorem 5 (DRF-Promise). If every PF-reachable machine state for 𝑝𝑟𝑜𝑔 is rlx-race-
free, then J𝑝𝑟𝑜𝑔KPF = J𝑝𝑟𝑜𝑔KPS2.

This theorem is one of the main results of DRF theorems established for PS2 and
serves as a key lemma for for proving DRF-RA theorem that will be introduced shortly.
In our Coq formalization, we proved a stronger version of DRF-Promise, which is
presented in [43, §E].

Theorem 6 (DRF-RA). If every RA-reachable machine state for 𝑝𝑟𝑜𝑔 is rlx-race-free,
then J𝑝𝑟𝑜𝑔KRA = J𝑝𝑟𝑜𝑔KPS2.

Thanks to Theorems 4 and 5, the proof of DRF-RA for PS2 is identical to that for
PS given in [33].
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Our DRF-Lock theorems given below generalize those for PS given in [33] in two
aspects: our Lock are implemented with an acquire CAS rather than acquire-release

CAS that was assumed in [33]; and our results also cover tryLock that may fail to
acquire the lock, not just Lock and Unlock.6

We define tryLock, Lock and Unlock as follows:

𝑎 ∶= tryLock(𝐿) ≜ 𝑎 ∶= WCASacq(𝐿, 0, 1)
Lock(𝐿) ≜ do 𝑎 ∶= tryLock(𝐿) while !𝑎

Unlock(𝐿) ≜ 𝐿rel ∶= 0

where WCAS𝑜 is the weak compare-and-swap operation, which can either return true
after successfully performing CAS𝑜, or return false after reading any value from 𝐿
with relaxed mode.

We prove DRF-Lock-RA and DRF-Lock-SC for programs using the three lock
operations. We say such a program is well-locked if (1) locations are partitioned into
lock and non-lock locations, (2) lock locations are accessed only by the three lock
operations, and (3) Unlock is executed only when the thread holds the lock.

Theorem 7 (DRF-Lock-RA). For a well-locked program 𝑝𝑟𝑜𝑔 , if every RA-reachable
machine state for 𝑝𝑟𝑜𝑔 is rlx-race-free for all non-lock locations, then J𝑝𝑟𝑜𝑔KRA =
J𝑝𝑟𝑜𝑔KPS2.

Theorem 8 (DRF-Lock-SC). For a well-locked program 𝑝𝑟𝑜𝑔 , if every SC-reachable
machine state reachable for 𝑝𝑟𝑜𝑔 is race-free for all non-lock locations, then J𝑝𝑟𝑜𝑔KSC =
J𝑝𝑟𝑜𝑔KPS2.

The pen-and-paper proofs of these theorems are given in §8.

7.5 Compilation Correctness

Following Podkopaev et al. [57], we prove the correctness of mapping from PS2 to
hardware models (x86-TSO, POWER, Armv7, Armv8, RISC-V) using the Intermediate
Memory Model, IMM, from which intended compilation schemes to the different
architectures are already proved to be correct.

6Lock is typically implemented by repeating tryLock until it succeeds to acquire the lock.
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Theorem 9 (Correctness of Compilation to IMM). Every outcome of a program 𝑝𝑟𝑜𝑔
under IMM is also an outcome of 𝑝𝑟𝑜𝑔 under PS2, i.e., J𝑝𝑟𝑜𝑔KPS2 ⊇ J𝑝𝑟𝑜𝑔KIMM.

We note that this result (which is mechanized in Coq) requires the existence of a
control dependency from the read part of each RMWoperation. Such dependency exists
“for free” in CAS operations, since its write operation (a store-conditional instruction)
is anyway control-dependent on the read operation (a load-link instruction). However,
when compiling FADDs to Armv8, the compiler has to place “fake” control dependencies
to meet this condition (and be able to use our theorem). We conjecture that a slightly
more efficient compilation (standard) scheme of FADDs that does not introduce such
dependencies is also sound. We leave this proof to a future work. In any case, our
result is better than the one for PS by Podkopaev et al. [57] that requires an extra
barrier (“ld fence”) when compiling RMWs to Armv8.

Remark 4. As in Armv8, our compilation result to RISC-V uses release/acquire
accesses. These accesses are not a part of RISC-V ISA, but the RISC-V memory
model (RVWMO) is “designed to be forwards-compatible with the potential addition” of
them [69, §14.1].

8 Proofs

In this section, we provide the pen-and-paper proofs of DRF-Lock theorems, Thm. 7
and Thm. 8.

We start by analyzing an invariant of well-locked programs. If a program 𝑝𝑟𝑜𝑔
is well-locked with a set of lock locations , the following invariant holds for every
reachable memory 𝑀 during the execution of 𝑝𝑟𝑜𝑔 :

∀𝐿 ∈ . ∀⟨𝐿@(_, _], 𝑣, _⟩ ∈ 𝑀. 𝑣 = 0 ∨ 𝑣 = 1 ∧

∀⟨𝐿@(𝑡, _], 1, 𝑉 1⟩ ∈ 𝑀. ∃⟨𝐿@(_, 𝑡], 0, 𝑉 0⟩ ∈ 𝑀 ∧

∀⟨𝐿@(_, 𝑡0], 𝑣0, 𝑉 0⟩, ⟨𝐿@(_, 𝑡1], 𝑣1, 𝑉 1⟩ ∈ 𝑀. 𝑡0 ⊑ 𝑡1 ⇒ 𝑉 0 ⊑ 𝑉 1 ∧

∀⟨𝐿@(𝑓 , 𝑡], 0, _⟩ ∈ 𝑀. 𝑡 = 𝑡𝐿 ∨ ∃⟨𝐿@(𝑡, _], 1, _⟩ ∈ 𝑀

We define tryLock𝑜1,𝑜2 as 𝑎 ∶= WCASacq,𝑜1,𝑜2(𝐿, 0, 1), where WCAS𝑜0,𝑜1,𝑜2 is a weak
compare-and-swap operation that either (𝑖) returns true after a successful CAS with
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a read access mode 𝑜0 and a write access mode 𝑜1; or (𝑖𝑖) returns false after reading
any value from 𝐿 with 𝑜2 access mode. Note that tryLock in Thm. 7 and Thm. 8 can
be represented by tryLockrlx,rlx.

We define nondetLock as follows where choose{a, b} non-deterministically
executes one of a or b:

nondetLock𝑜1,𝑜2(𝐿) ≜ choose{0, Lock𝑜1,𝑜2(𝐿)}.

For a program 𝑝𝑟𝑜𝑔 , we define 𝑝𝑟𝑜𝑔[𝑜′1, 𝑜′2] to be a program obtained by replacing
every tryLock𝑜1,𝑜2(𝐿) in 𝑝𝑟𝑜𝑔 with tryLock𝑜′1,𝑜′2(𝐿), and 𝑝𝑟𝑜𝑔? be a program obtained
by replacing every tryLock𝑜1,𝑜2(𝐿) in 𝑝𝑟𝑜𝑔 with nondetLock𝑜1,𝑜2(𝐿).

With above definitions, the following lemma holds.

Lemma 1 (Strengthening Lock). For a well-locked program 𝑝𝑟𝑜𝑔 , we have:

J𝑝𝑟𝑜𝑔KPS2 = J𝑝𝑟𝑜𝑔[ra, ra]KPS2.

Proof. It is enough to show that any execution of 𝑝𝑟𝑜𝑔 can be simulated by an execution
of 𝑝𝑟𝑜𝑔[ra, ra].

First, we define 𝑣𝑖𝑒𝑤_𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑, 𝑤𝑓 _𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑 and 𝑤𝑓 _𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑𝑡ℎ:

𝑣𝑖𝑒𝑤_𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑(𝐿, 𝑡𝐿, 𝑉 , 𝑉 ) ≜

𝑉 .rlx(𝐿) = 𝑡𝐿 ⇒ 𝑉 ⊑ 𝑉 ∧ 𝑉 .pln(𝐿) = 𝑡𝐿

𝑤𝑓 _𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑(⟨src,src, 𝑀src⟩) ≜

∀𝐿 ∈ , ⟨𝐿@(_, 𝑡𝐿], _, 𝑉𝐿⟩ ∈ 𝑀src.

(∀𝑖. (∀𝑋. 𝑣𝑖𝑒𝑤_𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑(𝐿, 𝑡𝐿, 𝑉𝐿, src(𝑖).𝑉 .rel(𝑋 ))) ∧

𝑣𝑖𝑒𝑤_𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑(𝐿, 𝑡𝐿, 𝑉𝐿, src(𝑖).𝑉 .cur) ∧

𝑣𝑖𝑒𝑤_𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑(𝐿, 𝑡𝐿, 𝑉𝐿, src(𝑖).𝑉 .acq)) ∧

𝑣𝑖𝑒𝑤_𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑(𝐿, 𝑡𝐿, 𝑉𝐿, ⟨src,src⟩) ∧

∀⟨_@(_, _], _, 𝑉 ⟩ ∈ 𝑀src. 𝑣𝑖𝑒𝑤_𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑(𝐿, 𝑡𝐿, 𝑉𝐿, 𝑉 )

𝑤𝑓 _𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑𝑡ℎ(⟨𝑇src,src, 𝑀src⟩) ≜

∀𝐿 ∈ , ⟨𝐿@(_, 𝑡𝐿], _, 𝑉𝐿⟩ ∈ 𝑀src.

(∀𝑋, 𝑣𝑖𝑒𝑤_𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑(𝐿, 𝑡𝐿, 𝑉𝐿, 𝑇src.𝑉 .rel(𝑋 ))) ∧
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𝑣𝑖𝑒𝑤_𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑(𝐿, 𝑡𝐿, 𝑉𝐿, 𝑇src.𝑉 .cur) ∧

𝑣𝑖𝑒𝑤_𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑(𝐿, 𝑡𝐿, 𝑉𝐿, 𝑇src.𝑉 .acq) ∧

𝑣𝑖𝑒𝑤_𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑(𝐿, 𝑡𝐿, 𝑉𝐿, ⟨src,src⟩) ∧

∀⟨_@(_, _], _, 𝑉 ⟩ ∈ 𝑀src. 𝑣𝑖𝑒𝑤_𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑(𝐿, 𝑡𝐿, 𝑉𝐿, 𝑉 )

Remark 5. The following properties on 𝑣𝑖𝑒𝑤_𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑 hold for everymessage ⟨𝐿@(_, 𝑡𝐿], _, 𝑉 ⟩ ∈
𝑀 :

• 𝑣𝑖𝑒𝑤_𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑(𝐿, 𝑡𝐿, 𝑉 , ⊥)

• 𝑣𝑖𝑒𝑤_𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑(𝐿, 𝑡𝐿, 𝑉 , 𝑉1) ∧ 𝑣𝑖𝑒𝑤_𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑(𝐿, 𝑡𝐿, 𝑉 , 𝑉2) ⇒
𝑣𝑖𝑒𝑤_𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑(𝐿, 𝑡𝐿, 𝑉 , 𝑉1 ⊔ 𝑉2)

• [𝑋 ↦ 𝑡𝑋 ] ≠ [𝐿 ↦ 𝑡𝐿] ⇒ 𝑣𝑖𝑒𝑤_𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑(𝐿, 𝑡𝐿, 𝑉 , [𝑋 ↦ 𝑡𝑋 ])

We define ∼st to be a simulation relation between program states of 𝑝𝑟𝑜𝑔[ra, ra]
and 𝑝𝑟𝑜𝑔 . Specifically, 𝜎src ∼st 𝜎tgt iff 𝜎src is the same as 𝜎tgt except every tryLock in
the statement of 𝜎src has the ordering (ra, ra).

Then we define simulation relations betweenmemories, thread states, and machine
configurations as follows:

𝑀src ∼m 𝑀tgt ≜

(∀⟨𝑋@(𝑓 , 𝑡], 𝑣, 𝑉src⟩ ∈ 𝑀src.

∃𝑉tgt. ⟨𝑋@(𝑓 , 𝑡], 𝑣, 𝑉tgt⟩ ∈ 𝑀tgt ∧ (𝑋 ∉  ∨ 𝑣 ≠ 1 ⇒ 𝑉src ⊑ 𝑉tgt)) ∧

(∀⟨𝑋@(𝑓 , 𝑡], 𝑣, 𝑉tgt⟩ ∈ 𝑀tgt.

(∃𝑉src. ⟨𝑋@(𝑓 , 𝑡], 𝑣, 𝑉src⟩ ∈ 𝑀src) ∨ (𝑋 ∈ 𝐿 ∧ 𝑣 = 1 ∧ ⟨𝑋@(𝑓 , 𝑡]⟩ ∈ 𝑀src)

𝑇src ∼t 𝑇tgt ≜

𝑇src.st ∼st 𝑇tgt.st ∧

𝑇src.view.cur ⊑ 𝑇tgt.view.cur ∧

𝑇src.view.acq ⊑ 𝑇tgt.view.acq ∧

(∀𝑋 ∉ . 𝑇src.view.rel(𝑋 ) ⊑ 𝑇tgt.view.rel(𝑋 )) ∧

𝑇src.𝑃 ∼m 𝑇tgt.𝑃 ∧

∀⟨𝑋@(𝑓 , 𝑡], _, 𝑉src⟩ ∈ 𝑇src.𝑃 , ⟨𝑋@(𝑓 , 𝑡], _, 𝑉tgt⟩ ∈ 𝑇tgt.𝑃 .
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(𝑇tgt.view.rel(𝑋 ) ⊑ 𝑉tgt ⇒ 𝑇src.view.rel(𝑋 ) ⊑ 𝑉src) ∧

(∀⟨𝑋@(_, 𝑓 ], _, 𝑉 ′
src⟩ ∈ 𝑇src.𝑃 , ⟨𝑋@(_, 𝑓 ], _, 𝑉 ′

tgt⟩ ∈ 𝑇tgt.𝑃 .

𝑉 ′
tgt ⊑ 𝑉tgt ⇒ 𝑉 ′

src ⊑ 𝑉src)

⟨𝑇src,src, 𝑀src⟩ ∼s ⟨𝑇tgt,tgt, 𝑀tgt⟩ ≜

𝑇src ∼t 𝑇tgt ∧ src ⊑ tgt ∧ 𝑀src ∼t 𝑀tgt ∧ 𝑤𝑓 _𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑𝑡ℎ(⟨𝑇src,src, 𝑀src⟩)

⟨src,src, 𝑀src⟩ ∼c ⟨tgt,tgt, 𝑀tgt⟩ ≜

(∀𝑖. src(𝑖) ∼t tgt(𝑖) ∧ src ⊑ tgt ∧ 𝑀src ∼t 𝑀tgt) ∧

𝑤𝑓 _𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑(⟨src,src, 𝑀src⟩)

With the definition of the simulation relations, we begin by simulating thread

steps: for any thread configurations 𝑇𝐶1
src(= ⟨𝑇src,src, 𝑀src⟩), 𝑇𝐶1

tgt(= ⟨𝑇tgt,tgt, 𝑀tgt⟩),
and 𝑇𝐶2

tgt such that 𝑇𝐶1
src ∼s 𝑇𝐶1

tgt and 𝑇𝐶1
tgt −→ 𝑇𝐶2

tgt, there exists a thread configuration
𝑇𝐶2

src such that 𝑇𝐶1
src −→ 𝑇𝐶2

src and 𝑇𝐶2
src ∼s 𝑇𝐶2

tgt. Consider the following cases of the
thread step taken by the target thread configuration, 𝑇𝐶1

tgt −→ 𝑇𝐶2
tgt:

1. tryLock(𝐿) succeeds.
𝑇src takes the same step as 𝑇tgt and both ∼t and ∼m still hold. We suppose
that 𝑇src writes ⟨𝐿@(_, 𝑡], 1, 𝑉 ⟩ and the thread view is updated to view′. Then,
view′.cur.rlx(𝐿) = view′.cur.acq(𝐿) = 𝑡 holds.
Since 𝑉 is a join of the source thread’s relaxed view and the view of the read mes-
sage, 𝑣𝑖𝑒𝑤_𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑(𝐿, 𝑡, 𝑉 , view′.cur) and 𝑣𝑖𝑒𝑤_𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑(𝐿, 𝑡, 𝑉 , view′.acq) are
satisfied. Therefore, 𝑤𝑓 _𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑𝑡ℎ still holds.

2. tryLock(𝐿) fails.
There exists a message ⟨𝐿@(_, 𝑇src.view.cur.rlx(𝐿)], 𝑣, 𝑉 ⟩ ∈ 𝑀src. 𝑇src reads this
message and fails to acquire the lock regardless of the value 𝑣.
Since 𝑣𝑖𝑒𝑤_𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑(𝐿, 𝑇src.view.cur.rlx(𝐿), 𝑉 , 𝑇src.view.cur.rlx), we can get
𝑉 1
src ⊑ 𝑇src.view.cur.rlx. Therefore, after 𝑇src reads the message, the thread

view of 𝑇src does not increase. As the thread view of 𝑇src remains the same and
the thread view of 𝑇tgt may increase, ∼t and 𝑤𝑓 _𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑𝑡ℎ still hold.

3. Unlock(𝐿).
𝑇src takes the same step as 𝑇tgt took and both ∼t and ∼m still hold. We suppose
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that 𝑇src writes ⟨𝐿@(_, 𝑡], 0, 𝑉 ⟩ and the thread view becomes view′.
Since 𝑉 equals 𝑇src.view.cur and 𝑇src.view.cur ⊑ view′.cur ⊑ view′.acq,
𝑣𝑖𝑒𝑤_𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑(𝐿, 𝑡, 𝑉 , view′.cur) and 𝑣𝑖𝑒𝑤_𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑(𝐿, 𝑡, 𝑉 , view′.acq) are sat-
isfied. Therefore, 𝑤𝑓 _𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑𝑡ℎ still holds.

4. promise step.
Suppose that ⟨𝑋@(𝑓 , 𝑡], 𝑣, 𝑉tgt⟩ is the message that 𝑇tgt newly promised. If 𝑋 ∈ ,
𝑣 should be 1. Then 𝑇src reserves ⟨𝑋@(𝑓 , 𝑡]⟩ with the same interval. In other
cases, 𝑇src promises ⟨𝑋@(𝑓 , 𝑡], 𝑣, 𝑉src⟩, where 𝑉src is determined as follows:

∀𝐿 ∉ . 𝑉src.pln(𝐿) = 𝑉tgt.pln(𝐿) ∧ 𝑉src.rlx(𝐿) = 𝑉tgt.rlx(𝐿)

∀𝐿 ∈ . 𝑉src.pln(𝐿) = 𝑉src.pln(𝐿) = 𝑡𝐿

where 𝑡𝐿 is a maximum timestamp such that

∃⟨𝐿@(_, 𝑡𝐿], _, 𝑉 ⟩ ∈ 𝑀src.

(∀𝐿′ ∉ . 𝑉 .pln(𝐿′) ⊑ 𝑉tgt.pln(𝐿′) ∧ 𝑉 .rlx(𝐿′) ⊑ 𝑉tgt.rlx(𝐿′))

By construction, 𝑣𝑖𝑒𝑤_𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑(𝐿, 𝑡𝐿, 𝑉𝐿, 𝑉src) for every ⟨𝐿@(𝑡𝐿, _], _, 𝑉 ⟩ ∈ 𝑀src.
Therefore, 𝑤𝑓 _𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑𝑡ℎ still holds.

5. Other steps.
𝑇src takes the same step as 𝑇tgt took. Since 𝑇src.view except the release view on
𝐿 ∈  and a view of every related message in the 𝑀src are lower than those of
the target thread configuration, ∼m and ∼t still hold. The source thread’s new
thread view 𝑉 ′, the new SC timemap  , and any added messages’ views are
obtained by joining existing views or a singleton view that does not contain 𝐿.
By Remark 5, the new source thread configuration satisfies 𝑤𝑓 _𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑.

In the same way, we can prove that the source thread can simulate the target
thread’s certification steps. The only difference is the cap messages on 𝑋 ∈ . Since
there is no relaxed RMW on 𝑋 ∈ , capped messages does not make any changes on
the above simulation arguments for thread steps. Therefore, if 𝑇src ∼t 𝑇tgt and 𝑇tgt is
consistent, then 𝑇src is consistent as well.

Now, given a machine step of the target program, we construct a machine step of
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the source:

∀ 1
src, 1

tgt, 2
tgt.

1
src ∼

c 1
tgt ∧ (1

tgt =⇒ 2
tgt) ⇒

∃ 2
src. (1

src
𝑙=⇒ 2

src) ∧ 2
src ∼

c 2
tgt.

Let’s say1
src = ⟨ 1

src,1
src, 𝑀1

src⟩,1
tgt = ⟨ 1

tgt,1
tgt, 𝑀1

tgt⟩, and the 𝑖-th thread of2
tgt,

 1
tgt(𝑖) took the step, resulting in 2

tgt = ⟨ 1
tgt[𝑖 ↦ 𝑇 2tgt],2

tgt, 𝑀2
tgt⟩ for some 𝑇 2tgt. From

that1
src ∼c 1

tgt, we have  1
src(𝑖) ∼t  1

tgt(𝑖). Since the source thread configuration can
simulate the target steps and indeed becomes consistent, we have the following:

∃ 𝑇 2src, 2
src, 𝑀

2
src. (⟨ 1

src(𝑖),1
src, 𝑀

1
src⟩ −→

+ ⟨𝑇 2src,2
src, 𝑀

2
src⟩) ∧

⟨𝑇 2tgt,2
tgt, 𝑀

2
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⟨𝑇 2src,2
src, 𝑀

2
src⟩ ∼

s ⟨𝑇 2tgt,2
tgt, 𝑀

2
tgt⟩.

while leaving the same trace as the target thread steps. Therefore, we achieve the
machine step of the source machine configuration, 1

src
𝑙=⇒ ⟨ 1

src[𝑖 ↦ 𝑇 2src],2
src, 𝑀2

src⟩,
where ⟨ 1

src[𝑖 ↦ 𝑇 2src],2
src, 𝑀2

src⟩ ∼c 2
tgt.

Since the initial machine of 𝑝𝑟𝑜𝑔[ra, ra] and 𝑝𝑟𝑜𝑔 are related by ∼c ,

J𝑝𝑟𝑜𝑔KPS2 ⊆ J𝑝𝑟𝑜𝑔[ra, ra]KPS2.

Lemma 2. For a well-locked program 𝑝𝑟𝑜𝑔 , J𝑝𝑟𝑜𝑔?KSC ⊆ J𝑝𝑟𝑜𝑔KSC.Moreover, every
machine state reachable by any SC execution of 𝑝𝑟𝑜𝑔? is reachable by an SC execution
of 𝑝𝑟𝑜𝑔 .

Proof. It is easy to show that every execution of 𝑝𝑟𝑜𝑔? in SC can be simulated by
an execution of 𝑝𝑟𝑜𝑔 in SC. Whenever nondetLock in 𝑝𝑟𝑜𝑔? fails (i.e., returns 0),
tryLock in 𝑝𝑟𝑜𝑔 also fails. Whenever nondetLock in 𝑝𝑟𝑜𝑔? is trying to get the lock
in a loop, 𝑝𝑟𝑜𝑔 takes no step. Finally, whenever nondetLock in 𝑝𝑟𝑜𝑔? succeeds to get
a lock, tryLock in 𝑝𝑟𝑜𝑔 can also get the lock since the lock is not acquired by any
other thread.
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Lemma 3. For a well-locked program 𝑝𝑟𝑜𝑔 , we have:

J𝑝𝑟𝑜𝑔KRA ⊆ J𝑝𝑟𝑜𝑔?KRA.

Proof. For each step 𝑝𝑟𝑜𝑔 takes, 𝑝𝑟𝑜𝑔? can simulate the exact step with the following
simulation relation. First, the machine state of 𝑝𝑟𝑜𝑔? and the machine state of 𝑝𝑟𝑜𝑔
are identical except for the thread views and messages in their memory. Second, the
thread views and messages in the memory of 𝑝𝑟𝑜𝑔? are lower than those of 𝑝𝑟𝑜𝑔 .

Suppose that the source and the target are related by the above simulation rela-
tion. Whenever tryLock in 𝑝𝑟𝑜𝑔 succeeds to acquire a lock, nondetLock in 𝑝𝑟𝑜𝑔?

also succeeds. Whenever tryLock in 𝑝𝑟𝑜𝑔 fails, nondetLock in 𝑝𝑟𝑜𝑔? fails. Since
tryLock in 𝑝𝑟𝑜𝑔 reads a message and nondetLock in 𝑝𝑟𝑜𝑔? does not, views in the
machine state of 𝑝𝑟𝑜𝑔? remains lower.

The proof of DRF-Lock-RA (Thm. 7).

Proof. By the definition of RA semantics, the RA-execution of 𝑝𝑟𝑜𝑔 is equal to the
RA-execution of 𝑝𝑟𝑜𝑔[ra, ra]. Thus, if every machine state reachable from a RA-
execution of a program 𝑝𝑟𝑜𝑔 is rlx-race-free, then every machine state reachable
from a RA-execution of the program 𝑝𝑟𝑜𝑔[ra, ra] is rlx-race-free as well. Then, we
have the following:

J𝑝𝑟𝑜𝑔KRA = J𝑝𝑟𝑜𝑔[ra, ra]KRA (by the definition of RA semantics)

= J𝑝𝑟𝑜𝑔[ra, ra]KPS2 (by Thm. 6)

= J𝑝𝑟𝑜𝑔KPS2 (by Lemma 1)

The proof of DRF-Lock-SC (Thm. 8).

Proof. By Lemma 2, we know that every machine state reachable from 𝑝𝑟𝑜𝑔? has no
race on any non-lock locations. Since 𝑝𝑟𝑜𝑔? accesses lock locations only using Lock
and Unlock, we can apply DRF-LOCK Theorem in [33].

J𝑝𝑟𝑜𝑔KSC ⊆ J𝑝𝑟𝑜𝑔KRA (trivial)

49



⊆ J𝑝𝑟𝑜𝑔?KRA (by Lemma 3)

= J𝑝𝑟𝑜𝑔?KSC (by the DRF-Lock theorem in [33])

⊆ J𝑝𝑟𝑜𝑔KSC (by Lemma 2)

Therefore, we have J𝑝𝑟𝑜𝑔KSC = J𝑝𝑟𝑜𝑔KRA = J𝑝𝑟𝑜𝑔?KRA = J𝑝𝑟𝑜𝑔?KSC. From Thm. 7
stating J𝑝𝑟𝑜𝑔KRA = J𝑝𝑟𝑜𝑔KPS2, J𝑝𝑟𝑜𝑔KSC = J𝑝𝑟𝑜𝑔KRA = J𝑝𝑟𝑜𝑔KPS2 follows.

9 Related Work

We have already discussed the challenges in defining a ‘sweet-spot’ for a programming
language concurrency model, which is neither too weak (i.e., it provides programma-
bility guarantees) nor too strong (i.e., it allows efficient compilation). Java was the first
language, where considerable effort was put into defining such a formal model [48],
but the model was found to be flawed in that it did not permit a number of desired
transformations [67]. To remedy this, C/C++ introduced a very different model based
on ‘per-execution’ axioms [8], which was also shown to be inadequate [66, 6, 65, 37].
More recently, PS [33], which has already been discussed at length, addressed this
challenge using the idea of locally certifiable promises. PS2 improves PS by supporting
inter-thread optimizations and better compilation of RMWs to Armv8. We note that
the promise-free fragment of PS2 is identical to the promise-free fragment of PS.

Besides PS, there are three other approaches based on event structures [15, 56, 27].
Pichon-Pharabod and Sewell [56] defined an operational model based on plain event
structures. Execution starts with a structure representing all possible program ex-
ecution paths, and proceeds either by committing a prefix of the structure or by
transforming it in a way that imitates a compiler optimization (e.g., by reordering
accesses). The model also has a speculation step, whose aim is to capture transfor-
mations based on global value range analysis, but has side-condition that is rather
difficult to check. The main downside of this model is its complexity, which hinders
the formal development of results about it.

Jeffrey and Riely [27] defined a rather different model based on event structures,
which constructs an execution via a two player game. The player tries to justify all
the read events of an execution, while the opponent tries to prevent him. At each step,
the player can extend the justified execution by one read event, provided that for any
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continuing execution chosen by the opponent, there is a corresponding write that
produced the appropriate value. The basic model does not allow the reordering of
independent reads, which means that compilation to Arm and Power are suboptimal.
Although the model was later revised to fix the reordering problem [28], optimal
compilation to hardware remains unresolved. Moreover, it does not support inter-
thread optimizations and/or elimination of overwritten stores, since it forbids the
annotated outcome of LB-G (in §11).

Chakraborty and Vafeiadis [15] introducedweakestmo, a model based on justified

event structures, which are constructed in an operational fashion by adding one
event at a time provided it can be justified by already existing events. Justified event
structures are then used to extract consistent executions, which in turn determine the
possible outcomes of a program. While weakestmo resolve PS’s Armv8 compilation
problem [52], it does not formally support inter-thread optimizations. Moreover,
weakestmo does not support a class of strengthening transformations such as Wrel⇝
Frel; Wrlx. Both PS and PS2 support these transformations.

More recently, Java has been extended with different access modes in JDK 9 [38, 39].
Bender and Palsberg [9] formalized this extension with a ‘per-execution’ axiomatic
model similar to RC11 [37]. The model disallows load-store reordering (LB behaviors)
for atomic accesses, while allowing out-of-thin-air values for plain accesses. Because of
the latter, global value analysis is unsound in this model. It remains unclear, however,
whether transformations based on such (unsound) analysis might be sound or not.

10 Discussion

We have presented PS2, the first model that formally enables transformations based on
global analysis while supporting programmability (via DRF guarantees and soundness
of value-range reasoning) and efficient compilation (including various compiler thread-
local optimizations). The inherent tension between these desiderata, together with our
goal to have a thread-local small-step operational semantics, naturally leads to a rather
intricatemodel, which is less abstract than alternative declarativemodels. Nevertheless,
we note that PS2, like its predecessor PS, is modeling weak behaviors with just two
principles: (𝑖) “views“ for out-of-order execution of reads; and (𝑖𝑖) “promises” for
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out-of-order execution of writes. The added complexity of PS2 is twofold: reservations
and capped memory. We view reservations as a simple and natural addition to the
promises mechanism. Capped memory is less natural and more complex. Fortunately,
it is only a part of the certification process and not of normal execution steps. In
addition, the DRF-Promise (and the other DRF theorems as well, Theorems 5 to 8)
are methods to simplify the semantics. Programmers may safely use the PF or the
RA fragment of PS2, which has only views (without any promises, certifications,
reservations, or capped memory), when their programs are avoiding data race via
release-acquire and lock synchronization.

We also note that PS2 allows some seemingly dubious behaviors, such as “read
from unexecuted branch” [10]:

𝑎 ∶= 𝑋rlx //42

𝑌 rlx ∶= 𝑎

𝑏 ∶= 𝑌 rlx //42

if 𝑏 = 42 then
𝑋rlx ∶= 𝑏

else

𝑋rlx ∶= 42

(RFUB)

The annotated behavior is allowed in PS2 (as in PS and C/C++11). Aiming to sup-
port local compiler optimizations, this is actually unavoidable. Practical compilers
(including gcc and llvm) may observe that thread 2 writes 42 to 𝑋 regardless of which
branch is taken, and optimize the program of thread 2 to 𝑏 ∶= 𝑌 rlx;𝑋rlx ∶= 42 (such
optimization is a “trace-preserving transformation” [33]). The resulting program is
essentially the LB program (see §11), whose annotated behavior can be obtained by
mainstream architectures.

Finally, to the best of our knowledge, PS2 supports all practical compiler optimiza-
tions performed by mainstream compilers. As a future goal, we plan to extend it with
sequentially consistent accesses (backed up with DRF-SC guarantee) and C11-style
consume accesses.
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Chapter IV

An In-order Semantics for Relaxed

Memory Concurrency

11 Introduction

Recent years have shown multiple proposals of shared-memory concurrency models
(see, e.g., [33, 44, 55, 15, 26, 29]). These models typically focus on performance, aiming
at a semantics that allows various compiler optimizations and efficient mapping
to hardware. In particular, to support load-store reordering (of accesses to different
addresses), either as a part of a compiler optimization or as a possible result of the
hardware’s pipeline, all these models employ some sort of out-of-order execution that
allows reads to read from future writes. For not sacrificing usability, which typically
means that “out-of-thin-air” values should be forbidden and the model should admit
well-accepted data-race-freedom (DRF) guarantees [3, 7, 17], such models have to
restrict their speculation mechanisms in a way in which certain program behaviors
have to be justified by the existence of other program behaviors. For instance, the
promising semantics by Kang et al. [33] requires promises of future writes to be
justified by another thread-local run of the program, and event-structure models,
as the one by Chakraborty and Vafeiadis [15], enforce consistency constraints on a
structure that captures several runs of the program. This makes these models rather
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complex to reason about, and, indeed, besides several notable exceptions for particular
models (see, e.g., [64, 2]), existing verification research cannot handle such models.

This chapter is devoted to investigating an alternative approach that puts amenabil-

ity to reasoning and verification in the center. For that, we are after an in-order semantics,
where each allowed behavior is accounted for by one execution of the program in
which the actions of the different threads follow the order dictated in their code, and
every read reads from a previously executed write. An in-order semantics allows one
to incrementally reason about the code line-by-line, considering at each step only the
effect of the execution so far and the current instruction. In contrast, reasoning about
out-of-order semantics is much harder as it requires considering future instructions
(or revisiting previous decisions) based on other possible program executions.

The most intuitive example for an in-order semantics is the well-known model of
sequential consistency (SC), where different threads take turns communicating with a
single global memory in the form of address-to-value mapping, and every read obtains
its value from the last previously executed write to the same address. Nevertheless,
various other models, weaker than SC, are still in-order. In particular, RC11 [37], a
well-studied declarative model for C/C++ that follows the proposal in [12] to forbid
cycles in the union of the program order and the reads-from relation, is an in-order
model. Verification for RC11-style models has been extensively studied, and multiple
techniques have been developed, including program logics [20, 19, 22], model checkers
and fuzzers [34, 35, 47], automatic robustness analyses [49], and library abstraction
theorems [60, 63].

Accordingly, our goal is to study: How far can one go in an in-order semantics?

More concretely, we aim to understand how in-order models can be designed in a way
that minimizes the overhead they cause for compiler optimizations and mapping to
modern hardware.

We target C/C++ as a source language [11, 8]. Most importantly, this means that
programmers distinguish between synchronization accesses (“atomics”) and weak
accesses that should not be used for inter-thread synchronization (“non-atomics”),
and can cause any behavior when they are misused for this purpose nonetheless.
The latter allows us to rely on “undefined behavior” for racy non-atomics, which is a
crucial ingredient of our proposed approach. (Thus, we do not provide a solution for
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“safe” languages that cannot tolerate undefined behavior.) For atomics, we support the
main shared memory constructs of C/C++11, including relaxed and release/acquire
accesses, read-modify-writes, and release/acquire and sequentially consistent fences.

Non-atomic accesses account for the vast majority of memory accesses in con-
current programs, while atomics, which are used for inter-thread communication
and synchronization, are relatively rare. In particular, among atomics, the only ones
that are intended to allow the problematic load-store reordering are relaxed accesses,
which are meant to be used by “very careful” programmers [11] and are often confined
to libraries that are manually optimized by experts. Thus, we believe that the trade-off
between performance and amenability to reasoning should be investigated differently
for atomics and non-atomics. Next, we separately discuss the performance overhead
that is imposed by an in-order semantics for supporting non-atomic accesses and
atomic accesses.

Overhead in Non-atomic Accesses Our first question is whether it is possible
to have an in-order semantics without imposing any performance overhead for non-
atomic accesses. This stems from a principled approach: being non-racy, non-atomics
should allow all compiler optimizations that are performed in single-threaded code.1

We observe that a significant challenge exists for validating this guiding principle in an
in-order model, and we are not aware of any existing model that solves this challenge
(even for a simple fragment with only non-atomics and strong synchronization ac-
cesses with, say, release/acquire semantics). In particular, RC11 invalidates (irrelevant)
load introduction, a transformation widely used in sequential code with significant
possible performance gains. In fact, the LLVM manual requires that non-atomics
should validate all optimizations allowed on sequential accesses (the only exception
is store introduction, which compilers avoid also in sequential code), and explicitly
mentions that load introduction may be performed by the compiler, and the LLVM
compiler indeed introduces non-atomic loads as a part in several of its optimization

1Compiler optimizations on single-threaded code effectively cover modern hardware’s behaviors of
plain loads and stores, so it is sufficient to focus this discussion on validating compiler optimizations.
Still, in our results, we prove the correctness of mapping non-atomics to plain machine loads and stores.
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1 extern void foo(unsigned int* x);
2

3 unsigned int test(unsigned int n) {
4 unsigned int x[1], sum = 0;
5 foo(x);
6 for (unsigned int i = 0; i < n; i++)
7 sum += x[0];
8 return sum;
9 }

(a) Before optimization

1 extern void foo(unsigned int* x);
2

3 unsigned int test(unsigned int n) {
4 unsigned int x[1], sum = 0;
5 foo(x);
6 sum = x[0] * n;
7

8 return sum;
9 }

(b) After optimization

Figure IV.1: An example of load introduction. The program on the left adds the value
in x[0] n times. GCC 12.2.0 with -Os flag and Clang 15.0.0 with -O2 flag compile this
program into the one on the right (written in C instead of assembly for readability) by
turning the loop into a multiplication. This optimization effectively introduces a load
from x[0] when n = 0.

passes.2 The assumptions of the GCC compiler are less clear, but some examples show
that it introduces loads as well. A concrete example is given in Fig. IV.1.

We provide a full solution to this challenge, and design an in-order semantics that
does not sacrifice any optimization on non-atomics. Inspired by LLVM, the key to
doing so is to utilize the distinction between a source semantics and an intermediate

representation (IR) semantics. This allows the separation of concerns: compiler opti-
mizations may be unsound in the source semantics, whereas the IR semantics does

2See https://llvm.org/docs/Atomics.html#optimization-outside-atomic [Accessed
November 2022].
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not have to be in-order. Indeed, the IR is not meant to be amenable to conventional
verification and reasoning, and programmers in the source language only need to
know the source semantics. This strategy, however, is not a magic potion: to have a
sound compilation, these models have to be designed in a way that the IR semantics
is stronger than the source semantics (i.e., all behaviors allowed by the IR should be
allowed by the source).3

Our main contribution is to show that this approach works with the right choice
of source and IR. Concretely, we develop an in-order source model, based on the
promise-free fragment of the promising semantics, and an IR model based on a recent
version of the promising semantics in [18], and prove the required relation between
them. Our proposed source model is (slightly) stronger than RC11, which allows the
application of previous work on verification under RC11. (In particular, we observe that
certain races on non-atomics can be safely ignored in RC11’s catch-fire mechanism.)
For the IR, we have ported the result of [18], which establishes the correctness of all
optimizations on non-atomics that are allowed in sequential code. This means that
most compiler optimizations can be formally validated based on sequential reasoning,
so even most compiler developers need not understand the out-of-order IR model.

We note that while we mostly employ existing models (with some modifications
and simplifications), to the best of our knowledge, this work is the first to formally
relate an in-order source model and an out-of-order IR model with the goal of having
an in-order source semantics without any performance overhead for non-atomics.

Overhead in Atomic Accesses Naturally, the next question is about the perfor-
mance overhead for atomic accesses. Here, the challenge concerns relaxed accesses,
which are meant to allow load-store reordering that is in sharp contrast with in-order
semantics. Unfortunately, we show that any in-order model that supports all opti-
mizations on non-atomics has to forbid the reordering of a non-atomic/relaxed read
followed by a relaxed write. (In particular, this reordering is forbidden in both the

3It is sufficient to have a correct efficient mapping from the source to the IR, where correctness is
in the standard sense: every behavior that is allowed by the IR semantics (of the mapped program) is
also allowed by the source semantics (of the source program). Since we do not want to sacrifice any
performance in this mapping, we actually consider this mapping being the identity mapping, and, thus,
we simply require that the IR semantics is stronger than the source.
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source and the IR models we propose.)
What is the practical impact of forbidding this reordering? First, we note that

although compiler optimizations that reorder and eliminate atomics were extensively
studied before (see, e.g., [65, 21]), to the best of our knowledge, existing compilers do
not perform any of these optimizations. Then, it remains to understand the implications
on the mapping to hardware. Indeed, load-to-store ordering between plain accesses is
not guaranteed to be preserved by existing models of modern architectures, like those
of Arm [58, 4] and Power [61, 5],4 and so, forbidding this reordering seems to require
a stronger mapping of relaxed accesses for these architectures.

Interestingly, we observe a significant gap between CPU models and observable
behaviors in practice regarding the preservation of load-store ordering. While the
abstract models of Arm and Power allow the reorder of loads followed by stores, such
behaviors were observed only in very few CPU implementations.5 In our discussion
with CPU architects fromArm, we confirmed that the load-store reordering is explicitly
prohibited in Cortex processors, starting from Cortex-A76. From this discussion, we
further understood the technical trade-offs involved in their design, and learned
that, compared to other possible reorderings that the hardware performs, load-store
reordering is hard to apply and has rather limited performance benefits.

Accordingly, we propose a practical approach to this challenge. In the long term, we
believe the right way to go is for vendors to introduce new kinds of store instructions,
which we call “strong stores”, and officially preserve the order from loads to strong
stores.6 We expect a minimal (to no) overhead for these instructions compared to
plain stores. In particular, strong stores still admit store-store reorderings, which are
commonly observed in practice, and are thus weaker than release stores that are
more expensive to implement. Meanwhile, in the absence of such instructions, we

4Intel’s architecture (assuming x86-TSO by Owens et al. [54]), has rather strong semantics for plain
loads and stores, which never reorders loads with later stores.

5Load-store reordering (concretely, the weak behavior of the LB litmus test) was never observed
on Power as well as on various implementations of Armv8 that were tested in [5, 4]. An anonymous
review of this paper provided information showing that this reordering is observed on Cortex A73, and
mentioned that even on Cortex post A76 load-store reordering can be observed when memory locations
are mapped to device, or when vector instructions are used.

6Alternatively, we may introduce a load-store fence that orders all preceding loads with succeeding
stores. We discuss the benefits of using load-store fences instead of strong store instructions in §16.4.
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propose to compile relaxed writes differently depending on the target hardware: (𝑖) for
a target that preserves load-store order, the compilation can use plain accesses; and
(𝑖𝑖) otherwise, relaxed writes have to be compiled as release writes.

Outline The rest of this chapter is structured as follows. In §12, we present the
challenges, key ideas, and observations of this chapter in more detail. In §13, we
present (a simplified fragment of) the proposed source model and discuss its relation
to RC11. In §14, we present (a simplified fragment of) the IR model and establish
the soundness of mapping the source model to the IR model. In §15, we present the
full source and IR models. In §16, we discuss the mapping to modern hardware, its
soundness, and the proposed additions to hardware models. In §17, we provide the
pen-and-paper proofs of our results on relating the source model to declarative models.
Finally, in §18, we discuss related work.

Supplementary Material Our main results (1. soundness of mapping from source
to IR, 2. soundness of mapping from IR to Armv8, 3. DRF guarantees for the source,
and 4. adequacy of sequential reasoning for validating optimizations in the IR) are
mechanized in Coq. The supplementary material available online [41] includes the
Coq development and the results of our experiments.

12 Challenges and Key Ideas

In this section, we present more details on the main observations and contributions of
this chapter. To a significant extent, our central contributions are not in developing
new concurrency models and proving their meta-theoretic properties but rather
in providing a holistic analysis and approach to the problem of a shared-memory
concurrency semantics in a high-level language like C, C++, or Rust. Like in §11, we
separately discuss non-atomics (§12.1) and atomics (§12.2) while focusing on compiler
optimizations for non-atomics and mapping to hardware for atomics. (Our results
include the mapping of non-atomics to plain accesses on hardware, as well as compiler
optimizations involving atomics, but these are not discussed in this section.)
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12.1 Optimizing Non-Atomics in an In-Order Semantics

Supporting sequential optimizations for non-atomics in an in-order semantics is highly
challenging, and, to the best of our knowledge, it was not addressed by previous work.
Next, we demonstrate the challenge using the well-known load buffering example
and how we address this challenge.

Read-Write Reordering vs. In-Order Semantics

To understand the crux of the challenge, consider the classical example below, known
as the load buffering litmus test with non-atomic accesses (LB-NA, for short), where
all accesses are marked as non-atomics (na).

𝑎 ∶= 𝑋na

𝑌 na ∶= 1
print 𝑎

𝑏 ∶= 𝑌 na

𝑋na ∶= 1
print 𝑏

(LB-NA)

Here and henceforth, we assume that all variables are implicitly initialized to 0. Our
requirement on compiler optimizations implies that the behavior in which both threads
printing 1 must be allowed. Indeed, the compiler may reorder the read from 𝑋 and
the write to 𝑌 in the first thread (this is certainly possible in sequential code, thus
non-atomics should allow the reordering as well), and then 𝑎 = 𝑏 = 1 is possible
even under SC. This behavior is in tension with the requirement to have an in-order
semantics for the source language, which will have to execute one of the reads first,
and at that point the only available write to read from is the implicit initialization
write of the value 0.

Catch-Fire as a Solution?

A well-known approach to address the above example is to exploit the fact that
non-atomics are not supposed to be used for inter-thread synchronization and avoid
providing any guarantees on the program behaviors when non-atomics participate in
data races. This idea, which we refer to as “catch-fire” semantics, is the cornerstone
of the C/C++11 [8], and its repaired version RC11 [37], which explicitly states that a
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data race on non-atomic accesses implies undefined behavior (UB, for short) for the
given program.

Accordingly, RC11 allows the annotated behavior of the LB example above, while
still being an in-order semantics. A particular run, for instance, could perform both
memory accesses of the first thread (read 0 and write 1), observe a forbidden data-race
when executing the first (or second) access of the second thread, and then invoke UB.
In turn, UB allows any possible continuation of the execution, which in particular
includes the ability to print 1 by both threads. This is still an in-order semantics: threads
execute their actions in the order specified by the program, a data-race is detected
according to previously executed accesses, and UB only affects future decisions.

Remark 6. The original presentation of RC11 in [37] identifies program behaviors
with “final outcomes” (mapping each variable to the modification-order-maximal value
written to it). The current discussion assumes that behaviors are captured by sequences
of system calls (e.g., results of print statements) generated by a given program. RC11
can be easily adapted to this notion by assuming that consistent execution graphs are
incrementally constructed during the program run, system calls are observed in the
order they were executed along the run, and any suffix of system calls is allowed once
a racy execution graph is reached.

Load Introduction

A catch-fire semantics validates various compiler optimizations on non-atomics, in-
cluding access reordering and redundant access elimination. Indeed, whenever such
transformations enable additional behaviors, it can be shown that the source program
was already racy, and justify the target behaviors by UB invoked by the source. Catch-
fire, however, falls short to fully admit our guiding principle: some transformations
allowed on sequential code are still disallowed on non-atomics.

Concretely, the problem is with (irrelevant) load introduction. If the effect of the
compiler’s optimization introduces a non-atomic load (which may happen, e.g., when
transforming

while 𝐵 do {𝑎 ∶= 𝑋na; ...} to 𝑎 ∶= 𝑋na; while 𝐵 do {...}
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in traces where 𝐵 evaluates to 𝑓 𝑎𝑙𝑠𝑒), then the target program may be racy (and
invokes UB), while the source is not. Thus, any model based on catch-fire mechanism
cannot validate load introduction.

Load introduction is necessary for multiple optimizations based on speculation,
which are commonly performed by compilers (Clang, in particular) when hoisting
loads, e.g., as a part of loop invariant code motion, loop unswitching, load-widening
or when loading a vector while only a subset of elements is needed.7

In addition to Fig. IV.1 from §11, Fig. IV.2 demonstrates another case where load
introduction has the potential to significantly improve performance. In Fig. IV.2, the
program on the left stores x[j] into y[j] for each odd j (and 0 otherwise). The
program on the right is a hand-optimized version: it introduces loads from x[0], x[2],
x[4], and x[6]; merges all loads into a single 8 bytes load; and stores the result with
an appropriate mask into y by a single 8 bytes store. Here, external functions (foo and
bar) are used only to prevent the compiler from eliminating the loads and stores. By
compiling both programs with Clang 15.0.1 and running them on ThunderX2 Armv8
server, we observed more than x2 performance gain (average execution time of 0.069s
vs. 0.033s).

Undefined Value as a Solution?

A natural idea for supporting load introduction is to limit the “undefinedness” to the
value being read in racy reads: instead of invoking UB, just leave unspecified the
value loaded by a non-atomic racy read, so if this value is never used (and the load is
indeed irrelevant), we will not introduce additional behaviors. The LLVM semantics
follows this idea: it keeps read-write races to be always well-defined and declares that
non-atomic racy reads may return “undef” value. In turn, “undef” can be refined to
any value.8

While being tempting at first sight, undefined value for racy reads will not solve our
problem. Referring back to the LB example above, it is easy to see that any execution
of an in-order semantics can observe a race only in one of the reads, so only one of

7See https://llvm.org/docs/Passes.html [Accessed November 2022].
8Branching on “undef” is still considered UB. The “freeze” instruction recently introduced in LLVM is

a tool to support branching on a possibly undefined value, which is often a result of load introduction [40].
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1 extern void foo(char* x), bar(char* x);
2

3 int main() {
4 char x[8], y[8];
5

6 for (int i = 0; i < 10000000; i++) {
7 foo(x);
8 for (int j = 0; j < 8; j++)
9 y[j] = j%2 ? x[j] : 0;
10 bar(y);
11 }
12

13 return 0;
14 }

(a) Before optimization

1 extern void foo(char* x), bar(char* x);
2

3 int main() {
4 char x[8], y[8];
5

6 for (int i = 0; i < 10000000; i++) {
7 foo(x);
8 uint64_t r = *(uint64_t*)x;
9 *(uint64_t*)y = r & 0xFF00FF00FF00FF00ul;
10 bar(y);
11 }
12

13 return 0;
14 }

(b) After optimization

Figure IV.2: A hand-optimized example of load introduction.

them can return “undef”, which will not allow both threads to print 1. To fix this,
one has to either speculate a data race when performing the first read, or revisit its
previous decisions on the read value when performing the second write. Both options
lead us to models that are much more complicated than in-order models.
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Our Proposal: An Intermediate Representation

The key idea in our approach is to split the semantics into two models: a source model
that accounts for the programmers’ needs, and an intermediate representation (IR)
model that accounts for the compilers’ (and hardware’s) needs. Then, the compiler
first maps the source program to the IR, and only then applies its optimizations.
Programmers should be only aware of the source model, which can be in-order (e.g.,
with catch-fire) since it does not have to support compiler optimizations; and the IR
semantics can support compiler optimizations (e.g., with undefined value for racy
reads and out-of-order race detection) since it does not have to be in-order. Our
manifestation of this approach consists of the following contributions:

1. We propose a source model, which we denote by vRC11, obtained by adding
non-atomic accesses to the promise-free fragment of the promising semantics [33, 44].
This model, which is stronger than RC11, is formulated as an operational model using
timestamps and thread-views to justify weak behaviors, and a simple race-detection
mechanism that invokes UB for races on non-atomics. Interestingly, we observe that
not all such races should invoke UB, and it is sufficient to consider races with previously
executed writes (and ignore races with previously executed reads). Thus, we are able
to restrict the catch-fire mechanism in a way that deems fewer programs racy but still
achieves what catch-fire is needed for.

2. For the IR model, we develop a simplification of the promising model by Cho
et al. [18], which we denote by PSIR, where (simplified) promises are only needed
for race detection. Thus, PSIR justifies an out-of-order behavior by detecting a race
with “promises” made by other threads. More concretely, a thread in PSIR can promise

to execute a non-atomic write to a location 𝑋 in the future, whenever the thread
can certify the promise by checking that it can perform a non-atomic write to 𝑋 by
executing alone. Once a promise is made, another thread reading from 𝑋 races with
the promise and reads “undef” value. We have ported the result of [18] to PSIR, which
establishes the correctness of all optimizations on non-atomics that are allowed in
sequential code.

3. We prove that PSIR is stronger than vRC11. Roughly speaking, this is possible
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because catch-fire is sufficiently weak to account for the IR’s out-of-order behaviors.
In other words, once a program exhibits any behavior that stems from an out-of-order
execution under PSIR, the same program has a race in a (possibly different) execution
under vRC11, where a race leads to UB. To establish the proof, it is enough to show
that the source can invoke UB for such an out-of-order execution in PSIR. Here, the key
idea is that the thread of vRC11 can follow the certification run (which is required to
justify a promise under PSIR) and perform a non-atomic write to 𝑋 instead of making
a promise to 𝑋 . Then, the other thread reading from 𝑋 races with that non-atomic
write, and the program invokes UB under vRC11.

Example 1. In the LB-NA example, PSIR allows 𝑎 = 𝑏 = undef through an out-of-
order execution where the first thread promises to write to 𝑌 , and the second thread
reads “undef” from 𝑌 since the read races with the promise. The first thread could
certify its promise before making it by reading 0 from 𝑋 and executing 𝑌 na ∶= 1. In
vRC11, instead of promising the write, the first thread can execute and write to 𝑌
following the certification execution of PSIR. Then, the second thread’s read from 𝑌
becomes racy, and the program invokes UB, which accounts for all possible behaviors.

Remark 7. In fact, since UB by the source accounts for any behavior of PSIR, the
proof of mapping the source to the IR can essentially assume that there is no race
in the promise-free fragment of PSIR, which makes the mapping proof similar to the
proof of the DRF-PF theorem (a data-race-freedom guarantee w.r.t. the promise-free
semantics) in [17].

We note that the fact that PSIR is stronger than vRC11 allows one to soundly
reason about programs under PSIR semantics while assuming vRC11 (which may be
needed when the intermediate language itself acts as a source language for another
step of compilation and thus is not completely compiler-internal). Such reasoning
would be incomplete, but we expect that only a small fraction of programs will need a
precise analysis using the exact IR model.

12.2 Mapping Relaxed Accesses to Modern Hardware

In this section, we turn to the question of supporting atomic accesses focusing specifi-
cally on relaxed accesses. We first demonstrate the challenge and propose two practical
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solutions, a long-term solution that depends on hardware vendors implementing our
feature request and a short-term solution that requires strengthening the existing
compiler mapping of relaxed accesses for certain hardware implementations.

Reordering of Relaxed Accesses in an In-Order Semantics

Like non-atomic accesses, relaxed accesses in C/C++11 were intended to be mapped
to plain loads and stores in the hardware even when the hardware model allows
load-store reordering. Clearly, this is in contrast with an in-order semantics (indeed,
consider the LB example above with relaxed accesses). Moreover, since relaxed accesses
are meant to be used in races (for improving the performance of certain concurrency
idioms; see, e.g., [62]), catch-fire is not a possible solution here. In fact, as the next
example shows, even the reordering of a non-atomic load followed by a relaxed atomic
store cannot be allowed in an in-order semantics:

𝑎 ∶= 𝑌 rlx

if 𝑎 = 1 then
𝑋rlx ∶= 1

if ∗ then

𝑏 ∶= 𝑋na

if 𝑏 = 1 then 𝑌 rlx ∶= 1
print 𝑏 //prints 1

else

𝑌 rlx ∶= 1

⇝

𝑎 ∶= 𝑌 rlx

if 𝑎 = 1 then
𝑋rlx ∶= 1

𝑌 rlx ∶= 1
𝑐 ∶= 𝑋na

if 𝑐 = 1 then
print 1

(LB-CHOICE)
Here, “∗” means a non-deterministic choice that non-deterministically returns

arbitrary value.9 Assuming an in-order semantics, the source program on the left
cannot print 1 since either one of 𝑎 ∶= 𝑌 rlx or 𝑏 ∶= 𝑋na executes first and can
only read 0 (from the initial memory). However, as shown in Fig. IV.3, by applying
a sequence of compiler transformations on non-atomics in the second thread, the
program on the left can be transformed to the program on the right. Then, if the
reordering of 𝑐 ∶= 𝑋na and 𝑌 rlx ∶= 1 is allowed (by the compiler or the target
hardware), the second thread printing 1 is easily observable (even under SC). Therefore,
the reordering of a non-atomic load followed by a relaxed store must be forbidden in

9A non-deterministic choice corresponds to “freezing” an undefined value in LLVM. See https://
llvm.org/docs/LangRef.html#undefined-values and https://llvm.org/docs/LangRef.

html#freeze-instruction [Accessed November 2022].
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(1) (2) (3) (4) (5)

𝑐 ∶= 𝑋 na

if ∗ then

𝑏 ∶= 𝑋 na

if 𝑏 = 1 then
𝑌 rlx ∶= 1

print 𝑏
else

𝑌 rlx ∶= 1

𝑐 ∶= 𝑋 na

if 𝑐 = 1 then
𝑏 ∶= 𝑋 na

if 𝑏 = 1 then
𝑌 rlx ∶= 1

print 𝑏
else

𝑌 rlx ∶= 1

𝑐 ∶= 𝑋 na

if 𝑐 = 1 then
𝑏 ∶= 1
if 𝑏 = 1 then

𝑌 rlx ∶= 1
print 𝑏

else

𝑌 rlx ∶= 1

𝑐 ∶= 𝑋 na

if 𝑐 = 1 then
𝑏 ∶= 1

𝑌 rlx ∶= 1
print 1

else

𝑌 rlx ∶= 1

𝑐 ∶= 𝑋 na

𝑌 rlx ∶= 1
if 𝑐 = 1 then

print 1

(1) introduce a non-atomic read 𝑐 ∶= 𝑋na;

(2) replace the non-deterministic choice with an expression;

(3) forward the read 𝑐 ∶= 𝑋na to the read 𝑏 ∶= 𝑋na, turning it into 𝑏 ∶= 1;

(4) forward 𝑏 ∶= 1 to the expression 𝑏 = 1 and the print statement; and

(5) hoist the common write 𝑌 rlx ∶= 1 out of the branch.

Figure IV.3: A sequence of compiler transformations on non-atomics applied to the
second thread of LB-CHOICE.

any in-order source semantics that aims to allow common compiler transformations
on non-atomics.

Revisiting the Assumptions on Hardware

We observe that there is a significant gap between CPU models and observable behav-
iors in practice regarding the preservation of load-store ordering. While the abstract
models effectively allow the reordering of loads with subsequent stores, such behaviors
are rarely observed in practice. Indeed, previous experiments performed to validate
the hardware models rarely observed weak behaviors of the LB litmus test. First, such
behaviors were never observed on any Power hardware [61, 5]. Second, while they
were observed on several Armv7 implementations, to the best of our knowledge, for
Armv8, LB was only observed on Qualcomm’s Snapdragon 820 mobile processors [4]
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and on Cortex A73.10 To gain more confidence, we experimentally tested a newer
version, Qualcomm’s Snapdragon 888 processor, and the weak behaviors of LB were
not observed there.

After discussing with Arm engineers, we gained a better understanding of the
architectural reasons why the potential performance improvement by allowing load-
store reordering is relatively small. Essentially, this stems from the fact that a store can
be treated as completed in its own core when it is added to the core-local store buffer
before being made visible to other cores. Thus, no intra-core optimization is prevented
by preserving load-store ordering. The only exception is that such reordering may
reduce the pressure on the store buffer (so that fewer stores stall due to the buffer
being full), as it allows to commit a store from the store buffer to the shared storage
possibly before previous loads were completed. However, committing stores early
complicates the cache implementation regarding the ECC (error correction code) logic,
and before committing a store, the core must check that all incomplete preceding
loads will never raise exceptions and are not aliased with the store to be committed.

Remark 8. Unlike load-store ordering, preserving store-store ordering is rather
expensive. For instance, in Cortex A76 and later versions, a store from the store buffer
is committed to a merge buffer when it is the oldest store (i.e., all preceding loads are
completed, and all preceding stores are already committed to the merge buffer). Then,
stores in the merge buffer may be reordered to group together those writes that fit
in the same cache line, which are merged and committed at once. Such reordering
between stores greatly reduces cache accesses and is thus considered performance-
critical, which is why store-store reordering visible to other cores is needed.

A Long Term Practical Solution

Based on the above discussion, we raise a clear “feature request” from hardware
vendors. Concretely, we propose hardware vendors to introduce a new kind of store
instructions, which we call “strong stores”, that will preserve load-store ordering.
Then, the IR’s relaxed stores will be mapped to strong hardware stores. For most

10Snapdragon 820 exhibits various other weak behaviors that are forbidden by the official model (950
such tests reported in [4]!). The information about Cortex A73 was obtained from the anonymous PLDI
reviewer.
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hardware architectures, where architects agree that load-store ordering is preserved,
strong stores could be implemented as plain stores. Otherwise, the overhead is not
expected to be significant, and, in any case, strong stores should be cheaper than
release stores (since they do not need to preserve store-store order).

We believe that this is a case where the input from multiple years of research
in concurrent programming language semantics may guide hardware developers.
In fact, other features of Arm, such as sequentially consistent accesses and release
sequences, were developed hand in hand with C/C++11 constructs. Our proposal is
of a similar nature, identifying an opportunity for hardware vendors to significantly
assist programming language design with a rather minimal cost.

In §16, we provide the proposed formal additions to the declarative models of
Armv8 and Power for supporting strong stores. We have performed extensive valida-
tion of these revised models using the Herd model checker [4, 5], to see that, indeed,
when strengthening all stores to be strong, the behaviors that become disallowed are,
like LB, behaviors that were not observed on hardware (except for Snapdragon 820
and Cortex A73 as discussed above).

A Short Term Practical Solution

Without the availability of “strong stores” in hardware, we propose to change the
compiler mappings to take into account the target CPU. For CPUs that preserve load-
store ordering, it is still safe to map relaxed accesses to plain accesses. Otherwise,
the compiler should map relaxed store as it maps release stores (e.g., to an stlr

instruction on Armv8).
Following Ou and Demsky [53], mapping relaxed stores as release entails a perfor-

mance overhead of 3.6% on Arm (although it is rather hard to estimate performance for
real-world programs). We note that the mapping scheme that enforces the preservation
of load-store ordering by inserting a (fake) branch from every relaxed read, which is
more efficient according to Ou and Demsky [53] (with -0.3% overhead), is unsound
for our needs. Indeed, as the LB-CHOICE example shows, we also need to forbid
reordering of non-atomic reads followed by relaxed writes. This would require adding
a branch from every non-atomic read, which, given the prevalence of non-atomic
reads in concurrent programs, is expected to significantly harm performance.
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13 The Source Model

In this section, we present the in-order source semantics vRC11 (standing for “view-
based RC11”), which we obtain by adding transitions for non-atomic accesses to
the promise-free fragment of the promising semantics (PS, for short). In §13.1, we
discuss the relation between vRC11 and RC11 and show that vRC11 is stronger than
RC11. Therefore, verification theory and tools developed for RC11 (or any weaker
model), such as model checkers [35, 34, 47], program logics [19, 23], and robustness
analysis [36], all apply to vRC11. In §13.2, we provide a declarative presentation of
the model.

vRC11 is obtained from PS by (i) removing the notion of promises that models early
execution of writes and all transitions and components of states related to promises;
and (ii) adding transitions for non-atomic and racy accesses. Next, we introduce
the fragment of vRC11 consisting of non-atomic, relaxed and release/acquire writes
and reads. In turn, read-modify-writes (RMWs), fences, and release sequences are
omitted by brevity. They are included in the full model in Coq and presented in §15.1.
Figure IV.4 summarizes the domains and the transitions of vRC11, highlighting the
differences w.r.t. the promise-free fragment of the model in [33].

Program Semantics We assume that the program of each thread is represented
as a labeled transition system, whose states, denoted by 𝜎, record the local register
file and the continuation code, and transitions 𝜎 𝑙−→ 𝜎′ are labeled with the action 𝑙
that is performed. For silent transitions that do not communicate with the memory
(e.g., conditionals and local assignments), we write 𝜎 −→ 𝜎′. Read and write transitions
have labels 𝑙 = R(𝑋, 𝑜R, 𝑣) and 𝑙 = W(𝑋, 𝑜W, 𝑣), respectively. We also assume transitions
executing system calls, which are externally observable (e.g., resulting from print
statements), with a label 𝑙 = Sys(𝑒) where 𝑒 is the output of the call.

Memory A memory 𝑀 is a finite set of messages of the form 𝑚 = ⟨𝑋@𝑡, 𝑣, 𝑜W, 𝑉m⟩
representing a previously executed write of a value 𝑣 ∈ Val to a location 𝑋 ∈ Loc. Each
message has a timestamp 𝑡 ∈ Time, where Time is the set of non-negative rational num-

70



𝑣 ∈ Val value
𝑋, 𝑌 , 𝑍 ∈ Loc location
𝑜R ∈ {na, rlx, acq} read access mode
𝑜W ∈ {na, rlx, rel} write access mode
𝜏 ∈ Tid ≜ {𝜏1, 𝜏2, ...} thread identifier
𝑡 ∈ Time ≜ {0} ∪ ℚ+ timestamp
𝑉 ∈ View ≜ Loc → Time view

𝑚 = ⟨𝑋@𝑡, 𝑣, 𝑜W, 𝑉 ⟩ ∈ Msg message
𝑀 ⊆ Msg memory
𝜎 program state
𝑇 = ⟨𝜎, 𝑉 ⟩ ∈ Lts thread state
⟨𝑇 ,𝑀⟩ thread configuration
 ∈ Tid → Lts thread state mapping
 = ⟨ , 𝑀⟩ machine state

(silent)
𝜎 −→ 𝜎′

⟨⟨𝜎, 𝑉 ⟩, 𝑀⟩ −→ ⟨⟨𝜎′, 𝑉 ⟩, 𝑀⟩

(system call)

𝜎
Sys(𝑒)
−−−−−→ 𝜎′

⟨⟨𝜎, 𝑉 ⟩, 𝑀⟩
Sys(𝑒)
−−−−−→ ⟨⟨𝜎′, 𝑉 ⟩, 𝑀⟩

(race)
⟨𝑋@𝑡, _, 𝑜W, _⟩ ∈ 𝑀

𝑉 (𝑋 ) < 𝑡 𝑜W = na ∨ 𝑜 = na

race(𝑉 ,𝑀, 𝑋, 𝑜)

(read)

𝜎
R(𝑋,𝑜R,𝑣)−−−−−−−→ 𝜎′

⟨𝑋@𝑡, 𝑣, _, 𝑉m⟩ ∈ 𝑀 𝑉 (𝑋 ) ≤ 𝑡

𝑉 ′ = 𝑉 [𝑋 ↦ 𝑡] ⊔
⎧⎪⎪
⎨⎪⎪⎩

0 𝑜R ≠ acq

𝑉m 𝑜R = acq

⟨⟨𝜎, 𝑉 ⟩, 𝑀⟩ −→ ⟨⟨𝜎′, 𝑉 ′⟩, 𝑀⟩

(write)

𝜎
W(𝑋,𝑜W,𝑣)−−−−−−−→ 𝜎′

𝑚 = ⟨𝑋@𝑡, 𝑣, 𝑜W, 𝑉m⟩ 𝑉 (𝑋 ) < 𝑡 𝑀#𝑚

𝑉 ′ = 𝑉 [𝑋 ↦ 𝑡] 𝑉m =
⎧⎪⎪
⎨⎪⎪⎩

𝜆𝑋. 0 𝑜W ≠ rel

𝑉 ′ 𝑜W = rel

⟨⟨𝜎, 𝑉 ⟩, 𝑀⟩ −→ ⟨⟨𝜎′, 𝑉 ′⟩, 𝑀 ∪ {𝑚}⟩

(racy-read/write)
𝑙 ∈ { W(𝑋, 𝑜, _), R(𝑋, 𝑜, _) }
𝜎 𝑙−→ _ race(𝑉 ,𝑀, 𝑋, 𝑜)

⟨⟨𝜎, 𝑉 ⟩, 𝑀⟩ −→ ⟨⟨⊥, 𝑉 ⟩, 𝑀⟩

(machine: normal)

⟨ (𝜏), 𝑀⟩ 𝑙−→ ⟨𝑇 ′, 𝑀 ′⟩

⟨ , 𝑀⟩ 𝑙−→ ⟨ [𝜏 ↦ 𝑇 ′], 𝑀 ′⟩

(machine: ub)
⟨ (𝜏), 𝑀⟩ −→ ⟨⟨⊥, _⟩, 𝑀 ′⟩

⟨ , 𝑀⟩ −→ ⟨⊥,𝑀 ′⟩

Figure IV.4: Domains and transitions of vRC11 (RMWs, fences, and release sequences
are omitted). Differences w.r.t. the promise-free fragment of PS are highlighted.

bers,11 a write access mode 𝑜W of the operation by which the message was added, and a
view 𝑉m ∈ View ≜ Loc → Time for enabling release/acquire synchronization, which
we explain below. The initial memory consists of an initial message ⟨𝑋@0, 0, na, 𝜆𝑋. 0⟩
for every location 𝑋 .

11As in previous work [33, 44], timestamps are densely ordered, so one can always add a message
between existing messages. This property is particularly useful when proving the soundness of compiler
transformations such as “store merge” that merges two successive stores 𝑋 ∶= 1 ; 𝑋 ∶= 2 into a single
store 𝑋 ∶= 2. In the proof, the source has to mimic the target program by finding a free timestamp for
𝑋 ∶= 1 before 𝑋 ∶= 2.
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States A machine state  = ⟨ , 𝑀⟩ consists of a function  assigning a thread
state to each thread identifier, and a memory 𝑀 shared among the threads. A thread

state is a pair 𝑇 = ⟨𝜎, 𝑉 ⟩where 𝜎 is a local program state and 𝑉 ∈ View is a thread view,
recording the latest timestamp that has been observed the thread for each location.
The initial thread state consists of the initial program state and the 0-view assigning 0
to each location.

Read Step A thread can read amessage ⟨𝑋@𝑡, 𝑣, 𝑜W, 𝑉m⟩ ∈ 𝑀 with a timestamp greater
than or equal to the thread’s view of 𝑋 (i.e., 𝑉 (𝑋 ) ≤ 𝑡), updating its view of 𝑋 to
include the timestamp 𝑡 of the message. If the read is an acquire (acq) read, the thread
also acquires the message view 𝑉m and joins it to its own view by taking pointwise
maximum (denoted by ⊔).

Write Step A thread writes by adding a message 𝑚 = ⟨𝑋@𝑡, 𝑣, 𝑜W, 𝑉m⟩ to the memory
𝑀 provided that 𝑡 is greater than the thread’s view (𝑉 (𝑋 ) < 𝑡) and that there is
no existing message in 𝑀 with location 𝑋 and timestamp 𝑡 (denoted by 𝑀#𝑚). The
access mode 𝑜W of the write operation is recorded in 𝑚. The thread updates its view to
𝑉 ′ = 𝑉 [𝑋 ↦ 𝑡]. A release write records the thread’s view (𝑉m = 𝑉 ′) in the message,
while non-release writes have the 0-view in 𝑉m.

Racy Access A memory access to location 𝑋 by a thread with view 𝑉 is racy if
there is some message ⟨𝑋@𝑡, 𝑣, 𝑜W, 𝑉m⟩ ∈ 𝑀 with 𝑉 (𝑋 ) < 𝑡 and either the message is
written by a non-atomic write (𝑜W = na) or the access itself is non-atomic (as defined
in (race) in Fig. IV.4). Executing a racy read or a racy write leads the thread to the ⊥
program state.

Machine Step Machine steps are obtained as standard interleaving of thread steps
⟨ (𝜏), 𝑀⟩ −→ ⟨𝑇 ′, 𝑀 ′⟩. If the thread detects a race and steps to ⊥, the machine may
take a (pf-machine: ub) step that leads to the ⊥machine state, that is later interpreted
as UB.

Behavior An (observable) behavior is a sequence 𝑠 = ⟨𝑒1, 𝑒2, ... , 𝑒𝑛⟩ of system calls.
A machine state  generates a behavior 𝑠, denoted by  ⇓ 𝑠, if 𝑠 is obtained by
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restricting a trace of vRC11 starting from to system call labels and replacing UB
by an arbitrary suffix of system calls. With standard notations for sequences, ⇓ 𝑠 is
defined by:

terminal()

 ⇓ 𝜖

1 −→ 2 2 ⇓ 𝑠

1 ⇓ 𝑠

1
Sys(𝑒)
−−−−→ 2 2 ⇓ 𝑠

1 ⇓ 𝑒 ⋅ 𝑠

 −→ ⟨⊥, _⟩

 ⇓ 𝑠

Here, terminal() means that the machine state  is terminal (i.e., every thread
has empty continuation code). As captured by the last rule, once a UB is invoked
during the execution, the machine exhibits any behavior that is prefixed with the
sequence of system calls occurred before the invocation of the UB.We let J𝑝𝑟𝑜𝑔KvRC11 =
{ 𝑠 | init(𝑝𝑟𝑜𝑔) ⇓ 𝑠 }, which denotes the set of all behaviors that an initial machine state
init(𝑝𝑟𝑜𝑔) of a program 𝑝𝑟𝑜𝑔 exhibits.

Example 2. The “store buffering” test below demonstrates how the memory and the
thread views of vRC11 captures weak behaviors exhibited by the reordering of a store
followed by a load.

𝑋rlx ∶= 1
𝑎 ∶= 𝑌 rlx

print 𝑎

𝑌 rlx ∶= 1
𝑏 ∶= 𝑋rlx

print 𝑏
(SB)

Here, the behavior of both threads printing 0 is allowed by vRC11. Specifically, the first
thread writes 1 to 𝑋 by adding a message ⟨𝑋@𝑡, 1, rlx, 𝜆𝑋. 0⟩ with some timestamp
𝑡 > 0 and increasing its thread view of 𝑋 to 𝑡. After the write, the thread reads from
the initial message ⟨𝑌 @0, 0, na, 𝜆𝑋. 0⟩. By executing the second thread in the same way,
it can read either from the initial message ⟨𝑋@0, 0, na, 𝜆𝑋. 0⟩ (since its view of 𝑋 is
still 0) or from the message of the first thread. Therefore, both threads can read 0 at
the same execution.

Example 3. We showhowvRC11 allows both threads printing 1 in the LB-NA example
in §12. Suppose that the first thread reads 0 from the initial message for 𝑋 , and writes
1 to 𝑌 by adding a message 𝑚𝑌 = ⟨𝑌 @𝑡, 1, na, 𝜆𝑋. 0⟩ with some 𝑡 > 0. Then, the read
from 𝑌 by the second thread races with the message 𝑚𝑌 since it has a timestamp 𝑡
greater than the timestamp of 𝑌 in the second thread’s view (i.e., 𝑉 (𝑌 ) = 0 < 𝑡). Then,
due to the racy read from 𝑌 , the second thread invokes UB, which generates arbitrary
behavior, including the behavior in which both threads print 1.
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Example 4. Consider the message passing program:

𝐷na ∶= 42
𝐹rel ∶= 1

𝑎 ∶= 𝐹acq

if 𝑎 = 1 then
𝑏 ∶= 𝐷na

(MP)

The two non-atomic accesses to the data 𝐷 are well-synchronized by a release-acquire
synchronization through the flag 𝐹 , and thus, they are not racy. Indeed, the first thread
records its view in the message 𝐹 = 1 and the view is transferred to the second thread
when it reads 𝐹 = 1. The read from 𝐷 by the second thread is not racy since the
timestamp of 𝐷 it has in its view is already increased to include the timestamp of
the message 𝐷 = 42. Moreover, the second thread is only allowed to read 42 from 𝐷.
In contrast, the program becomes racy if any (or both) of the accesses to 𝐹 is made
relaxed. Then, there would not be a release-acquire synchronization between the two
threads, and the timestamp of 𝐷 in the second thread’s view would remain 0 (pointing
to the initial message of 𝐷) even after reading 1 from 𝐹 . In turn, the read from 𝐷 would
be racy and invoke a UB, as the message 𝐷 = 42 would have a higher timestamp than
the second thread’s view of 𝐷.

We have ported the Coq proof by Cho et al. [18] to establish the local DRF guar-
antees, LDRF-RA and LDRF-SC, for vRC11. Generally speaking, data-race-freedom
(DRF) guarantees ensure “strong” semantics for programs that are race-free under the
“strong” semantics, and thus provide an essential formal justification for defensive
programming. Local DRF (LDRF) guarantees further extend this idea to be applicable
also in the presence of races on some unrelated locations (e.g., confined in optimized
libraries). LDRF-RA means that we consider release/acquire semantics as the strong
semantics, and LDRF-SC means that under the strong semantics, threads can only
access messages with globally maximal timestamps.

13.1 Relating vRC11 to RC11

The RC11 [37] memory model addresses two problems of the C/C++11 model: its
flawed semantics for sequentially consistent accesses and fences (which is unrelated
to the current paper) and the more crucial problem of “out-of-thin-air” reads [7] that
breaks the fundamental DRF guarantee. To solve the latter problem, following [12],
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RC11 takes a conservative approach and forbids cycles in the union of the program
order and the reads-from relation. As discussed before, verification of concurrent
programs under RC11 has been extensively studied and multiple verification methods
and tools have been developed. The next theorem states that vRC11, the source model,
is stronger than RC11. Hence, the soundness of all verification approaches for RC11
applies to vRC11 as well.

Theorem 10. For any program 𝑝𝑟𝑜𝑔 , J𝑝𝑟𝑜𝑔KvRC11 ⊆ J𝑝𝑟𝑜𝑔KRC11.

We provide a (pen-and-paper) proof in §17.2, based on a declarative presentation of
vRC11 (see §13.2), which can be more easily compared to RC11. Next, we demonstrate
behaviors allowed by RC11 but disallowed by vRC11 using examples.

Putting presentation aside, the main difference between vRC11 and RC11 is related
to the fact that an access in vRC11 can only race with previously executed writes, but
not with previously executed reads. The following example ellustrates this point:

𝑎 ∶= 𝑋na

𝑌 rlx ∶= 1
𝑏 ∶= 𝑌 rlx

if 𝑏 = 1 then 𝑋na ∶= 42
(RW-RACE)

In both vRC11 and RC11, the read of 𝑋 has to return 0, but this program is considered
racy in RC11 but not in vRC11. Specifically, both vRC11 and RC11 allow the execution
where the second thread reads 1 from 𝑌 (from the write of the first thread) and writes
42 to 𝑋 . In RC11 this execution is deemed racy, since it has two accesses to the same
location, such that (i) one of them is a write; (ii) one of them is non-atomic; and
(iii) they are not properly synchronized by release/acquire accesses. In contrast, vRC11
does not view this execution as racy. In vRC11, an access can only race with a message
to the same location that already exists in the memory. Thus, the write to 𝑋 by the
second thread is never racy since there has not been any other write to 𝑋 . In other
words, a write can never race with a read executed before the write. Note that the
execution 𝑋na ∶= 42 requires a message 𝑌 = 1 in the memory, so it cannot precede
the read 𝑎 ∶= 𝑋na by the first thread.

Remark 9. Deeming programs like RW-RACE as non-racy may allow performance
improvements in certain programming idioms that are forbidden in RC11. For example,
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consider the following multiple-readers-single-writer (MRSW) lock pattern:

...
𝑎 ∶= 𝑋na

reader-unlock()

...
𝑏 ∶= 𝑋na

reader-unlock()

writer-lock()
𝑋na ∶= 42
...

An MRSW lock protecting a location 𝑋 allows multiple readers to read from 𝑋 con-
currently, while the writer should be exclusive, blocking any other reader or writer. A
typical implementation of anMRSW lockmaintains a counter counting howmany read-
ers currently hold the reader-lock. For such an implementation, reader-unlock()
decreases the counter using a fetch-and-decrement operation and, writer-lock()
checks if the counter reaches 0 and atomically swaps the value of the counter to some
special value using a compare-and-swap. Under RC11, to prevent the race between
the reads and the later write, reader-unlock() and writer-lock() should form
release-acquire synchronization. In contrast, as in RW-RACE, such synchronization is
unnecessary under vRC11 since a write never races with a read executed before the
write. Therefore, vRC11 allows one to relax the write access mode of the fetch-and-
add in reader-unlock() from rel to rlx. Moreover, when there is only one writer
thread, writer-lock() can be further optimized to use a relaxed RMW instead of an
acquire RMW.

In addition to the above, even for races with previously executed writes, the
operational race condition of vRC11 is more restrictive than the race definition in
RC11, where two accesses to the same location are considered racy if they are not
“well-synchronized” (which is formally defined using the “happens-before” relation).
This can be observed in programs when certain locations are accessed by both atomic
and non-atomic accesses, as in the following example:

𝑋rlx ∶= 1
𝑎 ∶= 𝑋rlx

if 𝑎 = 1 then 𝑏 ∶= 𝑋na
(COH-RACE)

In both vRC11 and RC11, the read of 𝑋 has to return 1, but, again, this program is
racy in RC11 but not in vRC11. To see this, consider an execution where the relaxed
read 𝑎 ∶= 𝑋rlx by the second thread reads 1 written by the first thread. The write
𝑋rlx ∶= 1 by the first thread and the non-atomic read 𝑏 ∶= 𝑋na by the second are racy
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in RC11 since they are not well-synchronized via a release-acquire synchronization.
In vRC11, the two accesses are not racy: once the second thread reads 1 by the relaxed
read 𝑎 ∶= 𝑋rlx, its view to 𝑋 increases to include the message 𝑋 = 1. Then, when the
thread performs a non-atomic read from 𝑋 , no message to 𝑋 has a timestamp higher
than the thread’s view (i.e., only the message 𝑋 = 1 can be read by the second thread).
Therefore, the non-atomic read by the second thread does not race with the write of
the first thread.

Both of the above examples demonstrate cases that RC11 assigns UB to a program,
whereas vRC11 gives it a defined semantics. We believe that races in vRC11 have a
clear and simple meaning: a read access is racy iff it can read from more than one
message, and a write access is racy iff it can “overwrite” more than one message. The
examples above show cases where RC11 forces a non-atomic read to read from a
particular write, but the read is still considered racy in RC11.

Finally, there also is a difference between the two models related to SC-fences
(which are not presented above but included in the full model). In vRC11 the semantics
of SC-fences is similar to the one in the RC20 model in [49], which is stronger than
their semantics in RC11. In particular, SC-fences in vRC11 model can be expressed in
terms of a release and acquire fences and an RMW to an otherwise unused location
(see [49, Remark 1]). We do not discuss further this difference since it is orthogonal to
our main topic.

13.2 A Declarative Presentation

For informed readers, we provide a declarative (a.k.a. axiomatic) presentation of vRC11.
Such presentation is more concise than the operational one, and it is especially useful
for comparing vRC11 to other models that are presented in a similar declarative
fashion such as C/C++11. In the following, we consider the full model with RMWs and
fences. Due to lack of space, we refer to [37], which we build on, for more background
and examples of this definition style. (In any case, this technical section can be skipped
when reading the paper.) The equivalence between the operational and declarative
models is proved in §17.1.

In declarative models, program executions are represented by execution graphs,
whose nodes, called events, keep track of accesses to the shared memory, and edges

77



provide several (partial) orders on these accesses. We assume that events are divided
into three sets: writes (W), reads (R), and fences (F). We use standard notations to
retrieve events properties (such as loc(𝑒) for the location accessed in 𝑒 and mod(𝑒)
for the access mode) and to restrict sets accordingly (such as Wrel for the set of
release writes). Our execution graphs employ the standard basic relations: a program
order (po) that totally orders the events of each thread; an RMW relation (rmw) that
distinguishes the read-write pairs that together form an RMW; a reads-from relation
(rf) that links each write event 𝑤 to the read events that read their value from 𝑤; and
a modification order (mo), a.k.a. coherence order, that totally orders all writes to the
same location. Based on these relations, several other relations are derived (all as in
RC11) using standard relational notations:

po|loc ≜ {⟨𝑒1, 𝑒2⟩ ∈ po | loc(𝑒1) = loc(𝑒2)} (po-same-location)

rb ≜ rf−1 ; mo (reads-before, a.k.a. from-read)

eco ≜ (rf ∪ mo ∪ rb)+ (extended-coherence-order)

rs ≜ [W] ; po|?loc ; [W
⊒rlx] ; (rf ; rmw)∗ (release-sequence)

sw ≜ ([Wrel] ∪ [F⊒rel] ; po) ; rs ; rf ; ([Racq] ∪ [R⊒rlx] ; po ; [F⊒acq])
(syncronized-with)

hb ≜ (po ∪ sw)+ (happens-before)

Now, to handle SC-fences we include another primitive relation in execution
graphs that determines the order of SC-fences. We call this relation the SC-order,
denoted by sc, and require it to be a total strict order on all the SC-fences (i.e., on Fsc)
in the execution graph. (Like rf and mo, sc is existentially quantified—a behavior of a
program is justified by some sc order of a corresponding graph.) Using sc we derive
the execution order, which is a partial order on events that operational runs follow
(note that hb ⊆ exec):

exec ≜ (po ∪ rf ∪ sc)+ (execution-order)
Then, consistent graphs are defined as follows.

Definition 1. An execution graph 𝐺 is vRC11-consistent if the following hold for its
relations:
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• hb ; eco is irreflexive. (coherence)

• hb ; sc ; hb ; eco is irreflexive. (sc-fence)

• rmw ∩ (rb ; mo) = ∅. (atomicity)

• exec is irreflexive. (no-LB)

The coherence constraint is standard, and it ensures “SC-per-location”. The sc-
fence constraint gives the semantics to SC-fences, so they forbid, e.g., store buffering
behaviors when inserted between writes and reads. The atomicity constraint ensures
the atomicity of RMWs. Finally, no-LB demonstrates that vRC11 is “in-order” as it
entails the acyclicity of the union of the program order and the reads-from relation.

Example 5. As we saw in Example 4, in the MP program the second thread can only
read 42 from 𝐷. To see how this follows from the declarative model, we depict the
execution graph obtained when trying to read 0 (the initial value), and explain why it
is inconsistent.

𝑖𝑛𝑖𝑡 ∶ W(𝐷, na, 0)

𝑒1 ∶ W(𝐷, na, 42)

𝑒2 ∶ W(𝐹 , rel, 1)

𝑒3 ∶ R(𝐹 , acq, 1)

𝑒4 ∶ R(𝐷, na, 0)

po rfrb

mo

The nodes, labels, and program order (po) arise from the program behavior we analyze.
Then, the reads-from relation (rf) is forced since every read has to read its value from
some write writing that value. The modification order (mo) between 𝑖𝑛𝑖𝑡 and 𝑒1 is also
forced: it has to order these two nodes (as both write to the same location), and going
in the opposite order would violate coherence as we have hb from 𝑖𝑛𝑖𝑡 to 𝑒1. Then,
according to the definition above, a “reads-before” edge (rb) is induced from 𝑒4 to
𝑒1, which implies ⟨𝑒4, 𝑒1⟩ ∈ eco. Now, since 𝑒2 and 𝑒3 are rel and acq, we have an
sw edge between them, inducing hb from 𝑒1 to 𝑒4. Together, this violates coherence
since we have ⟨𝑒1, 𝑒1⟩ ∈ hb ; eco.
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To complete the presentation of the model, we define what execution graphs are
considered racy, with the help of additional derived relations:

conflict ≜

{

⟨𝑒1, 𝑒2⟩
|||||

𝑒1 ≠ 𝑒2 ∧ (typ(𝑒1) = W ∨ typ(𝑒2) = W) ∧
loc(𝑒1) = loc(𝑒2) ∧ (mod(𝑒1) = na ∨ mod(𝑒2) = na)

}

(concliting events)

pb ≜ [W] ; rf? ; hb ; sc? ; hb? (propagated-before)

raceWW ≜ [W] ; conflict ; [W] ⧵ (pb ∪ exec−1) (write-write-race)

raceWR ≜ [W] ; conflict ; [R] ⧵ (pb ∪ exec−1) (write-read-race)

Roughly, ⟨𝑤, 𝑒⟩ ∈ pb means that the write 𝑤 has been observed by the thread
executing 𝑒 before it executes 𝑒, where observations are propagated through re-
lease/acquire synchronization and SC-fences. In the operational model, this means
that (the message associated with) 𝑤 has a timestamp lower than the timestamp of the
location of 𝑤 in the current view of the thread executing 𝑒. Then, raceWW relates two
conflicting writes, 𝑤1 to 𝑤2, when 𝑤1 has not propagated before 𝑤2 (⟨𝑤1, 𝑤2⟩ ∉ pb) and
𝑤1 can be executed before 𝑤2 (⟨𝑤2, 𝑤1⟩ ∉ exec). Similarly, raceWR relates conflicting
write and read, 𝑤 to 𝑟 , when 𝑤 has not propagated before 𝑟 (⟨𝑤, 𝑟⟩ ∉ pb) and 𝑤 can be
executed before 𝑟 (⟨𝑟 , 𝑤⟩ ∉ exec).

Finally, we say that execution graph 𝐺 is vRC11-racy if raceWW∪raceWR ≠ ∅, and
as in RC11, a program outcome is allowed if it is induced by some vRC11-consistent
execution graph that is generated by the program, or if some racy vRC11-consistent
execution graph is generated by the program. The latter disjunct corresponds to the
program invoking UB.

Remark 10. An equivalent model is obtained if we include sc inside hb (together
with po and sw). In this presentation, sc-fence is not needed, and the definition of pb
can be simplified to rf? ; hb.

Example 6. The RW-RACE program above does not generate a racy vRC11-consistent
execution graph. Indeed, the only vRC11-consistent execution graph of it executing
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both non-atomic accesses is depicted below.

𝑖𝑛𝑖𝑡 ∶ W(𝑋, na, 0)

𝑒1 ∶ R(𝑋, na, 0)

𝑒2 ∶ W(𝑌 , rlx, 1)

𝑒3 ∶ R(𝑌 , rlx, 1)

𝑒4 ∶ W(𝑋, na, 42)

po rf

rf

mo

Here, we have ⟨𝑒4, 𝑒1⟩ ∈ [W] ;conflict ; [R]⧵pb, but this is not considered a write-read
race since ⟨𝑒1, 𝑒4⟩ ∈ exec. In turn, if we had 𝑋na ∶= 1 in the first thread (rather than
𝑎 ∶= 𝑋na), we would obtain that ⟨𝑒1, 𝑒4⟩ ∈ raceWW (with 𝑒1 labeled by W(𝑋, na, 1))
which would mean that the program has a racy vRC11-consistent execution graph, so
it allows any outcome.

14 The IR Model

In this section, we present our model of the intermediate representation, called PSIR,
establish the soundness of mapping from vRC11 to PSIR, and show that every sound
transformation under the sequential semantics SEQ in [18] is also sound under PSIR.

There are two major differences between PSIR and vRC11. First, to allow load
introduction, a racy read in PSIR returns an undefined value instead of invoking UB.
As demonstrated above, this change alone forbids the weak behavior of LB-NA. PSIR

addresses this issue by allowing promises, so it is not an in-order semantics. Intuitively,
a thread may promise that it will perform a non-atomic write to a location 𝑋 in the
future, making any accesses to 𝑋 by other threads to be racy.

In the following, we explain the PSIR model focusing on how it extends and
modifies vRC11. Figure IV.5 summarizes the steps of PSIR. We note that the (silent)
and (read) steps are adapted in an obvious way that does not alter the new components
of the state, and the (race) definition is also exactly as in vRC11. The full PSIR model in
our Coq development includes RMWs, fences, and release sequences, and is presented
in §15.2.

Promises Both each thread state and the global machine state are equipped with a
set of locations, called local promises (𝑃 ) and global promises (𝑃𝐺), respectively. The
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𝑃, 𝑃𝐺 ⊆ Loc promise set
𝑇 = ⟨𝜎, 𝑉 , 𝑃⟩ ∈ Lts thread state
⟨𝑇 , 𝑃𝐺, 𝑀⟩ thread configuration
⟨ , 𝑃𝐺, 𝑀⟩ machine state

(silent)
𝜎 −→ 𝜎′

⟨⟨𝜎, 𝑉 , 𝑃⟩, 𝑃𝐺, 𝑀⟩ −→ ⟨⟨𝜎′, 𝑉 , 𝑃⟩, 𝑃𝐺, 𝑀⟩

(promise)
𝑋 ∉ 𝑃𝐺

⟨⟨𝜎, 𝑉 , 𝑃⟩, 𝑃𝐺, 𝑀⟩ −→ ⟨⟨𝜎, 𝑉 , 𝑃 ∪ {𝑋 }⟩, 𝑃𝐺 ∪ {𝑋 }, 𝑀⟩

(system call)
𝜎

Sys(𝑒)
−−−−→ 𝜎′ 𝑃 = ∅

⟨⟨𝜎, 𝑉 , 𝑃⟩, 𝑃𝐺, 𝑀⟩
Sys(𝑒)
−−−−→ ⟨⟨𝜎′, 𝑉 , 𝑃⟩, 𝑃𝐺, 𝑀⟩

(read)
𝜎

R(𝑋,𝑜R ,𝑣)−−−−−−→ 𝜎′

⟨𝑋@𝑡, 𝑣, _, 𝑉m⟩ ∈ 𝑀 𝑉 (𝑋 ) ≤ 𝑡

𝑉 ′ = 𝑉 [𝑋 ↦ 𝑡] ⊔
⎧⎪⎪
⎨⎪⎪⎩

0 𝑜R ≠ acq

𝑉m 𝑜R = acq

⟨⟨𝜎, 𝑉 , 𝑃⟩, 𝑃𝐺, 𝑀⟩ −→ ⟨⟨𝜎′, 𝑉 ′, 𝑃⟩, 𝑃𝐺, 𝑀⟩

(write)
𝜎

W(𝑋,𝑜W ,𝑣)−−−−−−→ 𝜎′

𝑚 = ⟨𝑋@𝑡, 𝑣, 𝑜W, 𝑉m⟩ 𝑀#𝑚 𝑉 (𝑋 ) < 𝑡

𝑉 ′ = 𝑉 [𝑋 ↦ 𝑡] 𝑉m =
⎧⎪⎪
⎨⎪⎪⎩

𝜆𝑋. 0 𝑜W ≠ rel

𝑉 ′ 𝑜W = rel

⟨𝑃 ′, 𝑃𝐺′⟩ =
⎧⎪⎪
⎨⎪⎪⎩

⟨𝑃 ⧵ {𝑋 }, 𝑃𝐺 ⧵ {𝑋 }⟩ 𝑜W = na ∧ 𝑋 ∈ 𝑃

⟨𝑃, 𝑃𝐺⟩ otherwise

⟨⟨𝜎, 𝑉 , 𝑃⟩, 𝑃𝐺, 𝑀⟩ −→ ⟨⟨𝜎′, 𝑉 ′, 𝑃 ′⟩, 𝑃𝐺′, 𝑀 ∪ {𝑚}⟩

(race)
⟨𝑋@𝑡, _, 𝑜W, _⟩ ∈ 𝑀

𝑉 (𝑋 ) < 𝑡 𝑜W = na ∨ 𝑜 = na

race(𝑉 ,𝑀, 𝑋, 𝑜)

(promised race)
𝑋 ∈ 𝑃𝐺 ⧵ 𝑃

raceprm(𝑃, 𝑃𝐺, 𝑋 )

(racy-read)
𝜎

R(𝑋,𝑜R ,undef)−−−−−−−−−−→ 𝜎′

race(𝑉 ,𝑀, 𝑋, 𝑜R) ∨ raceprm(𝑃, 𝑃𝐺, 𝑋 )

⟨⟨𝜎, 𝑉 , 𝑃⟩, 𝑃𝐺, 𝑀⟩ −→ ⟨⟨𝜎′, 𝑉 , 𝑃⟩, 𝑃𝐺, 𝑀⟩

(racy-write)
𝜎

W(𝑋,𝑜W ,_)−−−−−−→ _
race(𝑉 ,𝑀, 𝑋, 𝑜W)

⟨⟨𝜎, 𝑉 , 𝑃⟩, 𝑃𝐺, 𝑀⟩ −→
⟨⟨⊥, 𝑉 ,∅⟩, 𝑃𝐺, 𝑀⟩

(machine: normal)
⟨ (𝜏), 𝑃𝐺, 𝑀⟩ −→+ ⟨𝑇 ′, 𝑃𝐺′, 𝑀 ′⟩
⟨𝑇 ′, 𝑃𝐺′, 𝑀 ′⟩ −→∗ ⟨⟨_, _,∅⟩, _, _⟩

⟨ , 𝑃𝐺, 𝑀⟩ −→ ⟨ [𝜏 ↦ 𝑇 ′], 𝑃𝐺′, 𝑀 ′⟩

(machine: ub)
⟨ (𝜏), 𝑃𝐺, 𝑀⟩ −→+ ⟨⟨⊥, _, _⟩, 𝑃𝐺′, 𝑀 ′⟩

⟨ , 𝑃𝐺, 𝑀⟩ −→ ⟨⊥, 𝑃𝐺′, 𝑀 ′⟩

Figure IV.5: Domains and transitions of PSIR (RMWs, fences, release sequences, and
reservations are omitted).
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(promise) step allows a thread to promise to write to a certain location 𝑋 in the future
by adding 𝑋 both to its local promises and to the global promises, provided that 𝑋
has not been already promised by some thread (𝑋 ∉ 𝑃𝐺). Once 𝑋 being promised, the
thread can later fulfill its promise by writing to 𝑋 via a non-atomic write. Accordingly,
the (write) step is extended to update the local and global promises set by removing
𝑋 from them if the write is non-atomic and 𝑋 was previously promised.

Certification At each machine step (see (machine: normal)), the thread taking a
sequence of steps should certify its promises by demonstrating it is able to fulfill all its
promises by taking multiple steps in isolation. The certification requirement is crucial
in proving the soundness of mapping from vRC11 to PSIR (see Example 9 below).

Racy Reads A racy read retrieves an undefined value (denoted by undef in (racy-
read)) (unlike invoking UB in vRC11), thereby allowing the compiler transformation
that introduces unused loads. In addition, a race occurs with promised writes (see
(promised race) definition): a memory access to 𝑋 is considered racy also if there is a
promise to 𝑋 made by another thread.

Racy Writes A racy write invokes UB (like in vRC11), and there is no need to
consider promised writes for these races. A thread transition invoking UB directly
fulfills the remaining promises (see (racy-write)), so the local promises set is made
empty after the transition, which allows for a successful certification process.

System Calls A system call requires the local promises to be empty (𝑃 = ∅). In
other words, a write cannot be promised over a system call. Intuitively, this means
that a system call followed by a (non-atomic) write cannot be reordered.

Behavior Program behaviors under PSIR are defined as for vRC11, with one modi-
fication: when undef is a part of a system call output in an execution trace, then it
can be refined to any concrete value in the program behavior (e.g., print(undef) in
a trace can be mapped to print(1) in the behavior). We denote by J𝑝𝑟𝑜𝑔KPSIR the set
of behaviors a program 𝑝𝑟𝑜𝑔 exhibits under PSIR.
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Example 7. In contrast to vRC11, in which a racy read invokes UB, in PSIR a racy read
returns undef. Thus, PSIR justifies LB-NA example using a promise. Specifically, the
first thread promises to 𝑌 , certified by reading 0 from 𝑋 and writing 1 to 𝑌 . Then, the
read from 𝑌 by the second thread is racy with that promise and it returns undef. After
the racy read, the second thread writes 1 to 𝑋 and prints 1. (Since undef represents
an arbitrary value, it can be refined to 1.) Now, the first thread reads 1 from 𝑋 , fulfills
its promise to 𝑌 by performing a non-atomic write, and prints 1 as well.

Example 8. The following example demonstrates that a promise can be certified and
fulfilled by different write instructions even with different written values.

𝑎 ∶= 𝑋na

𝑌 rlx ∶= 𝑎

𝑏 ∶= 𝑌 rlx

if 𝑏 ≠ 0 then
𝑋na ∶= 1
print 42

else

𝑋na ∶= 2

⇝
𝑎 ∶= 𝑋na

𝑌 rlx ∶= 𝑎

𝑋na ∶= 2
𝑏 ∶= 𝑌 rlx

if 𝑏 ≠ 0 then
𝑋na ∶= 1
print 42

(LB-CASE)

The program on the left can be transformed into the program on the right by applying
a sequence of compiler transformations in the second thread: (𝑖) split the non-atomic
write 𝑋na ∶= 1 into two writes 𝑋na ∶= 2 followed by 𝑋na ∶= 1; (𝑖𝑖) hoist the common
write 𝑋na ∶= 2 out of the branch; and (𝑖𝑖𝑖) reorder the read 𝑏 ∶= 𝑌 rlx and the write
𝑋na ∶= 2. Since the program on the right is allowed to print 42 (even under SC), PSIR

should allow the same behavior for the program on the left. Indeed, the program on the
left can print 42 through the following PSIR execution: (𝑖) the second thread promises
to 𝑋 , certifying it by reading 0 from 𝑌 and writing 2 to 𝑋 ; (𝑖𝑖) the first thread reads
undef from 𝑋 by performing a racy read and writes undef to 𝑌 ; and (𝑖𝑖𝑖) the second
thread reads undef from 𝑌 , enters the then-branch as 𝑏 ≠ 0 evaluates to undef,12

fulfills its promise to 𝑋 by writing 1 to 𝑋 , and prints 42. Notably, in this execution, the
promise to 𝑋 of the second thread is certified using the write 𝑋na ∶= 2 and fulfilled
by the other write 𝑋na ∶= 1.

12Here, we assume that branching on undef non-deterministically takes either one of the then-branch
or the else-branch. In LLVM, branching on undef is UB, and a “freeze” instruction should be used
before the branching [40]. freeze(𝑣) returns 𝑣 when 𝑣 is a defined value (i.e., not undef) and non-
deterministically returns any defined value (e.g., 42) when 𝑣 is undef. In the example, the same argument
holds when 𝑏 ≠ 0 is replaced with freeze(𝑏) ≠ 0.
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Our main result is the following theorem (a Coq proof is available in the supple-
mentary material):

Theorem 11. For any program 𝑝𝑟𝑜𝑔 , J𝑝𝑟𝑜𝑔KPSIR ⊆ J𝑝𝑟𝑜𝑔KvRC11.

The proof of this theorem is established using a simulation argument: for each
transition in PSIR, we identify a corresponding sequence of transitions in vRC11.While
most thread transitions are identical in vRC11 and PSIR, there are no corresponding
transitions in vRC11 for the following two transitions of PSIR: 1. (promise) transition;
and 2. (racy-read) transition that races with a promise (i.e., when raceprm(𝑃, 𝑃𝐺, 𝑋 )
holds). For the former, the vRC11 machine simply takes no transition and the machine
states of vRC11 and PSIR remains identical except for the sets of promises (𝑃 and 𝑃𝐺)
in PSIR. For the latter, we show that the vRC11 machine can take multiple steps and
invoke UB by performing a racy read. Concretely, suppose that a thread 𝜏1 of PSIR

performs a racy read from a location 𝑋 that races with a promise made by another
thread 𝜏2. Since there is no promise in vRC11, we need to prove that 𝜏2 of vRC11 can
actually perform a non-atomic write to 𝑋 before 𝜏1 takes a racy read transition. The
key property in this is to turn a certification of the promise by 𝜏2 in PSIR into a real
execution of vRC11. To do so, we proved that once a thread certifies its promise to a
location 𝑋 , under any possible future memory, the thread can take multiple steps and
perform a non-atomic write to 𝑋 .

Example 9. Theorem 11 does not hold without the certification of promises.

𝑎 ∶= 𝑋na

if 𝑎 = 1 then
𝑌 na ∶= 1

𝑏 ∶= 𝑌 na

if 𝑏 = 1 then
𝑋na ∶= 1

(LB-DRF)

Under vRC11, the only possible execution for this program is that both threads read
the initial messages (i.e., 𝑎 = 𝑏 = 0). For Thm. 11 to hold, PSIR cannot allow any other
behavior. Indeed, under PSIR, the first thread cannot promise to 𝑌 since the only value
that can be read from 𝑋 is 0, and thus, the thread cannot certify the promise. However,
if PSIR allowed a thread to promise without certifying it, then 𝑎 = 𝑏 = undef would
be allowed. Specifically, the first thread could unconditionally promise to 𝑌 ; the second
thread could read undef and write 1 to 𝑋 ; and then the first thread could read undef
and write 1 to 𝑌 while fulfilling its promise to 𝑌 .
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𝑃 ⊆ Loc permission set
𝐹 ⊆ Loc written locations set

𝑀 ∈ Loc → Val sequential memory
𝑆 = ⟨𝜎, 𝑃, 𝐹 , 𝑀⟩ thread state of SEQ

(silent)
𝜎 −→ 𝜎′

⟨𝜎, 𝑃, 𝐹 , 𝑀⟩ −→ ⟨𝜎′, 𝑃 , 𝐹 , 𝑀⟩

(choice/relaxed-read)
𝜎 𝑒−→ 𝜎′

𝑒 ∈ {choose(𝑣), Rrlx(𝑥, 𝑣)}

⟨𝜎, 𝑃, 𝐹 , 𝑀⟩ 𝑒−→ ⟨𝜎′, 𝑃 , 𝐹 , 𝑀⟩

(na-read)

𝜎
Rna(𝑋,𝑣)
−−−−−−→ 𝜎′ 𝑋 ∈ 𝑃

𝑣 = 𝑀(𝑋 )

⟨𝜎, 𝑃, 𝐹 , 𝑀⟩ −→ ⟨𝜎′, 𝑃 , 𝐹 , 𝑀⟩

(na-write)

𝜎
Wna(𝑋,𝑣)
−−−−−−→ 𝜎′ 𝑋 ∈ 𝑃

𝐹 ′ = 𝐹 ∪ {𝑋 } 𝑀 ′ = 𝑀[𝑋 ↦ 𝑣]

⟨𝜎, 𝑃, 𝐹 , 𝑀⟩ −→ ⟨𝜎′, 𝑃 , 𝐹 ′, 𝑀 ′⟩

(racy-na-read)

𝜎
Rna(𝑋,undef)
−−−−−−−−−−→ 𝜎′ 𝑋 ∉ 𝑃

⟨𝜎, 𝑃, 𝐹 , 𝑀⟩ −→ ⟨𝜎′, 𝑃 , 𝐹 , 𝑀⟩

(racy-na-write)

𝜎
Wna(𝑋,_)
−−−−−−→ _ 𝑋 ∉ 𝑃

⟨𝜎, 𝑃, 𝐹 , 𝑀⟩ −→ ⟨⊥, 𝑃, 𝐹 , 𝑀⟩

(acq-read)

𝜎
Racq(𝑥,𝑣)
−−−−−−→ 𝜎′

𝑃 ⊆ 𝑃 ′ dom(𝑉 ) = 𝑃 ′ ⧵ 𝑃

𝑀 ′ = 𝜆𝑋.
⎧⎪⎪
⎨⎪⎪⎩

𝑉 (𝑋 ) 𝑋 ∈ 𝑃 ′ ⧵ 𝑃

𝑀(𝑋 ) otherwise

⟨𝜎, 𝑃, 𝐹 , 𝑀⟩
Racq(𝑥,𝑣,𝑃 ,𝑃 ′,𝐹 ,𝑉 )
−−−−−−−−−−−−−→ ⟨𝜎′, 𝑃 ′, 𝐹 , 𝑀 ′⟩

(relaxed-write/rel-write)

𝜎
Wrel(𝑥,𝑣)
−−−−−−→ 𝜎′

𝑃 ′ ⊆ 𝑃 𝑉 = 𝑀 |𝑃

⟨𝜎, 𝑃, 𝐹 , 𝑀⟩
Wrel(𝑥,𝑣,𝑃 ,𝑃 ′,𝐹 ,𝑉 )
−−−−−−−−−−−−−→ ⟨𝜎′, 𝑃 ′,∅, 𝑀⟩

Figure IV.6: Transitions of SEQ adapted for PSIR. Compared to SEQ by Cho et al.
[18], the rule for relaxed writes is strengthened to share the one for release writes
(highlighted in the figure). Consequently, SEQ here forbids reordering of a non-atomic
access followed by a relaxed write.

In addition to Thm. 11, we also proved that program transformations sound in
sequential semantics are also sound to apply on non-atomics in PSIR. To do so, we
adapted the sequential machine SEQ from [18, Def. 3.3] to include non-promisable
relaxed writes, as we have in PSIR, and ported the proof in [18] to PSIR to show that
all sound optimizations on non-atomics under (the adapted) SEQ are also sound under
PSIR. The transition rules for SEQ are given in Fig. IV.6. Thanks to this result, not only
the programmers but also compiler writers who develop optimizations on non-atomic
code (including reorderings and eliminations of non-atomic accesses across atomics)
do not have to understand the out-of-order IR model.

The sequential machine SEQ, however, is not helpful for validating reorderings
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and eliminations of atomics. These optimizations are not important for our current
purpose (to the best of our knowledge, they are not performed by current compilers).
In fact, we found out that reordering of relaxed writes (to different locations) is
unsound in PSIR. (Still, PSIR can be soundly mapped to Armv8, which effectively
allows reordering in the target code; see §16.) The reason is related to the reservation
mechanism, an addition that was introduced to PS in [44] and used in our full PSIR

model, in order to support an efficient mapping of RMWs to Armv8. Future work is
required to understand whether PSIR can be changed to allow this reordering. We
expect all other transformations on atomics that are sound in RC11 to be sound in
PSIR.

15 Full models

In this section, we present the full models of vRC11 and PSIR.

15.1 The Full vRC11 Model

We first present the full vRC11 model including RMWs, fences, and release sequences.
In the following, we focus on the components that are not introduced in §13. Figure IV.7
provides the domains and helper rules for vRC11, where the domains are identical
to Fig. IV.4 if not listed here. Note that we assume read access modes are ordered by
na ⊑ rlx ⊑ acq, and write access modes are ordered by na ⊑ rlx ⊑ rel.

Memory A memory is a (nonempty) pairwise disjoint finite set of messages. Now,
a message ⟨𝑋@(𝑓 , 𝑡], 𝑣, 𝑜W, 𝑉m⟩ ∈ Msg carries a timestamp interval (𝑓 , 𝑡], where, 𝑓 < 𝑡
instead of a single timestamp. We denote by 𝑚.loc, 𝑚.val, 𝑚.from, 𝑚.to, 𝑚.mod,
and 𝑚.view the components of a message 𝑚. We write two messages 𝑚1 and 𝑚2 are
disjoint, denoted by 𝑚1#𝑚2, if they have different locations (𝑚1.loc ≠ 𝑚2.loc) or
have disjoint timestamp intervals (𝑚1.to < 𝑚2.from ∨𝑚2.to < 𝑚1.from). A memory
𝑀 and a message 𝑚 are disjoint (denoted by 𝑀#𝑚) if ∀𝑚′ ∈ 𝑀. 𝑚′#𝑚.

States A machine state ⟨ , 𝑆, 𝑀⟩ now includes an SC-view 𝑆 ∈ 𝑉 . A thread state

is a tuple 𝑇 = ⟨𝜎,⟩, where 𝜎 is a local program state as before, and  is a thread
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𝑉rel ∈ Loc → View release view
𝑉cur ∈ View current view
𝑉acq ∈ View acquire view
 = ⟨𝑉rel, 𝑉cur, 𝑉acq⟩ thread view
𝑆 ∈ View sc view

𝑚 = ⟨𝑋@(𝑓 , 𝑡], 𝑣, 𝑜W, 𝑉 ⟩ ∈ Msg message
𝑜F ∈ {acq, rel, acqrel, sc} fence access mode
𝑇 = ⟨𝜎,⟩ ∈ Lts thread state
⟨𝑇 , 𝑆,𝑀⟩ thread configuration
⟨ , 𝑆, 𝑀⟩ machine state

(read-helper)
𝑚 = ⟨𝑋@(_, 𝑡], _, _, 𝑉m⟩

𝑉cur(𝑋 ) ≤ 𝑡 𝑉𝑠 = [𝑋 ↦ 𝑡]
𝑉 ′
cur = 𝑉cur ⊔ 𝑉𝑠 ⊔ (𝑜R ⊒ acq ? 𝑉m)

𝑉 ′
acq = 𝑉acq ⊔ 𝑉𝑠 ⊔ (𝑜R ⊒ rlx ? 𝑉m)

⟨𝑉rel, 𝑉cur, 𝑉acq⟩
𝑜R,𝑚−−−→R ⟨𝑉rel, 𝑉 ′

cur, 𝑉
′
acq⟩

(write-helper)
𝑚 = ⟨𝑋@(𝑓 , 𝑡], _, _, 𝑉m⟩ 𝑓 < 𝑡
𝑉cur(𝑋 ) < 𝑡 𝑉𝑠 = [𝑋 ↦ 𝑡]

𝑉 ′
cur = 𝑉cur ⊔ 𝑉𝑠 𝑉 ′

acq = 𝑉acq ⊔ 𝑉𝑠
𝑉 ′
rel = 𝑉rel[𝑋 ↦ 𝑉rel(𝑋 ) ⊔ 𝑉𝑠 ⊔ (𝑜W ⊒ rel ? 𝑉 ′

cur)]
𝑉m = (𝑜W ⊒ rlx ? (𝑉 ′

rel(𝑋 ) ⊔ 𝑉𝑟))

⟨𝑉rel, 𝑉cur, 𝑉acq⟩
𝑜W,𝑉𝑟 ,𝑚−−−−−→W ⟨𝑉 ′

rel, 𝑉
′
cur, 𝑉

′
acq⟩

(race-helper)
⟨𝑋@(_, 𝑡], _, 𝑜W, _⟩ ∈ 𝑀

 .cur(𝑋 ) < 𝑡
𝑜W = na ∨ 𝑜 = na

race( , 𝑀, 𝑋, 𝑜)

(fence-helper: non-sc)

 ′ =

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

⟨𝑉rel, 𝑉acq, 𝑉acq⟩ 𝑜F = acq

⟨𝜆_. 𝑉cur, 𝑉cur, 𝑉acq⟩ 𝑜F = rel

⟨𝜆_. 𝑉acq, 𝑉acq, 𝑉acq⟩ 𝑜F = acqrel

⟨⟨𝑉rel, 𝑉cur, 𝑉acq⟩, 𝑆⟩
𝑜F−−→F ⟨ ′, 𝑆⟩

(fence-helper: sc)
𝑆′ =  .acq ⊔ 𝑆

 ′ = ⟨𝜆_. 𝑆′, 𝑆′, 𝑆′⟩

⟨ , 𝑆⟩ sc−−→F ⟨ ′, 𝑆′⟩

Figure IV.7: The full vRC11 model (domains and auxiliary definitions).

view. A thread view is a triple  = ⟨𝑉rel, 𝑉cur, 𝑉acq⟩, where 𝑉rel ∈ Loc → View and
𝑉cur, 𝑉acq ∈ View. We denote by  .cur,  .acq, and  .rel the components of  . Note
that 𝑉rel(𝑋 ) ⊑ 𝑉cur ⊑ 𝑉acq always holds for any 𝑋 throughout the execution.

Thread Configuration Steps Thread configuration steps are defined in Fig. IV.8.
silent, read, write, and racy-read/write steps are naturally extended from the
simple model presented in Fig. IV.4. In the following, we describe the remaining thread
transition rules.

update. The update step first reads a message with a timestamp interval (,𝑡] and
writes a new message with an interval (𝑡,], attaching it to the read message.

racy-update. Since every RMW operation is atomic, we simply exclude RMWs
with a non-atomic access mode by considering them to be racy. Then, similarly to
racy-write step, an atomic RMW with both access modes higher than or equal
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(silent)
𝜎 −→ 𝜎′

⟨⟨𝜎,⟩, 𝑆, 𝑀⟩ −→ ⟨⟨𝜎′,⟩, 𝑆, 𝑀⟩

(read)

𝜎
R(𝑋,𝑜R,𝑣)−−−−−−−→ 𝜎′

𝑚 = ⟨𝑋@(_, _], 𝑣, _, _⟩ ∈ 𝑀  𝑜R,𝑚−−−→R  ′

⟨⟨𝜎,⟩, 𝑆, 𝑀⟩ −→ ⟨⟨𝜎′, ′⟩, 𝑆, 𝑀⟩

(write)

𝜎
W(𝑋,𝑜W,𝑣)−−−−−−−→ 𝜎′

𝑚 = ⟨𝑋@(_, _], 𝑣, _, _⟩ 𝑀#𝑚

 𝑜W,𝜆_.0,𝑚−−−−−−→W  ′ 𝑀 ′ = 𝑀 ∪ {𝑚}

⟨⟨𝜎,⟩, 𝑆, 𝑀⟩ −→ ⟨⟨𝜎′, ′⟩, 𝑆, 𝑀 ′⟩

(update)

𝜎
RMW(𝑋,𝑜R,𝑜W,𝑣R,𝑣W)−−−−−−−−−−−−−→ 𝜎′

𝑚R = ⟨𝑋@(_, 𝑡R], 𝑣R, _, 𝑉𝑟⟩ ∈ 𝑀
𝑚W = ⟨𝑋@(𝑡R, 𝑡W], 𝑣W, _, _⟩ 𝑀#𝑚W

 𝑜R,𝑚R−−−−→R
𝑜W,𝑉𝑟 ,𝑚W−−−−−−→W  ′ 𝑀 ′ = 𝑀 ∪ {𝑚W}

⟨⟨𝜎,⟩, 𝑆, 𝑀⟩ −→ ⟨⟨𝜎′, ′⟩, 𝑆, 𝑀 ′⟩

(racy-read)

𝜎
R(𝑋,𝑜R,_)−−−−−−−→ _

race( , 𝑀, 𝑋, 𝑜R)

⟨⟨𝜎,⟩, 𝑆, 𝑀⟩ −→ ⟨⟨⊥,⟩, 𝑆, 𝑀⟩

(racy-write)

𝜎
W(𝑋,𝑜W,_)−−−−−−−→ _

race( , 𝑀, 𝑋, 𝑜W)

⟨⟨𝜎,⟩, 𝑆, 𝑀⟩ −→ ⟨⟨⊥,⟩, 𝑆, 𝑀⟩

(racy-update)

𝜎
RMW(𝑋,𝑜R,𝑜W,_,_)−−−−−−−−−−−−→ _

𝑜R = na ∨ 𝑜W = na ∨ race( , 𝑀, 𝑋, rlx)

⟨⟨𝜎,⟩, 𝑆, 𝑀⟩ −→ ⟨⟨⊥,⟩, 𝑆, 𝑀⟩

(fence)

𝜎
F(𝑜F)−−−−→ 𝜎′

⟨ , 𝑆⟩ 𝑜F−−→F ⟨ ′, 𝑆′⟩

⟨⟨𝜎,⟩, 𝑆, 𝑀⟩ −→ ⟨⟨𝜎′, ′⟩, 𝑆′, 𝑀⟩

(system call)

𝜎
Sys(𝑒)
−−−−−→ 𝜎′

⟨ , 𝑆⟩ sc−−→F ⟨ ′, 𝑆′⟩

⟨⟨𝜎,⟩, 𝑆, 𝑀⟩
Sys(𝑒)
−−−−−→ ⟨⟨𝜎′, ′⟩, 𝑆′, 𝑀⟩

Figure IV.8: The full vRC11 model (thread transitions).
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(machine: normal)

⟨ (𝜏), 𝑆, 𝑀⟩ 𝑙−→ ⟨𝑇 ′, 𝑆′, 𝑀 ′⟩

⟨ , 𝑆, 𝑀⟩ 𝑙−→ ⟨ [𝜏 ↦ 𝑇 ′], 𝑆′, 𝑀 ′⟩

(machine: ub)
⟨ (𝜏), 𝑆, 𝑀⟩ −→ ⟨⟨⊥, _⟩, 𝑆′, 𝑀 ′⟩

⟨ , 𝑆, 𝑀⟩ −→ ⟨⊥, 𝑆′, 𝑀 ′⟩

Figure IV.9: The full vRC11 model (machine transitions).

rlx is racy if there is a non-atomic message in the location being accessed with the
to-timestamp higher than the thread’s current view.

fence. A fence step updates the thread’s view following fence-helper: non-sc
rule. If a thread executes a sequentially consistent fence, it increases all its views and
SC timemap by incorporating the thread’s acquire view and the SC timemap before
taking the step.

system call. A system call step is similar to the one in Fig. IV.4 except that the
rule here additionally executes an SC fence.

Machine Steps Figure IV.9 presents the machine steps, which are defined just like
in the simple model presented in Fig. IV.4.

15.2 The Full PS
IR

Model

Now, we present the full PSIR model. Compared to the simplified version in §14, the
full model includes RMWs, fences, release sequences, and reservation mechanism. As
before, the following description focuses on these additional notions.

Reservation A reservation 𝑟 = ⟨𝑋@(𝑓 , 𝑡]⟩ ∈ Rsv is a valueless message. A thread can
reserve a timestamp interval of a certain location (reserve rule in Fig. IV.11) in order
to prevent other threads from writing to that interval. Later the thread may cancel its
reservation (cancel rule in Fig. IV.11) and write to the reserved space. A memory is
naturally extended to be a set of messages and reservations.

States Similarly to the full vRC11 model, a machine state ⟨ , 𝑃𝐺, 𝑆, 𝑀⟩ includes an
SC-view 𝑆 ∈ 𝑉 . A thread state is a tuple 𝑇 = ⟨𝜎, , 𝑃 , 𝑅⟩, where 𝑅 is a set of reservations,
and other components are the same as in the full vRC11 model.
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𝑉rel ∈ Loc → View release view
𝑉cur ∈ View current view
𝑉acq ∈ View acquire view
 = ⟨𝑉rel, 𝑉cur, 𝑉acq⟩ thread view
𝑆 ∈ View sc view
𝑃, 𝑃𝐺 ⊆ Loc promises set
𝑟 = ⟨𝑋@(𝑓 , 𝑡]⟩ ∈ Rsv reserve

𝑚 = ⟨𝑋@(𝑓 , 𝑡], 𝑣, 𝑜W, 𝑉 ⟩ ∈ Msg message
𝑅 ⊆ Rsv reserve set
𝑀 ⊆ Msg ∪ Rsv memory
𝑜F ∈ {acq, rel, acqrel, sc} fence access mode
𝑇 = ⟨𝜎, , 𝑃 , 𝑅⟩ ∈ Lts thread state
⟨𝑇 , 𝑃𝐺, 𝑆, 𝑀⟩ thread configuration
⟨ , 𝑃𝐺, 𝑆, 𝑀⟩ machine state

(read-helper)
𝑚 = ⟨𝑋@(_, 𝑡], _, _, 𝑉m⟩

𝑉cur(𝑋 ) ≤ 𝑡 𝑉𝑠 = [𝑋 ↦ 𝑡]
𝑉 ′
cur = 𝑉cur ⊔ 𝑉𝑠 ⊔ (𝑜R ⊒ acq ? 𝑉m)

𝑉 ′
acq = 𝑉acq ⊔ 𝑉𝑠 ⊔ (𝑜R ⊒ rlx ? 𝑉m)

⟨𝑉rel, 𝑉cur, 𝑉acq⟩
𝑜R,𝑚−−−→R ⟨𝑉rel, 𝑉 ′

cur, 𝑉
′
acq⟩

(write-helper)
𝑚 = ⟨𝑋@(𝑓 , 𝑡], _, _, 𝑉m⟩ 𝑓 < 𝑡
𝑉cur(𝑋 ) < 𝑡 𝑉𝑠 = [𝑋 ↦ 𝑡]

𝑉 ′
cur = 𝑉cur ⊔ 𝑉𝑠 𝑉 ′

acq = 𝑉acq ⊔ 𝑉𝑠
𝑉 ′
rel = 𝑉rel[𝑋 ↦ 𝑉rel(𝑋 ) ⊔ 𝑉𝑠 ⊔ (𝑜W ⊒ rel ? 𝑉 ′

cur)]
𝑉m = (𝑜W ⊒ rlx ? (𝑉 ′

rel(𝑋 ) ⊔ 𝑉𝑟))

⟨𝑉rel, 𝑉cur, 𝑉acq⟩
𝑜W,𝑉𝑟 ,𝑚−−−−−→W ⟨𝑉 ′

rel, 𝑉
′
cur, 𝑉

′
acq⟩

(race: promise)
𝑋 ∈ 𝑃𝐺 ⧵ 𝑃

race( , 𝑃 , 𝑃𝐺, 𝑀, 𝑋, 𝑜)

(race: message)
⟨𝑋@(_, 𝑡], _, 𝑜W, _⟩ ∈ 𝑀

 .cur(𝑋 ) < 𝑡 𝑜W = na ∨ 𝑜 = na

race( , 𝑃 , 𝑃𝐺, 𝑀, 𝑋, 𝑜)

(fulfill-helper)
𝑋 ∈ 𝑃

⟨𝑃, 𝑃𝐺⟩
𝑋,𝑜W−−−→ ⟨𝑃 ⧵ {𝑋 }, 𝑃𝐺 ⧵ {𝑋 }⟩

(fence-helper: non-sc)

 ′ =

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

⟨𝑉rel, 𝑉acq, 𝑉acq⟩ 𝑜F = acq

⟨𝜆_.𝑉cur, 𝑉cur, 𝑉acq⟩ 𝑜F = rel

⟨𝜆_.𝑉acq, 𝑉acq, 𝑉acq⟩ 𝑜F = acqrel

⟨⟨𝑉rel, 𝑉cur, 𝑉acq⟩, 𝑆⟩
𝑜F−−→F ⟨ ′, 𝑆⟩

(fence-helper: sc)
𝑆′ =  .acq ⊔ 𝑆  ′ = ⟨𝜆_.𝑆′, 𝑆′, 𝑆′⟩

⟨ , 𝑆⟩ sc−−→F ⟨ ′, 𝑆′⟩

Figure IV.10: The full PSIR model (domains and auxiliary definitions).

Thread Configuration Steps Thread configuration steps are defined in Fig. IV.11.
promise, silent, read, and write steps are naturally extended from the simple PSIR

model presented in Fig. IV.5. Moreover, update, fence, and system call steps are
defined in a similar way to those steps in the full vRC11 model. Accordingly, we
explain the remaining rules for thread step.

reserve and cancel. A thread can reserve an interval (𝑓 , 𝑡] of a location 𝑋 by
simply adding a reservation ⟨𝑋@(𝑓 , 𝑡]⟩ to its reservation set and the memory. Moreover,
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(promise)
𝑋 ∉ 𝑃𝐺

𝑃 ′ = 𝑃 ∪ {𝑋 } 𝑃𝐺′ = 𝑃𝐺 ∪ {𝑋 }

⟨⟨𝜎, , 𝑃 , 𝑅⟩, 𝑃𝐺, 𝑆, 𝑀⟩ −→
⟨⟨𝜎, , 𝑃 ′, 𝑅⟩, 𝑃𝐺′, 𝑆, 𝑀⟩

(reserve)
𝑟 = ⟨𝑋@(𝑓 , 𝑡]⟩ 𝑓 < 𝑡 𝑀#𝑟
𝑅′ = 𝑅 ∪ {𝑟} 𝑀 ′ = 𝑀 ∪ {𝑟}

⟨⟨𝜎, , 𝑃 , 𝑅⟩, 𝑃𝐺, 𝑆, 𝑀⟩ −→
⟨⟨𝜎, , 𝑃 , 𝑅′⟩, 𝑃𝐺, 𝑆, 𝑀 ′⟩

(cancel)
𝑟 ∈ 𝑅

𝑅′ = 𝑅 ⧵ {𝑟}
𝑀 ′ = 𝑀 ⧵ {𝑟}

⟨⟨𝜎, , 𝑃 , 𝑅⟩, 𝑃𝐺, 𝑆, 𝑀⟩ −→
⟨⟨𝜎, , 𝑃 , 𝑅′⟩, 𝑃𝐺, 𝑆, 𝑀 ′⟩

(silent)
𝜎 −→ 𝜎′

⟨⟨𝜎, , 𝑃 , 𝑅⟩, 𝑃𝐺, 𝑆, 𝑀⟩ −→
⟨⟨𝜎′, , 𝑃 , 𝑅⟩, 𝑃𝐺, 𝑆, 𝑀⟩

(read)

𝜎
R(𝑋,𝑜R,𝑣)−−−−−−−→ 𝜎′

𝑚 = ⟨𝑋@(_, _], 𝑣, _, _⟩ ∈ 𝑀
 𝑜R,𝑚−−−→R  ′

⟨⟨𝜎, , 𝑃 , 𝑅⟩, 𝑃𝐺, 𝑆, 𝑀⟩ −→
⟨⟨𝜎′, ′, 𝑃 , 𝑅⟩, 𝑃𝐺, 𝑆, 𝑀⟩

(write)

𝜎
W(𝑋,𝑜W,𝑣)−−−−−−−→ 𝜎′

𝑚 = ⟨𝑋@(_, _], 𝑣, _, _⟩ 𝑀#𝑚

 𝑜W,𝜆_.0,𝑚−−−−−−→W  ′ 𝑀 ′ = 𝑀 ∪ {𝑚}

⟨𝑃, 𝑃𝐺⟩
𝑋,𝑜W−−−→

?
⟨𝑃 ′, 𝑃𝐺′⟩

⟨⟨𝜎, , 𝑃 , 𝑅⟩, 𝑃𝐺, 𝑆, 𝑀⟩ −→
⟨⟨𝜎′, ′, 𝑃 ′, 𝑅⟩, 𝑃𝐺′, 𝑆, 𝑀 ′⟩

(update)

𝜎
RMW(𝑋,𝑜R,𝑜W,𝑣𝑟 ,𝑣𝑤)−−−−−−−−−−−−−→ 𝜎′

𝑚𝑟 = ⟨𝑋@(_, 𝑡𝑟 ], 𝑣𝑟 , _, 𝑉𝑟⟩ ∈ 𝑀
𝑚𝑤 = ⟨𝑋@(𝑡𝑟 , 𝑡𝑤], 𝑣𝑤, _, _⟩ 𝑀#𝑚𝑤

 𝑜R,𝑚𝑟−−−−→R
𝑜W,𝑉𝑟 ,𝑚𝑤−−−−−−→W  ′ 𝑀 ′ = 𝑀 ∪ {𝑚}

⟨𝑃, 𝑃𝐺⟩
𝑋,𝑜W−−−→

?
⟨𝑃 ′, 𝑃𝐺′⟩

⟨⟨𝜎, , 𝑃 , 𝑅⟩, 𝑃𝐺, 𝑆, 𝑀⟩ −→
⟨⟨𝜎′, ′, 𝑃 ′, 𝑅⟩, 𝑃𝐺′, 𝑆, 𝑀 ′⟩

(racy-read)

𝜎
R(𝑋,𝑜R,undef)−−−−−−−−−−→ 𝜎′

race( , 𝑃 , 𝑃𝐺, 𝑀, 𝑋, 𝑜R)

⟨⟨𝜎, , 𝑃 , 𝑅⟩, 𝑃𝐺, 𝑆, 𝑀⟩ −→
⟨⟨𝜎′, , 𝑃 , 𝑅⟩, 𝑃𝐺, 𝑆, 𝑀⟩

(racy-write)

𝜎
W(𝑋,𝑜W,_)−−−−−−−→ _

race( , 𝑃 , 𝑃𝐺, 𝑀, 𝑋, 𝑜W)

⟨⟨𝜎, , 𝑃 , 𝑅⟩, 𝑃𝐺, 𝑆, 𝑀⟩ −→
⟨⟨⊥, ,∅, 𝑅⟩, 𝑃𝐺, 𝑆, 𝑀⟩

(racy-update)

𝜎
RMW(𝑋,𝑜R,𝑜W,_,_)−−−−−−−−−−−−→ _

𝑜R = na ∨ 𝑜W = na∨
race( , 𝑃 , 𝑃𝐺, 𝑀, 𝑋, rlx)

⟨⟨𝜎, , 𝑃 , 𝑅⟩, 𝑃𝐺, 𝑆, 𝑀⟩ −→
⟨⟨⊥, ,∅, 𝑅⟩, 𝑃𝐺, 𝑆, 𝑀⟩

(fence)

𝜎
F(𝑜F)−−−−→ 𝜎′

𝑜F ⊒ sc ⇒ 𝑃 = ∅ ⟨ , 𝑆⟩ 𝑜F−−→F ⟨ ′, 𝑆′⟩

⟨⟨𝜎, , 𝑃 , 𝑅⟩, 𝑃𝐺, 𝑆, 𝑀⟩ −→
⟨⟨𝜎′, ′, 𝑃 , 𝑅⟩, 𝑃𝐺, 𝑆′, 𝑀⟩

(system call)

𝜎
Sys(𝑒)
−−−−−→ 𝜎′

𝑃 = ∅ ⟨ , 𝑆⟩ sc−−→F ⟨ ′, 𝑆′⟩

⟨⟨𝜎, , 𝑃 , 𝑅⟩, 𝑃𝐺, 𝑆, 𝑀⟩
Sys(𝑒)
−−−−−→

⟨⟨𝜎′, ′, 𝑃 , 𝑅⟩, 𝑃𝐺, 𝑆′, 𝑀⟩

Figure IV.11: The full PSIR model (thread transitions)
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(machine: normal)

⟨ (𝜏), 𝑃𝐺, 𝑆, 𝑀⟩ −→∗ 𝑙−→ ⟨𝑇 ′, 𝑃𝐺′, 𝑆′, 𝑀 ′⟩
⟨𝑇 ′, 𝑃𝐺, 𝑆, �̂�⟩ −→∗ ⟨⟨_, _,∅, _⟩, _, _, _⟩

⟨ , 𝑃𝐺, 𝑆, 𝑀⟩ 𝑙−→ ⟨ [𝜏 ↦ 𝑇 ′], 𝑃𝐺′, 𝑆′, 𝑀 ′⟩

(machine: ub)
⟨ (𝜏), 𝑃𝐺, 𝑆, 𝑀⟩ −→+ ⟨⟨⊥, _, _⟩, 𝑃𝐺′, 𝑆′, 𝑀 ′⟩

⟨ , 𝑃𝐺, 𝑆, 𝑀⟩ −→ ⟨⊥, 𝑃𝐺′, 𝑆′, 𝑀 ′⟩

Figure IV.12: The full PSIR model (machine transitions)

the thread can cancel its reservation by removing it from its reservation set and the
memory, so the thread can add other messages to the reserved interval.

racy-read/write/update. Here, racy-write and racy-update steps may
race with a promise unlike these steps in the simple model. Note that there is no
difference whether we allow these steps to race with a promise since the thread that
promised can always perform a non-atomic write to fulfill the promise.

Consistency At every machine step, the thread taking the step should certify its
promises against a capped memory that abstracts the most restrictive possible future
memory. A capped memory �̂� of a memory 𝑀 is given by:

1. For every 𝑚1, 𝑚2 ∈ 𝑀 where 𝑚1.loc = 𝑚2.loc = 𝑋 , 𝑚1.to < 𝑚2.from, and
there is no message 𝑚′ ∈ 𝑀(𝑋 ) such that 𝑚1.to < 𝑚′.to < 𝑚2.to, we include a
reservation ⟨𝑋@(𝑚1.to, 𝑚2.from]⟩ to �̂� .

2. To each location 𝑋 , we include a reservation ⟨𝑋@(𝑡𝑚𝑎𝑥 , 𝑡𝑚𝑎𝑥 + 1]⟩ to �̂� where
𝑡𝑚𝑎𝑥 is the maximal to-timestamp among the messages to 𝑋 .

Note that, given a memory 𝑀 , there always exists a unique capped memory of 𝑀 . A
thread configuration ⟨𝑇 , 𝑃𝐺, 𝑆, 𝑀⟩ is consistent if there exist 𝑇 ′, 𝑃𝐺′, 𝑆′, and 𝑀 ′ such
that:

⟨𝑇 , 𝑃𝐺, 𝑆, �̂�⟩ −→∗ ⟨𝑇 ′, 𝑃𝐺′, 𝑆′, 𝑀 ′⟩ ∧ 𝑇 ′.prm = ∅

where 𝑇 .prm denotes the set of promises of a thread state 𝑇 .

Machine Steps Figure IV.9 presents the machine steps, which are defined just like
in the simple model presented in Fig. IV.4.
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16 Mapping to Hardware

In this section, we consider the compiler mapping of PSIR to hardware: we present
the proposed addition of “strong stores” to hardware models (§16.1); discuss the
implementation of strong stores in existing hardware (§16.2); establish soundness of
mapping PSIR to the extendedmodels (§16.3); and discuss a load-store fence instruction,
an alternative to strong stores (§16.4).

16.1 Strong Stores in Hardware Models

We propose a new store instruction called a “strong store” that preserves load-store
ordering in modern architectures. Strong stores are stronger than a plain hardware
stores but weaker than release stores (or than “lightweight fence”, lwsync, followed
by a plain store, as release stores are implemented on Power). Next, we describe the
proposed extension of the Armv8 and Power models.

Armv8 We define Armv8S as the extension of the Armv8memorymodel [58, 4] with
strong stores. The Armv8memorymodel defines a relation called barrier-ordered-before
(bob), modeling thread-local order of memory accesses that is induced by barriers and
release/acquire accesses. For example, bob includes po ; [L] that corresponds to the fact
that a release store (denoted by L) is never reordered with an earlier instruction in the
program order (denoted by po). In Armv8S, we extend bob to include also [R] ;po ; [S],
where S represents the set of strong stores. This simple modification enforces the
preservation of the order of any load followed by a strong store in the program order.

Power Similarly to Armv8S, we define PowerS by extending the Power memory
model of [5]. Specifically, we propose a modest extension of the “no-thin-air” rule
of the Power consistency predicate that requires acyclicity of ppo ∪ fence ∪ rfe to
include [R] ; po ; [S] as well. Roughly, this constraint forbids load buffering behaviors
when the order of the load followed by the store is preserved by certain dependencies
(ppo) or fences (fence). The PowerS model extends this rule to prevent the load-store
reordering also when the order is preserved by a strong store.

94



16.2 Implementing Strong Stores on Existing Hardware

As discussed in §12.2, the weak behavior of LB-NA has been rarely observed in
practice, despite massive testing on CPU implementations of multiple Arm and Power
architectures. In particular, among the Armv8 and Power implementations that have
been tested in [5, 4], only Qualcomm’s Snapdragon 820 processor exhibited the load
buffering behavior.

To gain more knowledge about the Snapdragon anomaly (and extend the dataset
of [4]), we experimented with a new Snapdragon version. We acquired a Snapdragon
888 (SM8350) processor, and using the Litmus7 (part of DIY7) testing framework,
we ran the 23 basic behavior tests.13 Like other processors and unlike Snapdragon
820, Snapdragon 888 did not exhibit the weak behavior of LB-NA in 6000M runs. For
comparison, weak behaviors of the well-known store buffering (SB) and message
passing (MP) tests were observed in 93% and 0.676% (respectively) of the 6000M runs.
The supplementary material [41] includes the full results for Snapdragon 888.

On all those implementations that do not exhibit load buffering, we believe that
strong stores could be implemented just like plain stores, without any additional
overhead. To validate this claim, we used the Herd7 model checker. We started from
the available tests in the suite of [5, 4], which includes 3,773 tests for Armv814 and
3,116 tests for Power,15 and confirmed that all behaviors that are forbidden by the
strengthened hardware models where every store is strong (i.e., the models obtained
by including [R] ;po ; [W] in the bob relation of Armv8 or the “no-thin-air” constraint of
Power), but allowed by the existing models, were never observed on an implementation
(except for Snapdragon 820). The supplementary material [41] includes the cat files
defining the models, the tests we ran, and the logs of the results.

13http://gallium.inria.fr/~maranget/cats7/model-aarch64/tests.html [Accessed
November 2022].

14https://gallium.inria.fr/~maranget/cats7/model-aarch64/index.html [Accessed
November 2022].

15https://gallium.inria.fr/~maranget/cats7/ppc9/ [Accessed November 2022].
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16.3 Mapping PS
IR

to Hardware

Given strong stores in hardware, the mapping of PSIR to hardware follows the standard
schemes of C/C++ concurrency primitives,16 except that relaxed writes in PSIR are
mapped to strong stores (while non-atomic writes are compiled to plain stores). We do
not assume here that the hardware generally preserves load-store ordering, in which
case, strong stores are not needed at all. In addition, the soundness of the “short-term”
solution (see §12.2), which, in the absence of strong stores, suggests mapping relaxed
writes as if they were release, follows from the discussion below since release writes
are mapped to constructs that provide stronger guarantees than strong stores.

Remark 11. As was observed in [17], to be able to match every out-of-order execution
to an in-order racy execution (which we need for Thm. 11, and Cho et al. [17] need
for LDRF-PF), PSIR has to forbid the reordering of RMWs with subsequent writes.
Then, the mapping of certain RMW instructions to Armv8 requires an extra “fake”
control dependency from the read part of the RMW, so the hardware will not reorder
RMWs with following plain writes (which arise from non-atomic writes in the source).
We refer the reader to [17] for the exact mapping scheme and the (unnoticeable)
performance impact of it. We note that for hardware that preserves load-store ordering
for all stores, this additional fake dependency is not needed.

To formally state the correctness of this mapping, since there are no system calls
in the hardware models, we define the set of outcomes of a program for representing
the final memories obtained after program executions are completed. This notion is
defined for PSIR and Armv8S as follows.

Definition 2. A function 𝑜 ∶ Loc → Val is an outcome of a program 𝑝𝑟𝑜𝑔 under

PSIR if some execution of 𝑝𝑟𝑜𝑔 terminates with a memory 𝑀 (i.e., init(𝑝𝑟𝑜𝑔) −→∗

⟨ , 𝑃𝐺, 𝑀⟩∧terminal(⟨ , 𝑃𝐺, 𝑀⟩)), and 𝑜(𝑋 ) = 𝑣 where ⟨𝑋@𝑡, 𝑣, _, _⟩ ∈ 𝑀 is the message
to 𝑋 with the greatest timestamp 𝑡.

Definition 3. A function 𝑜 ∶ Loc → Val is an outcome of a program 𝑝𝑟𝑜𝑔 under

Armv8S (PowerS) if 𝑜 assigns to every location 𝑋 the value of the co-maximal write to
16http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html [Accessed November 2022].
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𝑋 in some execution graph of 𝑝𝑟𝑜𝑔 that is Armv8S-consistent (PowerS-consistent).17

Using these definitions, the soundness of mapping from PSIR to Armv8S is stated
as follows.

Theorem 12. For a PSIR program 𝑝𝑟𝑜𝑔 , we denote by (|𝑝𝑟𝑜𝑔 |)A the Armv8S program
obtained by mapping 𝑝𝑟𝑜𝑔 as described above. Then, given a program 𝑝𝑟𝑜𝑔 and an
outcome 𝑜 of (|𝑝𝑟𝑜𝑔 |)A under Armv8S, we have that either 𝑜 is an outcome of 𝑝𝑟𝑜𝑔 under
PSIR or 𝑝𝑟𝑜𝑔 has undefined behavior under PSIR (i.e., it has an execution reaching a
machine state of the form ⟨⊥, _, _⟩).

To prove this theorem, we utilized the operational model for Armv8 by Pulte et al.
[59], who also showed (in Coq) its equivalence to the declarative formulation of Armv8.
We extended their operational model with strong relaxed accesses, reestablished the
equivalence of the extended models, and proved (in Coq), using a simulation argument,
that runs of this extended operational model reaching a certain outcome corresponds
to runs of PSIR that yield the same outcome. Note that our result natually applies
to x86-TSO as the operational model for x86-TSO by Cho et al. [16] is stronger than
Armv8S (operational) model where every store is considered as a strong store.

We believe the standard mapping from PSIR to PowerS (with relaxed stores com-
piled as strong stores) is sound as well. Formally establishing the soundness of this
mapping, possibly using the IMM memory model [57], is left as future work.

16.4 Load-store Fences Instead of Strong Stores

As an alternative to strong stores, we may introduce a load-store fence that preserves
the order between all preceding loads with all succeeding stores. With this fence
instruction, a relaxed write in PSIR can be mapped to a load-store fence followed by
a plain hardware store. While strong stores may give a more fine-grained control,
load-store fences have their own benefits. First, they can reduce the pressure to the
instruction set space. Typically, the bit representations of store instructions should
encode lots of information such as a memory address, a value to be stored, an imme-
diate, a memory ordering, and so on. Therefore, introducing a new store ordering

17Intuitively, the coherence order (co), which totally orders the writes to each location, corresponds
to the timestamp order in PSIR.
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(i.e., a strong store) may consume a significant portion of the instruction space. On
the other hand, introducing a fence instruction will require only a small set of bit
representations,18 and thus, it will reduce the pressure to the instruction space. Second,
once load-store fences are used for mapping relaxed writes, we do not need an extra
control dependency for compiling a relaxed RMW instruction to Armv8 architecture.
Indeed, the mapping of a relaxed RMW instruction will place a load-store fence before
the store part of the RMW, which effectively prevents succeeding stores from being
reordered with the load part of the RMW. Note that the mapping of a release RMW
still requires an additional fake dependency (or placement of a loas-store fence before
the store part of the RMW).

17 Proofs

In this section, we provide the pen-and-paper proofs of the results relating vRC11 to
declarative models. §17.1 presents the proof of equivalence between the operational
and declarative presentations of vRC11. Then, we prove Thm. 10 that states vRC11
is stronger than RC11 in §17.2. Note that all the proofs in this section are for the full
vRC11 model including RMWs, fences, and release sequences.

17.1 Equivalence Between vRC11 and the Declarative Presentation

We prove the equivalence between vRC11 and its declarative presentation given
in §13.2 relying on the existing proof of the equivalence between the promise-free
fragment of the promising semantics and its declarative presentation by [33]. To distin-
guish the declarative presentation of vRC11 from vRC11 itself, we call the declarative
model vRC11Axiom.

Before proving the equivalence, we define the following auxiliary relation:

rel = ([Wra] ∪ [F⊒rel] ; po) ; rs (to-be-released)

Then, sw can be expressed as follows:

sw = rel ; rf ; ([Rra] ∪ [R⊒rlx] ; po ; [F⊒acq]) (sync)

18In RISC-V, there already is an instruction reserved for the load-store fence [69]!
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Next, we prove that vRC11 is stronger than vRC11Axiom using the declarative

(operational) machine of vRC11Axiom as in [33]. We extend the declarative machine
of [33] by adding the following race transition that yields UB:

(race)
𝐺 is vRC11Axiom-racy

⟨Σ, 𝐺⟩ −→ ⟨⊥, 𝐺⟩

Note that we assume that the sets of all behaviors of a program 𝑝𝑟𝑜𝑔 in vRC11Axiom
and RC11, denoted by J𝑝𝑟𝑜𝑔KvRC11Axiom and J𝑝𝑟𝑜𝑔KRC11, are defined similarly to vRC11
using the declarative machine of vRC11Axiom and RC11, respectively.

We use the standard simulation technique to show the equivalence between vRC11
and vRC11Axiom. In the following, we define the simulation relation between the two
machines that slightly extends the relation provided in [33, Appendix B].

Definition 4. A timestamp assignment for an execution 𝐺 is a function 𝑓 ∶ W → Time.
A timestamp assignment 𝑓 is extended for sets of write events by 𝑓 (𝐴) = max𝑎∈𝐴 𝑓 (𝑎).

Definition 5. An execution 𝐺 induces the following additional derived relations:
𝐺.rwr = (rf? ; hb ; [Fsc])? ; (sc ; [F])? ; hb? ∪ (rf ; hb?).

Definition 6. An vRC11Axiom machine state ⟨Σ, 𝐺⟩ relates to a vRC11 machine state
 = ⟨ , , 𝑀⟩, denoted by ⟨Σ, 𝐺⟩ ∼ , if the following hold:

• 𝐺 is coherent.

•  is well-formed.

• Σ(𝑖) =  (𝑖).st for every 𝑖 ∈ Tid.

• There exists two timestamp assignments 𝑓from and 𝑓to for 𝐺 for which the following
properties hold:

– For every 𝑋 ∈ Loc and 𝑎, 𝑏 ∈ W𝑋 , we have 𝑓to(𝑎) < 𝑓to(𝑏) iff ⟨𝑎, 𝑏⟩ ∈ mo.

– For every 𝑋 ∈ Loc and 𝑎, 𝑏 ∈ W𝑋 , if ⟨𝑎, 𝑏⟩ ∈ mo ⧵ rf ; rmw, then 𝑓to(𝑎) ≠ 𝑓from(𝑏).

– For every 𝑏 ∈ W, if ⟨𝑎, 𝑏⟩ ∉ mo ⧵ rf ; rmw for all 𝑎, then 𝑓from(𝑏) ≠ 0.

– For every 𝑋 ∈ Loc, 𝑀(𝑋 ) = {𝑚𝑏 | 𝑏 ∈ W𝑋 }, where each 𝑚𝑏 satisfies:
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∗ 𝑚𝑏.val = val(𝑏).

∗ 𝑚𝑏.to = 𝑓to(𝑏) and 𝑚𝑏.from = 𝑓from(𝑏).

∗ 𝑚𝑏.from = 𝑓to(𝑎) if ⟨𝑎, 𝑏⟩ ∈ rf ; rmw.

∗ 𝑚𝑏.mod = mod(𝑏).

∗ For every 𝑦 ∈ Loc, 𝑚𝑏.view(𝑦) = 𝑓to({𝑎 ∈ W𝑦 | ⟨𝑎, 𝑏⟩ ∈ rwr ; rel}).

∗ If 𝑏 ∈ 𝑟𝑎𝑛𝑔𝑒(rmw), mod(𝑏) ⊒ rlx.

– For every 𝑥 ∈ Loc, (𝑋 ) = 𝑓to(Wsc𝑋 ∪ dom([W𝑋 ] ; rf? ; hb ; [Fsc])).

– For every 𝑖 ∈ Tid,  (𝑖) = ⟨Σ(𝑖),𝑖,∅⟩ where 𝑖 satisfies the following conditions
for every 𝑋, 𝑌 ∈ Loc:

∗ 𝑖.rel(𝑌 )(𝑋 ) = 𝑓to(dom([W𝑋 ] ; rwr ; [W⊐ra𝑌 ∪ Frel] ; [E𝑖])).

∗ 𝑖.cur(𝑋 ) = 𝑓to(dom([W𝑋 ] ; rwr ; [E𝑖])).

∗ 𝑖.acq(𝑋 ) = 𝑓to(dom([W𝑋 ] ; rwr ; (rel ; rf ; [R⊐rlx])? ; [E𝑖])).

Using the simulation relation given in Def. 6, we first prove that vRC11 is stronger
than vRC11Axiom.

Lemma 4. Suppose that ⟨Σ, 𝐺⟩ ∼ . If takes a non-racy transition −→ ′ in
vRC11, there exists Σ′ and 𝐺′ such that

1. the vRC11Axiom machine state takes the same transition ⟨Σ, 𝐺⟩ −→ ⟨Σ′, 𝐺′⟩ in
vRC11Axiom; and

2. ⟨Σ′, 𝐺′⟩ ∼ ′.

Proof. It directly follows from the simulation proof done by [33].

Lemma 5. Suppose that ⟨Σ, 𝐺⟩ ∼ ⟨ , 𝑆, 𝑀⟩. If ⟨ , 𝑆, 𝑀⟩ takes a racy transition
⟨ , 𝑆, 𝑀⟩ −→ ′ in vRC11, the vRC11Axiommachine takes a racy transition in vRC11Axiom.

Proof. Suppose that a thread 𝜏 takes a transition racy at a location 𝑋 :

⟨⟨𝜎, ⟨𝑉rel, 𝑉cur, 𝑉acq⟩⟩, 𝑆, 𝑀⟩ −→ ⟨⟨⊥, ⟨𝑉rel, 𝑉cur, 𝑉acq⟩⟩, 𝑆, 𝑀⟩

where  (𝜏) = ⟨𝜎, ⟨𝑉rel, 𝑉cur, 𝑉acq⟩⟩ and the program state 𝜎 transitions by accessing
𝑋 with the access mode 𝑜. It means that there is a message ⟨𝑋@(_, 𝑡], _, 𝑜W, _⟩ ∈ 𝑀 such
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that 𝑉cur(𝑋 ) < 𝑡 and either 𝑜W = na or 𝑜 = na. From the simulation relation on the
memory, there is an event 𝑤 in 𝐺 such that 𝑡 = 𝑓to(𝑤) and mod(𝑤) = 𝑜W. Moreover,
from the simulation relation on the current view and the fact 𝑉cur(𝑋 ) < 𝑡, we obtain
that there is no event 𝑒 ∈ E𝜏 such that ⟨𝑤, 𝑒⟩ ∈ 𝐺.rwr.

Now, we consider three cases where the access by 𝜎 is a read, write, or RMW. If
the access is a read, an vRC11Axiom machine state can always read from 𝑤, resulting in
an vRC11Axiom-consistent graph 𝐺′ by adding a new read event 𝑒𝑟 with loc(𝑒𝑟) = 𝑋
and mod(𝑒𝑟) = 𝑜. Then, it is enough to show that ⟨𝑤, 𝑒𝑟⟩ ∈ raceWW ∪ raceWR. First,
since 𝑤 is a write event, ⟨𝑤, 𝑒𝑟⟩ ∈ [W] ; conflict ; [R]. Then, it is enough to show that
⟨𝑤, 𝑒𝑟⟩ ∉ pb ∪ exec−1. Since the execution of vRC11Axiom machine always add a exec-
maximal event, ⟨𝑤, 𝑒𝑟⟩ ∈ exec, and thus, ⟨𝑤, 𝑒𝑟⟩ ∉ exec−1. If ⟨𝑤, 𝑒𝑟⟩ ∈ pb, there should
be an event 𝑒′ in 𝐺 such that ⟨𝑒′, 𝑒𝑟⟩ ∈ po and ⟨𝑤, 𝑒′⟩ ∈ (rf? ;hb?) ∪ (rf? ;hb ;sc? ;hb?),
which is not possible since it implies that ⟨𝑤, 𝑒′⟩ ∈ 𝐺.rwr.

Next, if the access is a write, an vRC11Axiom machine state can always add a mo-
maximal write. Then, the same argument as in the previous case applies here because
pb does not depend on the mo relation.

Lastly, if the access is an RMW, it is necessary that 𝑜W = na (since there is no
non-atomic RMW). From the simulation relation on the memory, the write 𝑤 is not
written by an RMW (i.e., 𝑏 ∉ 𝑟𝑎𝑛𝑔𝑒(rmw)) since it has the access mode mod(𝑤) = na.
Therefore, the vRC11Axiom machine state can read from the write that is the immediate
predecessor of 𝑤 in mo, adding an event 𝑒𝑢, without breaking the atomicity of RMWs.
Then, as in the read case, one can show that there is a race between 𝑤 and 𝑒𝑢.

Therefore, if ⟨ , 𝑆, 𝑀⟩ takes a racy transition in vRC11, so does ⟨Σ, 𝐺⟩ in vRC11Axiom.

Lemma 6. For any program 𝑝𝑟𝑜𝑔 , J𝑝𝑟𝑜𝑔KvRC11 ⊆ J𝑝𝑟𝑜𝑔KvRC11Axiom .

Proof. By induction on an execution of 𝑝𝑟𝑜𝑔 in vRC11. It follows from Lemma 4 and
Lemma 5.

Next, we prove the opposite direction, vRC11Axiom is stronger than vRC11.

Lemma 7. Suppose that ⟨Σ, 𝐺⟩ ∼ . If ⟨Σ, 𝐺⟩ takes a non-racy transition ⟨Σ, 𝐺⟩ −→
⟨Σ′, 𝐺′⟩ in vRC11Axiom, there exists′ such that
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1. the vRC11 machine state takes the same transition −→ ′ in vRC11; and

2. ⟨Σ′, 𝐺′⟩ ∼ ′.

Proof. As in Lemma 4, it directly follows from the simulation proof done by [33].

Lemma 8. Given a racy execution of a vRC11Axiom declarative machine starting from
an initial machine state, ⟨Σ0, 𝐺0⟩ −→∗ ⟨Σ, 𝐺⟩ −→ ⟨⊥, 𝐺⟩, there exists a minimal racy
execution towards machine states ⟨Σ𝑚𝑖𝑛, 𝐺𝑚𝑖𝑛⟩ and ⟨Σ𝑟𝑎𝑐𝑒 , 𝐺𝑟𝑎𝑐𝑒⟩ such that

1. ⟨Σ0, 𝐺0⟩ −→∗ ⟨Σ𝑚𝑖𝑛, 𝐺𝑚𝑖𝑛⟩ −→ ⟨Σ𝑟𝑎𝑐𝑒 , 𝐺𝑟𝑎𝑐𝑒⟩;

2. 𝐺𝑟𝑎𝑐𝑒 is a sub-graph of 𝐺;

3. 𝐺𝑚𝑖𝑛 is not vRC11Axiom-racy;

4. 𝐺𝑟𝑎𝑐𝑒 adds to 𝐺𝑚𝑖𝑛 an event 𝑏 that races with some event 𝑎 ∈ 𝐺𝑚𝑖𝑛 by ⟨𝑎, 𝑏⟩ ∈
raceWR ∪ raceWW; and

5. The sequence of system calls exhibited by these transitions is a prefix of the
sequence exhibited by ⟨Σ0, 𝐺0⟩ −→∗ ⟨Σ, 𝐺⟩.

Proof. First, there exists the minimal racy prefix of the given execution ⟨Σ0, 𝐺0⟩ −→∗

⟨Σ′, 𝐺′⟩ −→ ⟨Σ′′, 𝐺′′⟩ −→∗ ⟨Σ, 𝐺⟩ where 𝐺′ is not vRC11Axiom-racy and 𝐺′′ is vRC11Axiom-
racy. Suppose that two events 𝑎, 𝑏 ∈ 𝐺′′ are racy (i.e., ⟨𝑎, 𝑏⟩ ∈ raceWR∪raceWW). Then,
we can construct a sequence of transitions ending with a sub-graph 𝐺𝑟𝑎𝑐𝑒 of 𝐺′′ as
follows:

(𝑖) Starting from the initial machine ⟨Σ0, 𝐺0⟩, take transitions to ⟨Σ<𝑎, 𝐺<𝑎⟩ that
add every event related to 𝑎 by 𝐺′′.exec 𝑒 ∈ 𝐺′′.exec−1(𝑎) ≜ { 𝑒 | ⟨𝑒, 𝑎⟩ ∈
𝐺′′.exec }. (Note that 𝑏 ∉ 𝐺′′.exec−1(𝑎) since ⟨𝑏, 𝑎⟩ ∉ 𝐺′′.exec−1.) Since given
a vRC11Axiom-consistent graph 𝐺, its every prefix in exec order is also an
vRC11Axiom-consistent graph, this can be done by picking a exec-minimal
event from 𝐺′′.exec−1(𝑎) and take a transition that adds the event.

(𝑖𝑖) Add a transition that adds 𝑎 to the graph, resulting in an execution ⟨Σ0, 𝐺0⟩ −→∗

⟨Σ<𝑎, 𝐺<𝑎⟩ −→ ⟨Σ≤𝑎, 𝐺≤𝑎⟩.
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(𝑖𝑖𝑖) Similarly to (𝑖), take transitions adding every event related to 𝑏 by exec, result-
ing in an execution ⟨Σ0, 𝐺0⟩ −→∗ ⟨Σ<𝑎, 𝐺<𝑎⟩ −→ ⟨Σ≤𝑎, 𝐺≤𝑎⟩ −→∗ ⟨Σ𝑚𝑖𝑛, 𝐺𝑚𝑖𝑛⟩.

(𝑖𝑣) Finally, take another transition adding 𝑏, ⟨Σ𝑚𝑖𝑛, 𝐺𝑚𝑖𝑛⟩ −→ ⟨Σ𝑟𝑎𝑐𝑒 , 𝐺𝑟𝑎𝑐𝑒⟩, we have
the minimal racy execution satisfying (1)-(4).

In particular, 𝐺𝑟𝑎𝑐𝑒 is racy because 𝐺𝑟𝑎𝑐𝑒 .pb ∪ 𝐺𝑟𝑎𝑐𝑒 .exec−1 ⊆ 𝐺′′.pb ∪ 𝐺′′.exec−1.
Moreover, (5) is satisfied since the system call events are totally ordered by𝐺.exec.

Lemma 9. Given a minimal racy execution ⟨Σ0, 𝐺0⟩ −→∗ ⟨Σ𝑚𝑖𝑛, 𝐺𝑚𝑖𝑛⟩ −→ ⟨Σ𝑟𝑎𝑐𝑒 , 𝐺𝑟𝑎𝑐𝑒⟩
satisfying (1)-(4) of Lemma 8 and an initial vRC11 machine state 0 related by
⟨Σ0, 𝐺0⟩ ∼ 0, there exists 𝑚𝑖𝑛 taking the same transitions and invoking UB,
0 −→∗ 𝑚𝑖𝑛 −→ ⟨⊥, 𝑆,𝑀⟩.

Proof. From Lemma 7, there exists 0 −→∗ 𝑚𝑖𝑛 taking the same transitions as
⟨Σ0, 𝐺0⟩ −→∗ ⟨Σ𝑚𝑖𝑛, 𝐺𝑚𝑖𝑛⟩ and ⟨Σ𝑚𝑖𝑛, 𝐺𝑚𝑖𝑛⟩ ∼ 𝑚𝑖𝑛. It is enough to show that 𝑚𝑖𝑛 =
⟨𝑚𝑖𝑛, 𝑆𝑚𝑖𝑛, 𝑀𝑚𝑖𝑛⟩ can take a racy step to ⟨⊥, 𝑆,𝑀⟩ for some 𝑆 and 𝑀 . Suppose that
the last step in vRC11Axiom, ⟨Σ𝑚𝑖𝑛, 𝐺𝑚𝑖𝑛⟩ −→ ⟨Σ𝑟𝑎𝑐𝑒 , 𝐺𝑟𝑎𝑐𝑒⟩ adds an event 𝑏 that races
with some event 𝑎 ∈ 𝐺𝑚𝑖𝑛 by ⟨𝑎, 𝑏⟩ ∈ raceWR ∪ raceWW, where 𝑏 is executed by a
thread 𝜏. From ⟨Σ𝑚𝑖𝑛, 𝐺𝑚𝑖𝑛⟩ ∼ 𝑚𝑖𝑛, there exists a message 𝑚𝑎 ∈ 𝑀𝑚𝑖𝑛 corresponding
to 𝑎. Since 𝑎 has never been propagated before 𝑏, 𝑉cur(loc(𝑎)) < 𝑡𝑎 = 𝑓to(𝑎) where
 (𝜏) = ⟨𝜎, ⟨𝑉rel, 𝑉cur, 𝑉acq⟩⟩. Now, the program state 𝜎 of the thread 𝜏 is about to
perform a memory access that corresponds to 𝑏. From the fact that ⟨𝑎, 𝑏⟩ ∈ conflict,
the next transition of 𝜎 is accessing loc(𝑎) with an access mode mod(𝑏) where either
one of mod(𝑎) = 𝑚𝑎.mod or mod(𝑏) is non-atomic. Then, the thread configuration
⟨⟨𝜎, ⟨𝑉rel, 𝑉cur, 𝑉acq⟩⟩, 𝑆𝑚𝑖𝑛, 𝑀𝑚𝑖𝑛⟩ can take a racy transition that races with the mes-
sage 𝑚𝑎 ∈ 𝑀𝑚𝑖𝑛 and invoke UB. Therefore,𝑚𝑖𝑛 −→ ⟨⊥, 𝑆𝑚𝑖𝑛, 𝑀𝑚𝑖𝑛⟩.

Lemma 10. For any program 𝑝𝑟𝑜𝑔 , J𝑝𝑟𝑜𝑔KvRC11Axiom ⊆ J𝑝𝑟𝑜𝑔KvRC11.

Proof. It follows from Lemma 7, Lemma 8, and Lemma 9.

Then, the equivalence between vRC11 and vRC11Axiom follows from Lemma 6 and
Lemma 10.

Theorem 13. For any program 𝑝𝑟𝑜𝑔 , J𝑝𝑟𝑜𝑔KvRC11Axiom = J𝑝𝑟𝑜𝑔KvRC11.

103



17.2 Relating vRC11 to RC11

We prove that vRC11 is stronger than RC11 by showing that vRC11Axiom is stronger
than RC11.

The following derived relation is used in defining RC11:

pscF = [Fsc] ; (hb ∪ hb ; eco ; hb) ; [Fsc] (partial-SC-fence-order)

Given the derived relations in §13.2 and above, a consistent execution in RC11 is
defined as follows.

Definition 7. An execution graph 𝐺 is RC11-consistent if the following hold:

• hb ; eco? is irreflexive. (RC11-cohcrence)

• pscF is acyclic. (RC11-sc-fence)

• rmw ∩ (rb ; mo) = ∅. (RC11-atomicity)

• po ∪ rf is acyclic. (RC11-no-LB)

Then, a racy graph in RC11 is defined as follows.

Definition 8. An execution graph 𝐺 is RC11-racy if conflict ⧵ (hb ∪ hb−1) ≠ ∅. A
program 𝑝𝑟𝑜𝑔 has undefined behavior under RC11 if it has some racy RC11-consistent
execution.

Next, we prove that vRC11Axiom is stronger than RC11 by showing that (𝑖) an
vRC11Axiom-consistent graph is RC11-consistent; and (𝑖𝑖) an vRC11Axiom-racy graph
is RC11-racy.

Lemma 11. An vRC11Axiom-consistent execution graph 𝐺 is RC11-consistent.

Proof. We show that 𝐺 satisfies the four axioms of RC11-consistency.

(RC11-coherence) It follows from (coherence) of vRC11Axiom-consistency.

104



(RC11-sc-fence) Since sc is a strict total order on SC fences, it is enough to show
that pscF ⊆ sc. From (RC11-coherence) that we have already proved, it is clear that
pscF is irreflexive. Then, suppose that there are two distinct SC fence events 𝑓1 and
𝑓2 such that ⟨𝑓1, 𝑓2⟩ ∈ pscF and ⟨𝑓1, 𝑓2⟩ ∉ sc. Since sc is a total order, ⟨𝑓2, 𝑓1⟩ ∈ sc.
From (no-LB) of vRC11Axiom, ⟨𝑓1, 𝑓2⟩ ∉ hb since otherwise, sc∪hb ⊆ sc∪rf becomes
cyclic. Therefore, by replacing ecowith an equivalent relation rf∪(mo∪rb) ;rf? [37]
in pscF, we have ⟨𝑓1, 𝑓2⟩ ∈ rf ∨ ⟨𝑓1, 𝑓2⟩ ∈ mo ; rf? ∨ ⟨𝑓1, 𝑓2⟩ ∈ rb ; rf?. If ⟨𝑓1, 𝑓2⟩ ∈ rf,
(no-LB) of vRC11Axiom is violated since ⟨𝑓1, 𝑓1⟩ ∈ rf ; sc. For the other two cases,
(sc-fence) of vRC11Axiom is violated. Therefore, there should be no such SC fence
events 𝑓1 and 𝑓2, and thus, pscF ⊆ sc.

(RC11-atomicity) It follows from (atomicity) of vRC11Axiom-consistency.

(RC11-no-LB) It follows from (no-LB) of vRC11Axiom-consistency.

Lemma 12. If an vRC11Axiom-consistent execution graph 𝐺 is vRC11Axiom-racy, then
it is also RC11-racy.

Proof. It suffices to show that raceWW∪raceWR ⊆ conflict⧵ (hb∪hb−1). From the
definitions of the derived relations, we have hb ⊆ pb and hb ⊆ (po ∪ rf)+ ⊆ exec.
Therefore, raceWW ∪ raceWR ⊆ conflict ⧵ (pb ∪ exec−1) ⊆ conflict ⧵ (hb ∪
hb−1).

The proof of Thm. 10.

Proof. Thm. 10 follows from Lemma 11, Lemma 12, and Thm. 13.

18 Related Work

Our proposal for a concurrency semantics refines, simplifies, and combines existing
ideas: catch-fire and preserving load-store ordering as in RC11 [11, 37, 12], an oper-
ational presentation of RC11 using the promising semantics without promises and
certified promises as a speculation mechanism to allow load-store reordering [33],
justifying compiler optimizations on non-atomics based on sequential reasoning [18]
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(see also [70]), and the operational Arm model as a bridge between the high-level
semantics and the hardware model [59]. We also rely on [5, 4] for the models of Power
and Arm, the experimental data on observed behaviors, the Herd model checker,
and the testing framework; and on [53] for the performance evaluation of different
compilation schemes.

In particular, our PSIR model is inspired by the PSna model in [18]. The most
significant difference between PSIR and PSna is that PSna allows also promises of
relaxed writes, which makes PSna significantly more complex than PSIR. First, in PSna

a thread promises concrete messages with specific timestamp, value, and view, while
PSIR only maintains sets of locations that threads will write to in the future. (This is
possible because promises of PSIR are needed only for race detection.) Second, unlike
PSIR, PSna allows a thread to modify their promises by lowering or splitting them,
complicating the model and the proofs substantially. Lastly, a non-atomic write in
PSIR adds a single message to the memory, while in PSna multiple messages may be
added by a single non-atomic write.

The idea to use an undefined value rather than catch-fire in order to validate load
introduction comes from the LLVM (informal) model. To the best of our knowledge,
the first attempt to apply this approach in a formal model was in [14], where previous
read values can be revisited whenever relevant writes are executed. This requires
a rather complicated event-structure-based model, which does not admit the DRF
guarantee. Later improvements of this model [15, 52] admit DRF but fail to support
load introduction. In turn, our PSIR model (following PSna) applies this approach
together with promises. We are not aware of any previous proof relating an in-order
source model based on catch-fire to an IR model that is based on undefined values.

Other weak memory models were recently proposed (see, e.g., [55, 26, 29]), but
they are all focused on generally allowing load-store reordering, while our models
(both source and IR) allow it only for non-atomic accesses. Notably, supporting load
introduction in these models is rather hard, and besides the promising models (e.g., the
recent version in [18]), we are not aware of any model that fully supports load-store
reordering as well as load introduction. In particular, Jeffrey et al. [29] observe a
tension between the kind of temporal reasoning supported by their model and load
introduction.
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In contrast, other works, e.g., [46, 50], propose SC as a concurrency semantics
for programmers, and study its expected cost (which can be rather high). In turn, we
believe that an in-order model enjoys the advantages of SC (i.e., in-order reasoning),
while allowing for rather minimal performance overhead, provided that catch-fire for
races on non-atomics is acceptable.
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Chapter V

Conclusion

This dissertation thoroughly investigated the conflicting desiderata for relaxedmemory
models, efficiency and usability, and proposed memory models that balance between
them at the minimal price. First, we proposed PS2, the first relaxed memory model
that provably validates inter-thread optimizations while admitting data-race-freedom
guarantees. PS2 redesigned the promising semantics with two key ideas: capped
memory and reservations. In particular, the reservation mechanism also solves the
problem of inefficiency in mapping RMW instructions of the promising semantics to
Armv8 architecture. Second, we developed vRC11, an in-order semantics for relaxed
memory concurrency with only a negligible performance overhead. To validate all
common compiler optimizations performed on non-atomic code, we utilized an out-of-
order model PSIR. Since PSIR is based on PS2, PSIR validates inter-thread optimizations
allowed for the PS2 model. For atomic accesses, we proved that it is inevitable to
prevent the reordering of a (non-atomic) read followed by a relaxed write. We observed
that load-store reordering is only performed by few Arm CPU implementations and
that the performance benefits of this reordering is negligible in the Arm architecture
design. Accordingly, we proposed a new store instruction called a strong store in Arm
for compiling relaxed writes with negligible overhead.

As this dissertation addressed the problem of defining a proper semantics for
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relaxed memory concurrency, the next step forward is to facilitate formal methods in
real-world concurrent programming. In the following, we discuss some of the future
works in this direction.

Modeling unsupported memory orderings. While the models presented in this
disseration include most concurrency features of C/C++, they are still missing con-
sume reads and sequentially consistent accesses. Initially, the purpose of consume is
to provide language support for read-copy-update (RCU) used in Linux kernel [51].
The idea of consume reads is to give a similar guarantee as acquire reads without
any hardware overhead by assuring the ordering only when there is a preserved
dependency from a consume read to a succeeding instruction. We may adapt the idea
of register views in the promising semantics for Armv8 architecture [59] to model
the memory order consume. While Lahav et al. [37] reported a flaw in C11 model
for sequentially consistent (SC) accesses and proposed a remedy, the purpose of SC
accesses and the desired guarantees for them are still remained vague. Therefore, the
practical usage of SC accesses should be investigated before extending the models to
include those accesses.

Extending memory models with more features. Most research in relaxed mem-
ory concurrency assumes only minimal concurrency features such as memory accesses
(with different access modes) and fences while ignoring real-world programming lan-
guage characteristics. In order to facilitate formal methods in real-world concurrent
programming, common language features should be exhaustively captured by the
memory model. Luckily, most of such features are orthogonal to the underlying con-
currency semantics, so existing formal semantics for sequential programs such as
CompCertC [45] can be easily adapted in relaxed memory models. However, some
key programming features like dynamic memory allocation or mixed-size accesses
require considerable support from the memory model to be properly modeled.

Dynamic memory allocation is a key feature in low-level programming languages
like C/C++. However, modeling dynamic allocation in relaxed memory is challenging
due to various compiler optimizations on malloc and free. For instance, to sup-
port reordering of a free instruction with earlier memory reads, the IR memory
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model should allow a thread to “promise” a free instruction. To model dynamic
allocation, one should investigate the programmers’ assumption in concurrent pro-
gramming, common compiler optimizations performed on malloc and free, and
actual implementations of them.

Common architectures allow mixed-size accesses, i.e., memory accesses with vari-
ous sizes (e.g., 4, 8, or 16 bytes). Notably, there has been no weak memory model for
source-level languages that validates practical programming patterns in the Linux
kernel that relies on mixed-size accesses and is efficiently mapped to hardware ar-
chitectures like Armv8 [4]. Development of a source-level semantics for mixed-size
concurrency remains a future work.

Developing a realistic verified compiler. Despite many years of research, no real-
istic verified compiler properly supports relaxed memory concurrency. The challenge
is that verification of real-world compiler optimizations in relaxed memory models is
extremely difficult. Indeed, previous approaches that build on CompCert, a verified
C compiler for single-threaded programs, often gave up the optimization passes of
CompCert even though they assume relatively simpler memory models such as TSO
or sequential consistency [30, 68]. We believe, by extending the approach of [18], it
should be possible to reuse most of the correctness proofs of CompCert passes without
exposing the full complexity of the underlying relaxed memory model. There are a
couple of challenges that should be addressed to extend the soundness of CompCert
to relaxed memory. For example, the sequential machine by Cho et al. [18] should
be generalized to validate memory optimizations that alter the memory layout (e.g.,
merging memory allocations, register promition, and register spilling).
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초록

느슨한 메모리 모델을 정의하는 것은 수십 년 간 프로그래밍 언어 분야의 중요한

난제로 여겨져 왔다. 문제는 느슨한 메모리 모델에 대한 두 가지 주요 요구사항인
사용성과 효율성이 첨예하게 대립하는 데에 기인한다. 사용성은 모델이 상식적이
고이해할수있어야한다는것으로,프로그래머가메모리모델을이용하여동시성
프로그램을 개발하고 논증할 수 있도록 한다. 효율성은 모델을 효율적으로 컴파일
할수있어야한다는것으로,메모리모델이일반적인컴파일러최적화를허용하고,
하드웨어로도효율적으로컴파일될수있어야함을의미한다.이두가지요구사항
은 느슨한 메모리 모델을 설계하는 데 있어 핵심적인 원칙이지만, 두 원칙을 모두
충족하는메모리모델을정의하는것은매우어려운일이다.
본학위논문에서는느슨한메모리모델에요구되는성질을깊게이해하고,여러

요구사항 사이의 본질적인 충돌을 발견하며, 이러한 충돌을 최소한의 비용으로 해
결하는느슨한메모리모델을설계한다.먼저본논문에서는글로벌분석에기반한
컴파일러최적화를지원하는최초의느슨한메모리모델인 PS 2.0모델을제안한다.
PS 2.0은기존모델인 Promising semantics (PS)의핵심요소를새롭게설계하여데
이터경쟁정리를비롯한 PS에대한기존의결과를보장하면서도글로벌값분석을
이용한 최적화 및 레지스터 프로모션을 지원한다. 또한, PS 2.0은 기존 PS의 RMW
연산을 Armv8아키텍처로컴파일할때발생하는비효율성문제를해결하였다.두
번째로 프로그램 명령어를 순서대로 실행하면서도 사실상의 성능 저하를 수반하

지 않는 쉽고 간단한 메모리 모델을 제안한다. 먼저, 순서대로 실행하는 프로그래
밍 언어 모델과 순서를 바꾸어 실행하는 컴파일러 중간 언어 모델을 분리함으로써

프로그래머에게간단한모델을제공하면서도기존컴파일러가수행하는모든컴파

일러 최적화를 지원하는 방법을 고안하였다. 하드웨어로 컴파일할 때는 일부 쓰기
명령어가앞선읽기명령어와순서가바뀌어실행되는것을방지해야하는데,이를
사실성의성능저하없이구현하는방법을소개한다.

주요어:동시성,느슨한메모리모델,실행모델,컴파일러최적화,정형기법
학번: 2017-23151
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