
ConCRIS: Imaginary Specifications for Fine-grained
Concurrency
TAEYOUNG YOON, Seoul National University, Korea
SANGHYUN YI, Seoul National University, Korea
YONGHEE KIM, Seoul National University, Korea
JAEHYUNG LEE, Seoul National University, Korea
YUJIN IM, Seoul National University, Korea
TAEYOUNG RHEE, Seoul National University, Korea
SEONHO LEE, Seoul National University, Korea
YEJI HAN, Seoul National University, Korea
CHUNG-KIL HUR, Seoul National University, Korea

Conditional Refinement with Imaginary Specifications (CRIS) enables placing separation logic assertions at
arbitrary program points, supporting refinement-based and separation-logic-based reasoning. While CRIS
provides benefits for reasoning about programs with I/O behaviors, it only supports sequential programs,
leaving its potential for concurrent verification unrealized.

We present ConCRIS, an extension of CRIS that combines incremental verification of effectful programs
with support for verifying fine-grained concurrent data structures, as in separation logics like Iris. We develop
LAIS, a specification language for ConCRIS, and address several technical challenges that arise from supporting
LAIS: enabling helping mechanisms without step-indexing, developing language-generic prophecy variables,
and modeling multi-node computing environments. We mechanize our theory in Rocq.

1 Introduction
Program verification has evolved through two main paradigms—refinement-based and separation
logic-based approaches—each with distinct advantages for modular verification. Refinement-based
approaches support incremental verification, where correctness is established through a chain of in-
termediate abstractions, and open-setting verification, where programs are verified to work correctly
in any context, including those with unverified components. Separation logic-based approaches
provide ownership-based verification, which tracks exclusive or shared access to resources and
enables modular reasoning about disjoint program components through the frame rule. Building
on both paradigms, Conditional Contextual Refinement (CCR) [26, 27] was recently proposed to
support incremental, open-setting, and ownership-based verification.

CRIS (Contextual Refinement with Imaginary Specifications) [19] generalizes CCR by introduc-
ing imaginary specifications. While CCR provides reasoning principles to function clients solely
through a pair of ownership assertions (i.e., pre- and postconditions) about its behavior, imaginary
specifications generalize them by allowing such ownership assertions to be freely mixed with and
dependent on executable code. This addresses a key limitation of CCR-style specifications: their
inability to express interactions with unverified code that may involve side effects such as I/O
operations or even crashes. By enabling clients to reason about such interactions, CRIS provides
more expressive specifications and powerful reasoning principles while preserving CCR’s support
for incremental, open-setting, ownership-based verification.

Authors’ Contact Information: Taeyoung Yoon, Seoul National University, Korea, taeyoung.yoon@sf.snu.ac.kr; Sanghyun Yi,
Seoul National University, Korea, sanghyun.yi@sf.snu.ac.kr; Yonghee Kim, Seoul National University, Korea, yonghee.kim@
sf.snu.ac.kr; Jaehyung Lee, Seoul National University, Korea, jaehyung.lee@sf.snu.ac.kr; Yujin Im, Seoul National University,
Korea, yujin.im@sf.snu.ac.kr; Taeyoung Rhee, Seoul National University, Korea, taeyoung.rhee@sf.snu.ac.kr; Seonho Lee,
Seoul National University, Korea, seonho.lee@sf.snu.ac.kr; Yeji Han, Seoul National University, Korea, yeji.han@sf.snu.ac.kr;
Chung-Kil Hur, Seoul National University, Korea, gil.hur@sf.snu.ac.kr.

Taeyoung Yoon et al.

Challenge: Extending CRIS to Concurrent Verification. CRIS and CCR only support se-
quential execution, while separation logics like Iris [18] have developed extensive techniques for
reasoning about fine-grained concurrency. Notably, Iris supports higher-order ghost state [15],
logically atomic triples, helping, and prophecy variables [17]—techniques particularly useful when
verifying the linearizability [13] of complex concurrent data structures.

To extend CRIS to support concurrency, a natural approach would be to apply Iris’s concur-
rency techniques to CRIS, following the path taken by ReLoC [9], an Iris-based framework for
refinement-style verification. However, CRIS differs from ReLoC in fundamental ways that make
direct adaptation problematic. Unlike ReLoC, CRIS supports (1) conditional incremental verifica-
tion, enabling transitive reasoning about a module conditional on other modules’ behaviors; (2)
open-setting verification, allowing reasoning about interactions with arbitrary unverified code
possibly involving crashes; and (3) preservation of behaviors including finite or infinite I/O traces.
These differences create incompatibilities with Iris’s techniques. Specifically, CRIS cannot use

step-indexing, which is essential to the support of concurrency in Iris. Step-indexing conflicts with
conditional incremental verification, as observed in prior work [14, 19]. Moreover, side-effectful
behaviors such as I/O operations or crashes cannot be easily encoded as ownership assertions.
Indeed, no satisfactory support of verification for programs with I/O has been presented yet.

Contributions and Paper Structure. This paper presents ConCRIS (Concurrent CRIS), an
extension of CRIS that supports fine-grained concurrent verification while preserving CRIS’s
unique capabilities for conditional incremental verification and open-setting verification as well as
ownership-based reasoning.

After reviewing the background on CRIS (§2), we organize our contributions as:
• Generalized logical atomicity (§3). We develop a flexible generalization of logically atomic

triples: a specialized Hoare triple in Iris that provides the illusion of physical atomicity to the
clients of a fine-grained data structure. Our specification method, logically-atomic imaginary
specification(LAIS), aligns well with CRIS’s support for unverified code and I/O.
• Helping (§4). We develop a novel helping mechanism as a user-level module that enables
helping code involving I/O operations. Helping allows threads to complete operations on
behalf of others, which is essential for verifying helping-based concurrent algorithms.
• Prophecy variables (§5). We develop a user-level module that enables prophecy-based reason-

ing in a language-generic way, allowing it to be linked with arbitrary modules modeling any
programming language. Prophecy variables enable reasoning about future program behavior,
which is crucial for verifying specific concurrent algorithms.
• Hybrid Scheduling and Memory (§6). ConCRIS enables users to freely define custom

scheduling mechanisms and memory models as user-level modules and compose them hierar-
chically. Importantly, we port the memory model and the pre- and postconditions of operations
from iRC11 [6]—a program logic supporting weak memory built on the Iris framework—to
ConCRIS.1 We present examples demonstrating our points.

Finally, we discuss related work and conclude in §7.

2 Background
We review CRIS’s reasoning principles through a simple example. In particular, we introduce two
key components of CRIS: the inlining principle and Assume, Guarantee operators. We assume no
prior knowledge of CRIS.

1Our theories are formalized in the Rocq prover [28]. Some examples are currently incomplete, but will be finalized soon.

ConCRIS: Imaginary Specifications for Fine-grained Concurrency

1 def LP𝐼 (𝑙) ≜ // implementation LP𝐼
2 𝑣 ← load (𝑙) ;
3 print 𝑣 ;
4 return 𝑣 ;

1 def LP𝐴 (𝑙) ≜ // specification LP𝐴
2 𝑣 ← take (Z) ;
3 Assume (𝑙 ↦→ 𝑣) ;
4 print 𝑣 ;
5 Guarantee (𝑙 ↦→ 𝑣) ;
6 return 𝑣 ;

1 // memory specification Mem𝐴
2 def load (𝑙) ≜
3 𝑣 ← take (Z) ;
4 Assume (𝑙 ↦→ 𝑣) ;
5 Guarantee (𝑙 ↦→ 𝑣) ;
6 return 𝑣 ;
7 def store (𝑙, 𝑣) ≜ · · ·
8 def alloc (𝑛) ≜ · · ·
9 def free (𝑙) ≜ · · ·
10 def cas (𝑙, 𝑣𝑜 , 𝑣𝑛) ≜ · · ·

Fig. 1. A simple load-print example.

𝐸core (𝑋) ≜ {take, choose} ⊎ {IO𝑋 fn arg | fn ∈ String, arg ∈ Any} 𝐸state (𝑋) ≜ · · ·

𝐸ctrl (𝑋) ≜ {Call fn arg | fn ∈ String, arg ∈ Any} 𝐸logic (𝑋) ≜ {Assume(𝑃), Guarantee(𝑃) | 𝑃 ∈ iProp}

𝐸mod ≜ 𝐸core ⊎ 𝐸state ⊎ 𝐸ctrl ⊎ 𝐸logic fun ≜ {(fn, body) | fn ∈ String, body ∈ Any→ itree𝐸mod Any}

Mod ≜
{
(fs, init)

�� fs ∈ List fun, init ∈ String fin−−⇀ Any
}

◦ ∈ Mod ×Mod→ Mod

take-src
∀𝑥 ∈ 𝑋 . 𝑡 ≲ 𝐾 𝑥

𝑡 ≲ (𝑥 ← take(𝑋);𝐾 𝑥)

assume-src
𝑃 −∗ 𝑡 ≲ 𝑠

𝑡 ≲ (Assume(𝑃); 𝑠)

choose-src
∃𝑥 ∈ 𝑋 . 𝑡 ≲ 𝐾 𝑥

𝑡 ≲ (𝑥 ← choose(𝑋);𝐾 𝑥)

guarantee-src
𝑃 ∗ 𝑡 ≲ 𝑠

𝑡 ≲ (Guarantee(𝑃); 𝑠)

take-tgt
∃𝑥 ∈ 𝑋 . 𝑡 ≲ 𝐾 𝑥

(𝑥 ← take(𝑋);𝐾 𝑥) ≲ 𝑠

assume-tgt
𝑃 ∗ 𝑡 ≲ 𝑠

(Assume(𝑃); 𝑡) ≲ 𝑠

choose-tgt
∀𝑥 ∈ 𝑋 . 𝑡 ≲ 𝐾 𝑥

(𝑥 ← choose(𝑋);𝐾 𝑥) ≲ 𝑠

guarantee-tgt
𝑃 −∗ 𝑡 ≲ 𝑠

(Guarantee(𝑃); 𝑡) ≲ 𝑠

io
∀𝑥 ∈ 𝑋 . 𝐾𝑡 𝑥 ≲ 𝐾𝑠 𝑥

(𝑥 ← IO𝑋 fn arg;𝐾𝑡 𝑥) ≲ (𝑥 ← IO𝑋 fn arg;𝐾𝑠 𝑥)

inline-tgt
(𝑓 arg >>= 𝐾) ≲ 𝑠 Λ𝑡 (fn) = 𝑓
(Call fn arg >>= 𝐾) ≲ 𝑠

return
(return 𝑣) ≲ (return 𝑣)

Fig. 2. Selected and simplified definitions and simulation rules of CRIS.

2.1 CRIS primer
Fig. 1 has three modules: LP𝐼 , LP𝐴, Mem𝐴.
In CRIS, every program is modeled as interaction trees (ITrees) [33]. ITrees are coinductively

defined data structures for modeling programs that interact with the environment. We omit the
theoretical details of ITrees; readers may view ITrees as a domain specific language with special
operators. These include: take, choose, Assume and Guarantee operators used primarily for speci-
fications, an IO operator to model I/O behaviors of a program, and Call, return operators as usual
call and return. 2

LP𝐼 and LP𝐴. LP𝐼 is a simple function that loads from the given memory location 𝑙 , prints the
value 𝑣 and returns. A specification of LP𝐼 should inform users that: (1) LP𝐼 requires the ownership
of the given location for load to be a safe operation, and (2) prints the value 𝑣 (print 𝑣) read from

2We use IO and print interchangeably, as well as Call and the actual function names (e.g., load).

Taeyoung Yoon et al.

location 𝑙 . LP𝐴 is precisely such a specification. It Assumes the ownership of 𝑙 ↦→𝑣 (Line 3) and prints
the value 𝑣 taken from the resource (Line 4). In this sense, CRIS supports an effective specification
of programs with I/O: we write a specification that freely mixes I/O and separation logic assertions.

Given a specification LP𝐴 for LP𝐼 , we have two aspects regarding LP𝐴, that is: (1) how do we prove
that LP𝐼 satisfies LP𝐴, and (2) how do we use this specification for verification of programs that use
LP𝐼 ? With these two in mind, we illustrate the proof of the simulation relation i.e., LP𝐼 ≲ LP𝐴, a
standard technique for showing contextual refinement LP𝐼 ⊑ctx LP𝐴. This allows clients of LP𝐼 to
link and use LP𝐴, in a sense that will be clarified in the following paragraphs.

Proof of LP𝐼 ≲ LP𝐴. The bottom half of Fig. 2 shows CRIS’s simulation rules. We refer to the
implementation (i.e., the left-hand side of the relation) as the target and the right-hand as the source.

In proving LP𝐼 ≲ LP𝐴, first note that the rule take-src is applicable. LP𝐴 takes an imaginary value
from the context; applying take-src gives us the argument 𝑣 ∈ Z. We must show the continuation
of the simulation relation, for all values 𝑣 that were taken from the context.
The case is similar for the Assume operator in Line 3, with rule assume-src. Assume takes an

ownership of the resource 𝑙 ↦→𝑣 . In establishing the continuing simulation relation LP𝐼 ≲print 𝑣 ; · · ·,
we are given 𝑙 ↦→ 𝑣 , yielding the obligation 𝑙 ↦→ 𝑣 −∗ LP𝐼 ≲ print 𝑣 ; · · ·.

After executing take and Assume operators in the source, the remaining simulation is:
∀𝑣 ∈ Z. 𝑙 ↦→ 𝑣 −∗ (𝑣← load(𝑙); print 𝑣; Ret 𝑣) ≲ (Guarantee(𝑙 ↦→ 𝑣); print 𝑣; Ret 𝑣)

With ownership of 𝑙 ↦→ 𝑣 , we execute the load operation at the target, showing that it is a valid
memory access, via the inlining rule. The principle is straightforward: we substitute the actual
function code load in Mem𝐴 with the function call in LP𝐼 (inline-tgt). In this way, we use the
specification Mem𝐴 against which memory heap implementations are verified. Note the parameter
Λ𝑡 in inline-tgt, a list of inlinable functions.

After substitution, we have take, Assume, Guarantee, respectively, at the target-side. The proof
obligation for take in the target-side, i.e. take-tgt is mathematically dual to take-src. We instan-
tiate a value for v, which represents imaginary argument passing to the load function (in this case,
the value taken via take at line 2 in LP𝐴). We pass the ownership of the points-to predicate via
assume-tgt, and immediately retrieve it via guarantee-tgt. The specification of load ensures
that the returned value 𝑣 is the one we passed from the start.

After executing Guarantee at the source by returning the ownership of 𝑙 ↦→ 𝑣 to the context, we
have a simple remaining goal: (print 𝑣 ; return 𝑣) ≲ (print 𝑣 ; return 𝑣), which is trivial since
both sides are identical. We end the proof by io and return.

Summary. CRIS operationalizes separation logic assertions so that they can be placed in arbitrary
points of a specification. This enables users to (1) perform standard separation logic ownership-based
reasoning in a simulation proof through Assume and Guarantee operators, (2) use specifications
via the inlining principle.

3 Logical Atomicity in Imaginary Specifications
We present a new specification method called logically atomic imaginary specification (LAIS) for
ConCRIS. We use a priority queue as our motivating example (§3.1) and show how it can be specified
in ConCRIS (§3.2).

3.1 Motivating example: a concurrent priority queue
Fig. 3 shows an implementation of a concurrent priority queue [12]. Note theY operators: ConCRIS
models concurrency as cooperative multithreading, whereY is an explicit yield call to the scheduler.

ConCRIS: Imaginary Specifications for Fine-grained Concurrency

1 def PQ.New (range) ≜
2 Y ; 𝑙 ← alloc (range + 1) ;
3 Y ; store (𝑙 , range) ;
4 for (𝑖 = 0 ; 𝑖 < range ; ++𝑖) ;
5 Y ; 𝑏 ← Bin.New () ;
6 Y ; store (𝑙 + 𝑖 + 1 , 𝑏) ;
7 Y ; return 𝑙

8 def PQ.Add (𝑙, 𝑛, 𝑣) ≜
9 Y ; 𝑏 ← load (𝑙 + 𝑛 + 1) ;
10 Y ; 𝑟 ← Bin.Add (𝑏, 𝑣) ;
11 Y ; return 𝑟

12 def PQ.RemoveMin (𝑙) ≜
13 Y ; range ← load (𝑙) ;
14 for (𝑖 = 0 ; 𝑖 < range ; ++𝑖) ;
15 Y ; 𝑏 ← load (𝑙 + 𝑖 + 1) ;
16 Y ; 𝑟 ← Bin.Remove (𝑏) ;
17 if 𝑟 = null then

18 Y ; continue ;
19 else

20 Y ; return 𝑟

21 Y ; return null

Fig. 3. Implementation 𝐼Queue of a concurrent priority queue with fixed range of priorities.

Y enables flexible, fine-grained specification of concurrent data structures, as we demonstrate
below. We defer the formal definition of Y until §6.
A priority queue maintains items where each item has an associated priority. 𝐼Queue provides

three methods: PQ.New for initialization of the queue, PQ.Add for adding an element with priority
𝑛, and PQ.RemoveMin for removing an element with the minimal priority.

PQ.New initializes the queue with priority bound range. It first records the bound at the first entry
of the allocated list (Line 3), then iteratively allocates bins, a multiset of elements, that correspond
to each priority (Lines 4–6). We then have a list 𝑙 of pointers to each bin returned by the PQ.New
method. We assume that a thread-safe (i.e., linearizable) bin module with functions (i.e., Bin.New,
Bin.Add and Bin.Remove) and their specifications similar to Mem𝐴 in Fig. 1 (i.e., a pair of Assume
and Guarantee) is provided.

PQ.Add is simple: it adds 𝑣 to the bin at index 𝑛.
PQ.RemoveMin removes the element in the queue with the highest priority (a smaller index

indicates higher priority), by iteratively checking each priority bin.

Linearizability and logical atomicity. First, note that 𝐼Queue is not linearizable.
Linearizability [12] is a strong, canonical correctness property for concurrent data structures.

Informally, a linearizable data structure ensures that although multiple operations (e.g., push and
pop methods of a stack) may concurrently overlap, each method call has a linearization point where
it behaves as if they are atomically executed at their linearization points.
Linearizability is important since it is easy to reason with invariants. Invariants in separation

logic can be viewed as a global storage that threads access: a thread can claim the resource stored in
the invariant for an operation, but have to show right after that it can re-establish the invariant, so
that other threads can rely on them. inv is a rule that reflects this intuition. For a physically atomic
operation 𝑒 , with the knowledge that 𝑅 is stored as an invariant, i.e., 𝑅 , we are able to access 𝑅
before e and have to establish 𝑅 after 𝑒 .

The strength of linearizability is that we are able to access the invariant between its linearization
point as if it were a physically atomic operation, although it may be composed of multiple steps.

logatom-inv
⟨𝑅 ∗ 𝑃⟩ 𝑒 ⟨𝑣 . 𝑅 ∗𝑄 (𝑣)⟩
𝑅 ⊢ ⟨𝑃⟩ 𝑒 ⟨𝑣 . 𝑄 (𝑣)⟩

inv
{𝑅 ∗ 𝑃} 𝑒 {𝑣 . 𝑅 ∗𝑄 (𝑣)} phys_atomic(𝑒)

𝑅 ⊢ {𝑃} 𝑒 {𝑣 . 𝑄 (𝑣)}

Taeyoung Yoon et al.

Th1

Th2

call PQ.RemoveMin() check for 0: empty check for 1: return 42

call PQ.Add(0, 37) return call PQ.Add(1, 42) return

Fig. 4. A history of invocations and responses that shows why 𝐼Queue is not linearizable.

1 def PQ.New (range) ≜
2 Assume (0 < range) ;
3 Y ;
4 (𝛾, 𝑙) ← choose (gname × Val) ;
5 Guarantee (isPQ𝛾 (range, 𝑙) ∗ PQ𝛾 (∅)) ;
6 return 𝑙 ;

7 def PQ.Add (𝑙, 𝑛, val) ≜
8 (𝛾, range) ← take (gname × N) ;
9 Assume (isPQ𝛾 (𝑟𝑎𝑛𝑔𝑒, 𝑙) ∗ 𝑛 < range) ;
10 Y ;
11 𝑠 ← take ([0..range] → list Val) ;
12 Assume (PQ𝛾 (𝑠)) ;
13 Guarantee (PQ𝛾 (𝑠 [𝑛 := val :: s[n]])) ;
14 Y ; return null ;

15 def PQ.RemoveMin (𝑙, range) ≜
16 (𝛾, range) ← take (gname × N) ;
17 Assume (isPQ𝛾 (range, 𝑙)) ;
18 for (i = 0; i < range ; ++i) {
19 Y ;
20 𝑠 ← take ([0..range] → list Val) ;
21 Assume (PQ𝛾 (𝑠)) ;
22 Guarantee (PQ𝛾 (𝑠 [𝑖 := tail(𝑠 [𝑖])])) ;
23 Y ;
24 match 𝑠 [𝑖] with

25 | [] => continue ;
26 | 𝑣 :: 𝑙 => return 𝑣 ;
27 end

28 }
29 return null ;

Fig. 5. 𝐴Queue: the LAIS of 𝐼Queue.

Given a logically atomic triple (LAT) specifying 𝑒 , denoted ⟨𝑃⟩ 𝑒 ⟨𝑣 . 𝑄 (𝑣)⟩ , observe that logatom-
inv does not require the code 𝑒 to be physically atomic. Regardless of the number of physically
atomic steps 𝑒 takes, logatom-inv allows the user to access the invariant, satisfy its precondition
𝑅 ∗ 𝑃 , and re-establish the invariant from the postcondition 𝑅 ∗𝑄 (𝑣), as if one were applying inv.

Why is 𝐼Queue not linearizable? The key reason 𝐼Queue is not linearizable is that other threads
can intervene during the iterative trials by the remover thread (i.e., during Lines 14–20 in Fig. 3).
Fig. 4 shows a possible non-linearizable history of 𝐼Queue. Right after Th1 observes that the bin at
index 0 is empty, Th2 adds a value 37 at index 0 and then a value 42 at index 1. Then Th1 observes
that the bin at index 1 has 42 and returns it. This behavior would be impossible in any linearizable
history: at whichever point PQ.RemoveMin is executed, it cannot observe emptiness at index 0 and
non-emptiness at index 1 because 37 was added to index 0 before 42 was added to index 1.
Thus, a naive specification of PQ.RemoveMin with LATs would fail to capture the functional

essence of PQ.RemoveMin, i.e. that it tries to remove the minimal element:

removemin-naive
⟨PQ(𝑞)⟩ PQ.RemoveMin(𝑙) ⟨𝑣 .𝑣 = null ∗ PQ(𝑞) ∨ ∃𝑛, 𝑣 = head (𝑞 [𝑛]) ∗ PQ(𝑞 [𝑛 := tail(𝑞 [𝑛])])⟩

Indeed, removemin-naive is a valid specification for any concurrent library which removes an
element from the queue, regardless of the priority.
We end this section by noting that these implementation of a priority queue is known to be

quiescently consistent [8], a relaxed correctness condition weaker than linearizability.

ConCRIS: Imaginary Specifications for Fine-grained Concurrency

inv-access
𝑃
N N ⊆ E (𝑃 ∗ (𝑃 −∗ |⇛E\N E True)) −∗ 𝑡 ≲E\N 𝑠

𝑡 ≲E 𝑠

yield-tgt
𝑡 ≲⊤ (Y; 𝑠)
(Y; 𝑡) ≲⊤ (Y; 𝑠)

yield-src
𝑡 ≲E 𝑠

𝑡 ≲E (Y; 𝑠)

fupd-mon
𝑃 ⊢ 𝑄

|⇛E1 E2 𝑃 ⊢ |⇛E1 E2𝑄

sim-fupd
|⇛E1 E2 𝑡 ≲E2 𝑠

𝑡 ≲E1 𝑠

inv-alloc
N ⊆ E

𝑃 ⊢ |⇛E 𝑃
N

Fig. 6. Rules of ConCRIS related to Y and invariants.

3.2 LAIS to the rescue
We present a new specification called LAIS of 𝐼Queue in Fig. 5. Each LAIS in 𝐴Queue is a specification
of its counterpart in 𝐼Queue. isPQ𝛾 : N × Val → iProp is a persistent i.e., duplicable predicate, that
typically arise in the specification of Iris. isPQ𝛾 (range, 𝑙) states that 𝑙 is a valid pointer to a queue of
size range and 𝛾 is the associated ghost location [16]. It comes with an associated exclusive predicate
PQ𝛾 : ([0..range]3 → list Val) → iProp. Specifically, PQ𝛾 (𝑠) represents the content 𝑠 of the queue
and its ownership, where the ghost location 𝛾 relates the two predicates.

Explanation of PQ.New. We first note that PQ.New of 𝐴Queue may be read as a direct translation
of Hoare triples in separation logic:

∀ range, {0 < range} PQ.New(range) {𝑙 . isPQ(range, 𝑙) ∗ PQ(∅)}
The user of this triple must guarantee the precondition i.e., 0 < range, and can assume ownership
of the two predicates, isPQ and PQ, required for further operations on the queue.

This rely/guarantee reasoning applies in exactly the same way in ConCRIS: the user will inline
PQ.New in their implementation code, which appears in the target side of the simulation, leading to
the application of rule assume-tgt. After dealing with the Y in the target (the rule for this will be
introduced shortly), we run into choose and Guarantee in the target. It is time to reap the benefits:
we achieve the related predicates via rules choose-tgt and guarantee-tgt.

Explanation of PQ.Add. If PQ.New of 𝐴Queue corresponds to Hoare triples in Iris, PQ.Add is a
specification that corresponds to an LAT in Iris:

∀ 𝑙 𝑛 𝑣 range. isPQ(range, 𝑙) ⊢ ⟨𝑠 . PQ(𝑠)⟩ Add(𝑙, 𝑛, range) ⟨PQ(𝑠 [𝑛 := 𝑣 :: 𝑠 [𝑛]])⟩
Before proceeding to explain why PQ.Add in 𝐴Queue corresponds to an LAT in Iris, we first give
rules of ConCRIS related to Y and invariants in Fig. 6.

A brief detour: invariants. First observe that the simulation relation (≲) is annotated with
masks (E). Masks avoid reentrancy of invariants: it would be unsound to claim a resource stored in
the invariant multiple times, as it is the whole point of separation logic to exploit the exclusivity of
resource ownership. Thus the simulation is annotated with masks indicating which invariants can
be opened during the proof of it. That is, we are only allowed to open 𝑃

N and access 𝑃 in proving
𝑡 ≲E 𝑠 , only if N ⊆ E (inv-access) 4.

Of course, we should close the invariants for other threads before yielding to the scheduler. This
obligation is encoded in the rule yield-tgt: to execute the Y at the target, we have to close all

3 [0..range] is a finite set of natural numbers from 0 to range − 1.
4To support higher-order invariants without step-index, we adopt the approach of Nola, i.e., stratified propositions and thus
avoid the later modality. (𝑃 for stratified proposition)

Taeyoung Yoon et al.

the invariants we opened during our operation, i.e., establish ⊤ mask of the simulation relation. A
passionate reader may check that the combination of fupd-mon and sim-fupd, together with the
proposition 𝑃 −∗ |⇛E\N E True we are given in inv-access, enables the ability to close the masks. 5

Back to PQ.Add. Let us now illustrate how to use PQ.Add as a specification. As in §2, a user of
PQ.Add would inline the code into their own code and observe that PQ.Add demands the predicate
isPQ(range, 𝑙) (Lines 8–9). Proving this should be easy since isPQ(range, 𝑙) is a persistent predicate
provided by the PQ.New method. After closing all invariants and removing the Y at the target side,
we see that what essentially remains is a pair of Assume and Guarantee (Lines 11–13) without any
Y between them. This is why our spec PQ.Add corresponds to an LAT in Iris: the user can access
the predicate PQ from opening an invariant, have it updated via the pair of Assume and Guarantee
and close the invariant with the updated predicate after the linearization point. This effectively
provides the user the illusion that PQ.Add is an atomic operation.

Explanation of PQ.RemoveMin. After going through how the user of PQ.Add deals with the
atomic ghost update provided by LAIS of PQ.Add (i.e., Lines 11–13), understanding what reasoning
principles PQ.RemoveMin provides to its user is rather straightforward. The same pattern arises in
Lines 20–22, but repeated range times in PQ.RemoveMin! The user would inline PQ.RemoveMin and
proceed by induction on range: this would require the user to provide PQ for every bin from 0 to
range − 1, which captures the right reasoning principle for the user.

Compared to removemin-naive, a naive specification of PQ.RemoveMin in the LAT style, LAIS
properly specifies PQ.RemoveMin in a natural way. In each trial of Bin.Remove, the algorithm
moves to the next bin only if it checks that the current bin is empty: such decisions are well
reflected in Lines 24–27 in the specification.

4 Helping
In §3, we demonstrated how LAIS enables a natural specification for fine-grained concurrent data
structures (FCDs). However, having the specification as a program in the realm of concurrency raises
a challenge that must be addressed: namely helping. In this section, we explain why supporting
helping is challenging in ConCRIS (§4.1), and provide a thread-local reasoning principle (§4.2).

4.1 What is helping, and why is helping a challenge in ConCRIS?
In §3, we saw how the verification of FCDs is conducted in ConCRIS. It includes proving

correctness properties such as linearizability, since the specification provides the illusion of atomicity
to its users. Usually, such proofs are essentially reduced to identifying the linearization point, and
such points can be determined through thread-local reasoning.
However, there are classes of FCDs whose linearization points cannot be determined locally,

namely FCDs with external linearization points. One well-known example is the elimination-backoff
stack (ES) [11]. Fig. 7 presents an implementation of ES, where details are omitted for simplicity.
Note that ES is the Bin module used by the 𝐼Queue example in §3.1 and that is why we call push and
pop on stack as Bin.Add and Bin.Remove. Also, 𝐼Queue being verified in isolation with our stack
implementation demonstrates the modularity of ConCRIS.

Explanation of the elimination stack. The distinguishing feature of ES is that it employs a
side channel to avoid contention, and this is the main reason its linearization points are external.
Let us examine Bin.Add to see what it does. First, it simply tries to push the value at the head of
the internal linked list via a cas operation (Lines 5–8). The success of cas would imply that no

5We omit the definition and detailed explanations of |⇛E1 E2 modality in the rules, known as fancy updates in Iris.

ConCRIS: Imaginary Specifications for Fine-grained Concurrency

1 module BinI .
2 def Bin.New () ≜ alloc (2)
3 def Bin.Add (𝑙, 𝑣) ≜
4 while (true) {
5 hold ← load (𝑙) ;
6 hnew ← alloc (2) ;
7 store (hnew, 𝑣) ; store (hnew + 1, hold) ;
8 𝑟 ← cas (𝑙, hold, hnew) ; // try push

9 if (𝑟) break ; // success

10 ofr ← alloc (2) ; // try offer

11 store (ofr, 𝑣) ; store (ofr + 1, 0) ;
12 store (𝑙 + 1, ofr) ; store (𝑙 + 1, null) ;
13 𝑟 ← cas (ofr + 1, 0, 2) ; // try revoke

14 if (!𝑟) break ; // success

15 }
16 return null ;

17 def Bin.Remove (𝑙) ≜
18 while (true) {
19 hold ← load (𝑙) ;
20 if (hold = null) continue ;
21 hnext ← load (hold + 1) ; // next head

22 𝑟 ← cas (𝑙, hold, hnext) ; // try pop

23 if (𝑟) { // success pop

24 𝑣 ← load (hold) ; return 𝑣 ;
25 }
26 ofr ← load (𝑙 + 1) ;
27 if (ofr = null) continue ;
28 𝑟 ← cas (ofr + 1, 0, 1) ; // try pop

29 if (𝑟) { // success pop

30 𝑣 ← load (ofr) ; return 𝑣 ;
31 } else { continue ; }
32 }

Fig. 7. Implementation BinI of an elimination-backoff stack (simplified and Ys omitted).

other thread has tried to push or pop an element to the stack and we can safely return, but it is
possible that there is contention and we must retry pushing, since we failed to commit.
In case of such failure, rather than simply repeating the entire process to push onto the stack,

Bin.Add uses the side channel to push the element (Lines 10–13). Observe how the side channel
is being exploited: the first store of Line 12 places an offer on the side channel (store(𝑙 + 1, ofr))
and the second store revokes the offer from the side channel (store(𝑙 + 1, null)). While this may
seem pointless, note that any other thread can be scheduled between two successive stores. This
in turn means that a thread attempting to Bin.Remove from the stack can kick in and take the offer
from the side channel, accomplishing both Bin.Add and Bin.Remove operations at the same time.
It is exactly this case that makes the linearization point non-local. The instant when the thread

invoking Bin.Add realizes that its offer has been taken is when the cas operation of Line 13
fails, while the actual linearization point is the moment when the thread invoking Bin.Remove
successfully took the offer. Specifically, after trying to pop from the linked list and detecting
contention (Lines 19–25), the thread executing Bin.Remove attempts to cas the state of the offer
from 0 to 1 (Lines 26–28). The success of this cas leads to the offer being taken, and thus, the
linearization point of the Bin.Adding thread should be identified with this moment, right before
the linearization point of Bin.Remove.

Call for helping. Now, suppose we are to verify that BinI refines BinA given in Fig. 8 using the
thread-local simulation rules given in Fig. 2 and Fig. 6—we find that the given rules are insufficient!
As explained in §3, such proofs involve identifying the linearization point and updating the ghost
state by executing source-side operations at the instant when the push operation occurs.
However, this is not possible, since there is no way for the helping thread (i.e., Bin.Remove)

to execute the source operations on behalf of the Bin.Adding thread. It would be too late for the
Bin.Adding thread to execute its source ghost updates when it takes control. To summarize, to
support verification of FCDs with external linearization points in ConCRIS, we need a mechanism
to help other threads with their jobs (i.e., to execute the source specifications of other threads).

Although existing binary logic frameworks such as ReLoC have working support for helping, the
nature of ConCRIS makes it difficult to directly adapt these solutions. In short, solutions such as the

Taeyoung Yoon et al.

1 module BinA .
2 def Bin.New () ≜
3 Y ;
4 𝛾 ← choose (gname) ; 𝑙 ← choose (Val) ;
5 Guarantee (isBin𝛾 (𝑙) ∗ Bin𝛾 (∅)) ;
6 return 𝑙

7 def Bin.Add (𝑙, 𝑣) ≜
8 𝛾 ← take (gname) ;
9 Assume (isBin𝛾 (𝑙)) ;
10 Y ;
11 𝑠 ← take (list Val) ;
12 Assume (Bin𝛾 (𝑠)) ;
13 Guarantee (Bin𝛾 (𝑣 :: 𝑠)) ;
14 Y ; return null ;

15 def Bin.Remove (𝑙) ≜
16 𝛾 ← take (gname) ;
17 Assume (isBin𝛾 (𝑙)) ;
18 Y ;
19 𝑠 ← take (list Val) ;
20 Assume (Bin𝛾 (𝑠)) ;
21 Guarantee (Bin𝛾 (tail(𝑠))) ;
22 Y ;
23 match 𝑠 with

24 | 𝑣 :: 𝑙 => return 𝑣 ;
25 | [] => return null ;
26 end

Fig. 8. Specification BinA of BinI (simplified).

1 param IDjob, R : Type .
2 param job : IDjob → itree𝐸help R .
3 module Helpon .
4 var req : list (IDjob × option R)
5 def Help.TryRun(hid) ≜
6 match lookup(req, hid) with

7 | Some (jid, Some ret) =>
8 r ← ret ;
9 | Some (jid, None) =>
10 r ← job(jid) ;
11 req := update(req, hid, (jid, Some 𝑟)) ;
12 | None => choose (∅)
13 end ;
14 return 𝑟 ;

15 def Help.Help () ≜
16 hid ← choose (N) ;
17 Help.TryRun(hid) ;
18 def Help.Run (jid) ≜
19 hid ← length(req) ;
20 req := req ++ [(jid, None)] ;
21 Y ; 𝑟 ← Help.TryRun(hid) ; Y ;
22 return 𝑟 ;

1 module Helpoff .
2 def Help.Run (jid) ≜
3 Y ; r ← job(jid) ;
4 Y ; return 𝑟

5 def Help.Help () ≜ Y

Fig. 9. The helping modules Helpon and Helpoff .

traditional specification-as-resource solution [30, 31] share the specification to be helped through
the invariants. However, sharing our LAIS, which may include arbitrary separation logic assertions
including invariants and quantification on invariants, again in the invariant, introduces essential
circularity that cannot be addressed even by stratified techniques we employ such as Nola [21, 25].

4.2 How did we solve it?
Instead of having a step-indexed logic, we develop an operational solution: the helping module.

Fig. 9 presents two modules, Helpon and Helpoff . As we can infer from their names, Helpon is
a module with its helping ability turned on, while Helpoff has it turned off. The key theorem
establishes refinement between the two modules in the presence of a nondeterministic scheduler:

ConCRIS: Imaginary Specifications for Fine-grained Concurrency

job(𝛾, 𝑣) ≜
𝑠 ← take (list Val) ;
Assume (Bin𝛾 (𝑠)) ;
Guarantee (Bin𝛾 (𝑣 :: 𝑠))

1 module BinM .
2 def Bin.New () ≜
3 · · ·
4 def Bin.Add (𝑙, 𝑣) ≜
5 𝛾 ← take (gname) ;
6 Assume (isBin𝛾 (𝑙)) ;
7 Y ;
8 Help.Run((𝛾, 𝑣)) ;
9 Y ; return null

10 def Bin.Remove (𝑙) ≜
11 𝛾 ← take (gname) ;
12 Assume (isBin𝛾 (𝑙)) ;
13 Y ;
14 Help.Help() ;
15 𝑠 ← take (list Val) ;
16 Assume (Bin𝛾 (𝑠)) ;
17 Guarantee (Bin𝛾 (tail(𝑠))) ;
18 Y ; · · ·

Fig. 10. BinM, the intermediate LAIS of BinI (simplified and omitted).

Theorem 4.1. Helpon ◦ NDSchI ⊑ctx Helpoff ◦ NDSchI
where NDSchI is a scheduler module with nondeterministic scheduling policy. 6

Given Theorem 4.1, our key motto is: Helpon for verification, Helpoff for specification.

Verification side: explanation of Helpon. Let us first focus on the verification side, i.e., Helpon.
Help.Help and Help.Run are the two main methods of Helpon, which provide the helping

functionality to users. Help.Help chooses a help identifier hid for a job it will help with and
attempts to execute it by calling Help.TryRun(hid). On the other hand, Help.Run(jid) first registers
its job, identified by jid, by appending it to the end of the request list req (at index hid), yields to
the scheduler to give other threads a chance to help, and when it regains control, it also attempts to
run the same job registered at index hid, which may have already been helped by another thread
or will be performed by this thread.

Then what does Help.TryRun(hid) do? It looks up the request list req at index hid. If there is a
job jid waiting to be helped (Line 9), it executes the requested job in the form of an ITree, job(jid),
(Line 10) and updates the request list at hid with the return value (Line 11). If the job has already
been completed (Line 7), it simply returns the stored return value (Line 8). We note that the last
case (Line 12) is a dummy case that we can ignore during verification.

Our key idea is as follows: by linking our LAIS with Helpon and inserting method calls in LAIS to
Helpon, we can actually execute the ghost update of other threads, registered in req. More specifically,
instead of directly establishing BinI ⊑ctx BinA, we prove an intermediate refinement between BinI
and BinM (Fig. 10) linked with Helpon—an intermediate LAIS (i.e., BinI ⊑ctx BinM ◦ Helpon).

Specification side: explanation of Helpoff . However, this is not the end of the story. BinM
is not a feasible specification for a stack—for it to be usable, we must be able to show that our
implementation, BinI, actually contextually refines BinA (Fig. 8)! What we have shown is that BinI
only refines BinM ◦ Helpon, a strange module that non-deterministically performs the operations.

This is what exactly Theorem 4.1 provides: an ability to turn off helping via contextual refinement,
i.e., Helpon ⊑ctx Helpoff . Having turned off the ability, what Helpoff does is trivial: Help.Run(jid)
just runs the job, i.e., job(jid), while Help.Help() does nothing but Y.

Note that there is essentially no difference between BinM and BinA. The code of Bin.Add in BinM
is identical to that in BinA except that the code at the ghost update (Line 17) in BinM is replaced
with Help.Run(𝛾, 𝑣). The code of Bin.Remove in BinM is identical to that in BinA except that a call
to Help.Help is added at the linearization point (Line 23) in BinM. In other words, if we replace

6Detailed explanation of NDSchI follows in §6.

Taeyoung Yoon et al.

help-run
∀hid, Pend(hid) −∗ 𝑡 ≲ (Y; 𝑟 ← Help.TryRun(hid); Y; 𝑠 (𝑟))

𝑡 ≲ (𝑟 ← Help.Run(jid); 𝑠 (𝑟))

tryrun-pend
Pend(hid) return () ≲ job(jid) Done(hid, ret) −∗ 𝑡 ≲ 𝑠 (ret)

𝑡 ≲ (Help.TryRun(hid); 𝑠 (𝑟))

tryrun-done
Done(hid, ret) 𝑡 ≲ 𝑠 (ret)

𝑡 ≲ (𝑟 ← Help.TryRun(hid); 𝑠 (𝑟))

pend-excl
Pend(hid) ∗ Pend(hid) ⊢ False

Fig. 11. Reasoning rules for Helpon.

Helpon with Helpoff in BinM using Theorem 4.1, we obtain a module that becomes identical to BinA
after inlining the functions in Helpoff .

Summary. The refinement chain of the overall proof is given as:

BinI ⊑ctx BinM ◦ Helpon ⊑ctx BinM ◦ Helpoff ⊑ctx BinA

where the second refinement is provided by Theorem 4.1 and the third trivial. 7

4.3 The verification of the elimination stack
We consider the proof of Bin.AddI≲ Bin.AddM, which is a part of showing BinI ⊑ctx BinM ◦Helpon
(the first part of the refinement chain), where we use Helpon for helping. As we saw in §3, verification
in ConCRIS largely resembles that of Iris: in this way, we achieve portability of complex proofs and
resource designs already developed. Thus, we refer readers interested in details of the proof to the
well-established literature [18] and focus here on the role of Helpon at a more abstract level.

Prelude (Line 5–8). After achieving the ownership of isBin𝛾 (𝑙) on the source-side (Fig. 10, Line
5–6) by Assume (assume-src), we can execute multiple target-side operations such as load, alloc,
and store. These instructions, appearing in Lines 5–9 in Fig. 7, are attempts to push onto the main
channel: if the cas operation in Line 8 succeeds, this means we have committed our add operation
and must update the ghost state accordingly.

Main channel: success. In case of success, we do not need any help of other threads, and
should execute Assume and Guarantee on our own. Is such ghost update possible when there is
nothing but Help.Run on the source-side? The answer is yes—the simulation rules in Fig. 11 provide
corresponding reasoning principles. Specifically, given the goal simulation:

𝑟 ← cas(𝑙, hold, hnew); · · · ≲E Help.Run(jid); · · ·

we execute the cas operation on the target-side and check that it succeeds. Then we apply help-run
to acquire ownership of Pend(hid), an exclusive right to execute the job allocated for hid. After
executing the initial YE appearing on the source-side without any proof obligation (yield-src),
we are able to apply the rule tryrun-pend. The rest is straightforward: we are able to update the
ghost resources through the execution of job(jid), and we proceed to the continuation with the
receipt that the job is done, i.e., Done(hid, ret) −∗ 𝑡 ≲E 𝑠 (ret).

7The memory Mem𝐴 and scheduler NDSchI modules are omitted.

ConCRIS: Imaginary Specifications for Fine-grained Concurrency

Main channel: failure (Line 10–12). What is interesting is when the cas at Line 8 fails and
Bin.Add attempts to use the side channel. After allocating the offer node through Lines 10–11,
as explained in §4.1, it exposes the offer and waits for some time so that threads attempting to
Bin.Remove can take it (Line 12).

Side channel: offer taken. In a case where such helping occurs, our thread executing Bin.Add
discovers that its offer has been taken in Line 13, when cas fails, but remember, the helper should
also have executed our own ghost update. This is made possible by sharing our Pend(hid) token
through invariants.

Note the rule tryrun-pend. If one owns Pend right before executing Help.TryRun on the source-
side, one is able to execute the job! Thus, the generous thread that acquired the Pend token through
the invariant may actually perform the job and put Done in the invariant to inform other threads
that the offer has been taken, completing the update of the helpee at the right moment.

After observing that someone has taken its offer and the state of the offer is set to 1, the remaining
proof is straightforward. The cas at Line 13 is destined to fail, which allows us to break from the
loop at Line 14 and finish the process. Then on the source-side, since we have acquired Done from
the invariant, we apply tryrun-done to skip the execution of Help.TryRun on the source-side
and terminate the simulation proof. In this way, we are able to show that BinI contextually refines
BinM ◦ Helpon.

Side channel: offer revoked. If the cas operations in Line 13 succeeds, this means that unfortu-
nately no thread has succeeded to take the offer we made. We end our verification by coinductive
reasoning. We note here that our simulation relation supports FreeSim [4], technique to ensure the
soundness of stuttering simulations, although related parameters are omitted throughout the paper.

Summary. We sketched the verification process of Bin.AddI ≲ Bin.AddM and skip the proof of
Bin.RemoveI ≲ Bin.RemoveM, since the most interesting part of the proof is the interaction with
Helpon, but we explained it in previous paragraphs.

A brief proof sketch of Theorem 4.1: to prove Helpon ◦ NDSchI ⊑ctx Helpoff ◦ NDSchI, we reorder
the source-side sequence of scheduled threads. Specifically, when a job is being executed in Helpon
by the helper thread, we schedule the helped thread in Helpoff to execute the job at the same
moment. We refer interested readers to our artifact [2] for further details.

We note that to the best of our knowledge, ConCRIS is the first separation logic based refinement
framework to support helping of I/O operations.

5 Prophecy Variables in ConCRIS
In §4, we showed how the module system enables a global reasoning in a thread-local fashion
through the helping module Helpon. In this section, we present another module for a temporally
global reasoning, namely the prophecy module. We first briefly review the motivations of prophecy
variables and point out shortcomings of previous works (§5.1). We proceed to present our solution
reusable across languages (§5.3) and an interesting countexample of why a naive support of prophecy
variables in ConCRIS is impossible (§5.3).

5.1 What are prophecy variables?
As Abadi and Lamport [1] showed that we need prophecy variables for future-dependent reasoning
for certain type of programs, Jung et al. [17] add support of prophecy in the realm of separation
logic, i.e. Iris, and prove the linearizability of certain FCDs such as RDCSS [10]. In this section, we
employ the introductory example, lazy coins, for a brief overview of prophecy variables in Iris and
demonstration of the usage of our prophecy variables.

Taeyoung Yoon et al.

1 newCoin() ≜
2 let 𝑣 = ref(None);
3 let 𝑝 = Proph.New;
4 {val = 𝑣 ; 𝑝 = 𝑝}

5 readCoin(𝑐) ≜
6 match !𝑐.val with

7 | Some (𝑏) ⇒ 𝑏

8 | None ⇒ let 𝑟 = choose (B) ;
9 𝑐.val = Some (𝑟) ;
10 Resolve 𝑐.𝑝 to 𝑟 ; 𝑟
11 end

Fig. 12. HeapLang Implementation CoinI of lazy coins (excerpt from Jung et al. [17])

Lazy coins. Fig. 12 shows an implementation of a ‘coin’ library, CoinI. We first note that it is
written in HeapLang, an example language of Iris, and not ITrees. This is intentional to show the
benefits regarding language generality we achieve via ITrees, but please ignore this aspect for now.
The library is quite simple: newCoin() allocates a pair of values, and readCoin(𝑐) with coin 𝑐

reads a boolean value from the coin. What is interesting is that the coin is lazily tossed: the coin
value is not determined in newCoin, but in the first readCoin that takes place after newCoin. That
is, if readCoin observes that the toin has not yet been tossed (Line 8), it tosses the coin then. With
this in mind, observe the triples we wish to prove in Iris:

{True} newCoin() {𝑣 .Coin(𝑣)} (newcoin-ht)
{Coin(𝑣)} readCoin() {𝑣 .Coin(𝑣)} (readcoin-ht)

We run into a problem if we try to verify the Hoare triples naively. In verifying newCoin, we
need a mechanism to somehow predict the future and see what the value of the coin will be in the
first toss of readCoin! We will then be able to give the user up front the corresponding Coin(𝑣)
with the value 𝑣 we saw in the future, and when the program actually tosses the coin, the user can
be guaranteed that the tossed value equals the value of the Coin resource.

This is the exact reason of the creation of prophecy variables—if there is an auxilliary variable that
records future nondeterminism of the implementation, we are able to show specific refinements or
Hoare triples that required future-dependent reasoning. Including the verification of linearizability
of RDCSS [10] and Herlihy-Wing queues [13], prophecy variables were deployed for other SL
projects [3, 7, 24] too, proving its usefulness.

{True} Proph.New {𝑝. ∃vs. Proph(𝑝, vs)} (newproph)
{Proph(𝑝, vs)} Resolve 𝑐.𝑝 to 𝑟 {∃vs′ . vs = ((),𝑤) :: vs′ ∗ Proph(𝑝, vs′)} (resolve)

We end this section by proving newcoin-ht with related Hoare triples for prophecy. In proving
newcoin-ht, we take the ownership of 𝑣 ↦→ None and Proph(𝑝, vs) by newproph. It is enough to
define Coin to incorporate two cases: either the coin has not been tossed and it is prophecied to be
tossed to 𝑣 , or the coin has been tossed to 𝑣 . The prophecy variable 𝑝 is essential when switching
from the first case to the second in readCoin: we can exclude the case where the actual value
returned from the coin toss is not 𝑣 , safely guaranteeing that the return value is 𝑣 .

5.2 Decoupling prophecy variables from the programming language
Let us assume a situation where one wants to reason with Iris, about programs written in an
assembly language, say LAsm that requires the use of prophecy variables.

What should be done for it? First of all, note that since Iris is a language-agnostic program logic,
we have to instantiate Iris with LAsm. However, we cannot instantiate Iris with naive LAsm—we first
have to come up with a new language for prophecy! Indeed, HeapLang has augmented language

ConCRIS: Imaginary Specifications for Fine-grained Concurrency

Pro : Type Obs : Type Consistent : Pro × List Obs → Prop

1 module ProphA .
2 def Proph.New (pid : String × Any) ≜
3 Assume (Free({pid})) ;
4 Guarantee (∃ 𝑝. Proph(𝑝, [])) ;
5 return null ;

1 def Proph.Resolve (pid : String × Any, 𝑜 : Obs) ≜
2 (𝑝, 𝑙) ← take (Pro × List Obs) ;
3 Assume (Proph(𝑝, 𝑙)) ;
4 Guarantee (Consistent(𝑝, 𝑜 :: 𝑙) ∗ Proph(𝑝, 𝑜 :: 𝑙)) ;
5 return null ;

Fig. 13. Prophecy module ProphA.

constructs, Proph.New and Resolve 𝑐.𝑝 to 𝑟 for the support of prophecy. Note that the set of values
should be extended for prophecy variables 𝑝 and poison valuesh (a dummy value made for erasing
prophecy operations, which will be explained soon), implying every operations have to be redefined.
There should be an additional mechanism to store prophecy variables in the heap, too. Finally, after
augmenting LAsm for accounting prophecy variables, namely LAsmPrp , we have to define the weakest
precondition connective, a core logical construct of Iris, and prove appropriate reasoning rules for
each operations of LAsmPrp .

As Vistrup et al. [32] pointed out and showed, reusability of the logic across languages is a useful
factor of a verification framework. However, we see that all the tedious proofs and language design
one has to go through for a reasoning with prophecy variables make the current approach in Iris
less scalable. Although the need for this has been identified by Vistrup et al., they left the support
of prophecy variables as a future work, leaving the reusability aspect unsatisfactory.

Prophecy modules. Fig. 13 presents the prophecy module, ProphA of ConCRIS. Recall that in our
treatment of helping, we provided the ability to execute source-side specifications of other threads,
which was enabled by linking helping modules with our own specification and inlining them.

ProphA follows a similar pattern: the user links ProphA with the implementation and inlines the
functions of ProphA to reason with prophecy variables. Note that this is the exact pattern our LAIS
is exploited. The user inlines the spec, gives or takes the ownership of resources via Assume and
Guarantee operators.

For a language-generic support, we parameterize the prophecy module with types of prophecy
variables and observations, Pro and Obs. In this way, we can freely instantiate Obs for any type
of values depending on the language we use, and design Pro accordingly. What connects Pro and
Obs is Consistent. Proph.Resolve guarantees at Line 4 that the observation 𝑜 is consistent with
the prophecy variable 𝑝 we instantiated. For example, in verifying the CoinI example, we could
instantiate both Pro and Obs with boolean type B, and define:

Consistent(𝑝, 𝑙) ≜ 𝑙 = [] ∨ ∃ rest . 𝑙 = rest ++ [𝑝]

After taking the ownership of the prophecy variable Proph(𝑝, []) from Proph.New with empty
history of observations, we are able to predict the future observation by case analysis on 𝑝: the
observation made in the initial readCoin should match the predicted value by the second case of
Consistent. That is, given Consistent(𝑝, [𝑜]), we are able to conclude 𝑝 = 𝑜 .
Besides the parameterization of types Pro and Obs, one notable difference from Iris prophecy

variables is the existence of prophecy identifiers pid. Our Proph.New takes pid of type String × Any
as a unique identifier for the sequence of future observations. Since the user will be inlining

Taeyoung Yoon et al.

1 module ProphI .
2 def Proph.New (pid) ≜
3 return null ;
4 def Proph.Resolve (pid, 𝑜) ≜
5 return null ;

1 module CoinI .
2 def newCoin () ≜
3 𝑙 ← alloc (1) ;
4 Proph.New ((‘coin’, 𝑙)) ;
5 return 𝑙

6 def readCoin (𝑐) ≜ · · ·

1 module CoinO .
2 def newCoin () ≜
3 𝑙 ← alloc (1) ;
4 return 𝑙

5 def readCoin (𝑐) ≜ · · ·

Fig. 14. The erased prophecy module ProphI and our ConCRIS implementation CoinI of lazy coins.

Proph.New in the target-side, it is the obligation of the user to show that 𝑣 is an indeed unique
identifier by proving Free({𝑝}). 8

The reason we let the user designate the identifier of the prophecy variable is to ease the burden
of program annotation for prophecy. Taking a look back to CoinI, we find out that it is not truely
the program we wished to verify—it is annotated with ghost codes that store and read prophecy
variables to associate them with actual program values! In this way, we can resolve the prophecy
variable to the observation made in readCoin, but make the program have different semantics
with the original one, say CoinO. For example, newCoin in CoinI is a program that allocates a pair,
which should have been a singleton in CoinO. If the end goal, namely the safety property of CoinO
is desired, we have to manually prove that the behavior of CoinO, for example, refines CoinI.
Rather than letting the prophecy module generate identifiers for the variable, we let the user

identify prophecies with values that appear in the program, e.g. pointers to data structures. In this
way, we do not have to treat prophecy variables as actual variables and modify the code, but rather
only call Proph.Resolve with appropriate annotations. As we will see with the adequacy theorem
of prophecy modules, this will ease the burden of showing that CoinO is related with CoinI.

5.3 The adequacy of the prophecy module
Suppose we showed that CoinI ◦ ProphA ⊑ctx CoinA in ConCRIS with the help of ProphA. 9 This,
of course, is not the end—what we actually want is: CoinO ⊑ctx CoinA. The missing link here is a
chain of refinement going from CoinO to CoinI ◦ ProphA. Can we fill in the gap?
The answer is yes. Fig. 14 presents the erased prophecy module ProphI. Consider the following

chain of refinements:

CoinO ⊑ctx CoinI ◦ ProphI ⊑ctx CoinI ◦ ProphA ⊑ctx CoinA

We already have the last refinement through reasoning with prophecy. The first refinement is
trivial: observe that CoinI is basically CoinO with appropriate ghost prophecy codes (i.e., calls to
ProphI, which do nothing) inserted. It is in this sense what we meant our prophecy modules ease
the burden of program annotation: insertion of prophecy codes do not change the behavior.
The last piece of the puzzle is left: namely ProphI ⊑ctx ProphA. This is a similar situation we

already saw in §4.2 with helping modules. That is, a local reasoning principle was provided to its
users, and the actual global reasoning was hidden in the refinement proof of each helping modules.
Unfortunately, a naive statement, namely ProphI ⊑ctx ProphA, does not hold in general in ConCRIS.

8Free is a resource designed to represent the unique ownership of the name 𝑝 . We do not present the formal definition here
for space reasons, and refer an interested reader to our Rocq development.
9We omit the specification CoinA module of CoinI, but it will be evident now how CoinA would look like. We refer the
readers to the Rocq development.

ConCRIS: Imaginary Specifications for Fine-grained Concurrency

Intersection and union do not commute. We present the semantic model of take and choose
operators, key operators for the theory of CRIS, to illustrate the problem.

beh(𝑥 ← choose(𝑋); 𝐾 𝑥) ≜
⋃
𝑥∈𝑋

beh(𝐾 𝑥) beh(𝑥 ← take(𝑋); 𝐾 𝑥) ≜
⋂
𝑥∈𝑋

beh(𝐾 𝑥)

The choose operator is a standard nondeterministic operator. The behavior of the program is the
set union of the continuations with all possible values 𝑥 ∈ 𝑋 . The take operator is a mathematical
dual to choose, known as angelic nondeterminism in the literature. The behavior of the program is
the set intersection of all 𝐾 𝑥 .

Essentially, the proof of ProphI ⊑ctx ProphA, or any proofs of the adequacy of prophecy variables,
reduce to pulling nondeterminisms forward from the future. All possible sequences of resolutions
can be thought as if determined with the creation of prophecy variables, i.e. Proph.New, while the
actual resolutions happen far after the creation. However, pulling forward the resolutions in the
presence of take is in general unsound—one may call this phenomena, a prophet’s dilemma.
Consider the following example:

beh
©­­«
𝑏1← take(B);
𝑏2← choose(B);
if(𝑏1 = 𝑏2) IO (42);

ª®®¬ = {IO (42)} beh
©­­«
𝑏1← choose(B);
𝑏2← take(B);
if(𝑏1 = 𝑏2) IO (42);

ª®®¬ = ∅
Suppose we wish to predict the nondeterminism of the first function (i.e.,choose), and thus pulled
forward the choose as in the second function which provides prophecy reasoning to the user early.
The problem here is that the second program has less behavior than the first, which means that
properties proven of the behavior of the second program may not apply to the behavior of the first,
making a future-dependent reasoning unsound.

Our solution. We are not at a dead-end yet: it is still possible to use prophecy variables for
programs that do not have angelic nondeterminism. Indeed, since takes only arise in LAIS and
actual program values in the implementation are what we wish to prophesy, we restore the power
of propehcy variables by an auxilliary compilation function, ↓∈ itree𝐸mod Any→ itree𝐸mod Any,
where ↓ 𝑖 = 𝑖 except for ↓ (𝑥 ← take(𝑋); 𝐾 𝑥) = take(∅). Note that take(∅) exhibits undefined
behavior (i.e., all behaviors including Error), since an indexed intersection with empty set of indices
is the whole set.

Thus our adequacy theorem is as follows:

Lemma 5.1. ∀ctx, (↓ctx) ◦ ProphI ⊑ (↓ctx) ◦ ProphA
Proof. It is possible to extract all resolutions from the implementation given its trace: we

associate the prophecy identifier and resolutions. We refer interested readers to our artifact [2]. □

6 Hybrid Schedulers and Heterogeneous Memory Model
This section presents our scheduler modules that capture multi-node concurrency (§6.1). We also
allow users to define and exploit custom scheduling policies (like round-robin) beyond the standard
nondeterministic approach, which is vital for modeling specialized systems such as embedded
kernels. We provide an example with hybrid schedulers and memory models (§6.2).

6.1 Scheduler as a Module
Metatheory extension. Fig. 15 presents the extended metatheory of ConCRIS (Fig. 2). ITrees
are enriched with two primitive concurrency events: Spawn for thread creation and Yield for
explicit control transfer. The Spawn event returns an identifier for the newly created thread, while

Taeyoung Yoon et al.

𝐸ctrl (𝑋) ≜ · · · ⊎ {Spawn fn arg | fn ∈ String, arg ∈ Any} ⊎ {Yield tid | tid ∈ N}
spawn

∀tid ∈ N. 𝐾𝑡 tid ≲ 𝐾𝑠 tid

(Spawn fn arg >>= 𝐾𝑡) ≲ (Spawn fn arg >>= 𝐾𝑠)

yield
I(𝑠𝑡𝑠 , 𝑠𝑡𝑡) 𝐾𝑡 () ≲ 𝐾𝑠 ()

(Yield tid >>= 𝐾𝑡) ≲ (Yield tid >>= 𝐾𝑠)

Fig. 15. Extended definitions and simulation rules of ConCRIS from CRIS.

1 module NDSchI .
2 var pool : list(N × option Any)
3 var tidcur : N
4 def spawn (fn, arg) ≜
5 stidnew ← Spawn (doSpawn) (fn, arg) ;
6 let mtidnew := len(pool) in

7 put (pool , pool{mtidnew ↦→ (stidnew, None)}) ;
8 return mtidnew ;
9 def doSpawn (fn, arg) ≜ · · ·
10 def yield () ≜
11 mtidnxt ← choose ([0..len (pool)]) ;
12 let stidnxt := fst (pool [mtidnxt]) in

13 put (tidcur , mtidnxt) ;
14 Yield (stidnxt) ;
15 return null ;

1 module RRSchI .
2 var pool : list of (N × option Any)
3 var tidcur : N
4 def spawn(fn, arg) ≜
5 stidnew← Spawn (doSpawn) (fn, arg);
6 let mtidnew := len(pool) in
7 put (pool, pool{mtidnew ↦→ (stidnew,None)});
8 return mtidnew;
9 def doSpawn(fn, arg) ≜ · · ·
10 def yield () ≜
11 let mtidnxt := (tidcur + 1) % len(pool) in

12 let stidnxt := fst (pool [mtidnxt]) in

13 put (tidcur , mtidnxt);
14 Yield (stidnxt);
15 return null;

Fig. 16. Implementation of Scheduler Modules, NDSchI and RRSchI (simplified version).

Yield accepts a natural number identifying the next thread to be scheduled. Crucially, Yield is
deterministic: the next thread is explicitly specified rather than chosen nondeterministically.

This design choice requires justification, as cooperative concurrency typically leaves the sched-
uling decision implicit. The key insight is separation of mechanism from policy. By making the next
thread explicit, the metatheory provides a minimal primitive upon which scheduler modules can
implement arbitrary thread selection policies.

For example, consider what a round-robin scheduler must express: “schedule the thread whose
identifier follows the current thread in the queue”. With nondeterministic Yield, there would be
no way to program a round-robin scheduling policy and give the threads corresponding reasoning
rules, with the intended policy lost in the semantics. The same limitation would apply to priority-
based, fair, or any policy that needs to be distinguished from plain nondeterministic schedulers.
Deterministic Yield thus enables definitions of diverse scheduling strategies.

Scheduler modules. Fig. 16 present two concrete scheduler modules that build on our primitve
events. The NDSch module implements nondeterministic scheduling. It maintains two variables:
pool records system thread identifiers (returned from Spawn) and their return values, while tidcur
stores the currently executing thread’s module-level identifier.
The spawn function creates a thread by invoking a helper doSpawn that executes the given

function and stores its result, then records the thread in the pool and returns its module-level
identifier. The yield function selects an arbitrary thread from the pool and transfers control via
the deterministic Yield primitive.

ConCRIS: Imaginary Specifications for Fine-grained Concurrency

Top-level Sch
(nondeterministic)

Main

(Entry)
Sch.spawn(RRSch, fmain);
Sch.spawn(NDSch, gmain);
Y; // nodes start
return ()

(Entry point)

RRSch

fmain f f

(nondeterministic)

Memory

(Node 0)

NDSch

gmain g

(deterministic)

Memory

(Node 1)

Fig. 17. Structure of the example illustrating the hierarchical scheduler.

The RRSch module implements round-robin scheduling. Its structure mirrors NDSch, but yield
computes the next thread deterministically based on the current thread’s identifier. This difference—
hidden from the users of the schedulermodule—demonstrates how the deterministic Yield primitive
supports multiple scheduling policies.

Reasoning Principles. We provide separation logic style specifications for schedulers: 10

{{Tid ∗ PRE} fn(arg) {𝑣 .Tid} ∗ PRE} NDS.spawn (fn,arg) {𝑣 . ∃mtidnew . 𝑣 = mtidnew} (nds-spawn)
{Tid} NDS.yield () {𝑣 . 𝑣 = () ∗ Tid} (nds-yield){{

Tid ∗ INVInvs++[I]
}
fn(arg) {Tid} ∗ INVInvs

}
RRS.spawn (fn,arg)

{
𝑣 . INVInvs++[I]

}
(rrs-spawn)

{INVI ∗ Ictid} RRS.yield ()
{
𝑣 . 𝑣 = () ∗ INVI ∗ Iprev of ctid

}
(rrs-yield)

To invoke spawn or yield, threadsmust own Tid, which represents exclusive control of execution.
This can be understood as a resource: a thread relinquishes control by giving up the ownership
when yielding, and the scheduled thread acquires it when resumed. The RRSch additionally uses
ownership INV to associate thread-specific invariants with each managed thread, enabling finer-
grained reasoning about scheduler guarantees.

Defining Yield for User Code. One technical challenge remains. The simulation rule yield-tgt
from Fig. 6 allows stepping the target side independently while leaving the source side unchanged.
This rule is essential for verifying concurrent programs, but it cannot be derived from a single
yield call. The issue is that primitive ConCRIS simulation rules for Yield maintain lockstep
correspondence between source and target steps. A single yield call would require simultaneous
progress on both sides, preventing the independent target-side steps that yield-tgt enables.
The solution is to introduce unbounded nondeterminism. We define the user-level Y as:

Y ≜ while(*){ yield() }

The while(*) construct represents nondeterministic iteration (zero ormore executions), allowing
the target to take multiple scheduling steps while the source remains at the yield point. Notably,
while the loop can iterate infinitely in principle, this poses no issue for simulation: ConCRIS’s
refinement relation permits such non-terminating behavior in the target as long as it refines the
source, meaning unbounded yielding remains a valid implementation choice.

Taeyoung Yoon et al.

6.2 Proof with Hierarchical Structured Scheduler
Although Fig. 16 gives readers the intuition for how custom schedulers can be implemented, those
examples do not yet demonstrate hierarchical composition. Fortunately, extending schedulers
for it is straightforward with carefully designed ownership and an additional init function that
manages the thread pool and communicates with the parent scheduler. The wrapped schedulers
mostly maintain the same interface as their non-hierarchical counterparts. We have mechanized
hierarchical extensions of both NDSch and RRSch in our Rocq artifact, where readers can examine
the details. Here, we illustrate the hierarchical approach through a high-level explanation that
demonstrates ConCRIS’s reasoning power.

System structure. Fig. 17 shows the overall architecture of our example system. The entry
point (Main) initializes two nodes: Node 0 uses a round-robin scheduler (RRSch), while Node 1 uses
a nondeterministic scheduler (NDSch). Since nodes can execute in parallel, their interleaving is
modeled by a top-level nondeterministic scheduler.

Round-robin reasoning. Consider Node 0. RRSch acts as the node’s top-level scheduler, pro-
viding each thread with the guarantee that it holds a distinct iProp before yielding. This stronger
assumption enables much finer-grained specifications for functions.
For example, suppose fmain spawns two threads that share a pointer initially storing 0. Each

spawned thread executes function f, which atomically: (1) reads value 𝑣 from the pointer, (2) stores
𝑣 + 1 back to the pointer, and (3) prints (tid − 𝑣) via I/O, where tid is the thread identifier assigned
by RRSch. Because RRSch assigns thread IDs sequentially starting from 0, the I/O is deterministic,
unlike what would occur under NDSch.
Importantly, the top-level scheduler can still yield between any two lines of code, even within

what we consider an "atomic sequence" at Node 0’s level. This preserves parallel execution while
maintaining the reasoning principles afforded by the round-robin policy within the node.

Heterogeneous memory models. The difference between Node 0 and Node 1 reveals another
dimension of ConCRIS’s generality: heterogeneous memory models. Node 0 employs a memory
system that chooses block numbers nondeterministically, while Node 1 uses deterministic allocation.
This demonstrates that ConCRIS can serve as a framework for verifying hierarchical programs
with multiple schedulers, diverse scheduling policies, and even heterogeneous memory models—all
within a unified reasoning system.

We also note that we implemented a variant of the vRC11 [22] memory model with relaxed
memory consistency (RMC) and gave corresponding LAIS to them that largely resembles iRC11 [6]
logic. It is not included in the hierarchical example yet, but incorporating it for multi-node environ-
ment will be straightforward. Moreover, to gain confidence, we verified a message-passing client
on top of vRC11.

7 Related Works
Logical atomicity. Although a naive LAT presented in §3.1 is an underspecification, we note

that it is possible to specify 𝐼Queue by devising a notion of nested LATs and give corresponding
reasoning rules in Iris. However, LAIS provides more benefits over logical atomicity of previous
separation logics [5, 18].

First, LAIS inherits the strengths of CRIS in an open verification. In specifying programs with I/O
or calls to functions that may possibly be unverified, LAIS can concisely specify the behavior of a
concurrent library. For example, think of specifying a function 𝑓 which takes an integer input 𝑛

10They are lockstep simulation rules to execute both function calls at the source and the target, in reality.

ConCRIS: Imaginary Specifications for Fine-grained Concurrency

from the environment and pushes 𝑛 number of elements to a stack. While the LAIS of 𝑓 naturally
specifies this behavior, one should come up with a mechanism such as prophecy variables to fix
the value of 𝑛 up front to correctly identify the number of ghost updates for the specification.

Similar argument applies to verification in programming languages with nondeterministic oper-
ators like our choose. LAIS works seamlessly even if the behaviors of a library depend on such
nondeterminism determined dynamically. Last but not least: LAIS can be again verified to a more
abstract, simplified LAIS, admitting an incremental verification.

Prophecy variables. Detailed explanation of prophecy variables in Iris by Jung et al. [17] is
provided in §5.1. Especially, we support language-generic prophecy variables, which was left as a
future work in Program Logics à la Carte [32].

Reasoning Principles for Concurrency. Iris requires global invariants to hold before physical
atomic operations instantiated in language definitions. Consequently, VMSL [23], which verified
hypervisors under cooperative multitasking, needs tweaking weakest precondition for multiple
instruction reasoning. In contrast, ConCRIS naturally allows users to reason about multiple instruc-
tions between consecutive Ys. Additionally, since physical atomicity is not fixed in the language,
ConCRIS can prove properties when nodes use different languages.

Hierarchical Structure. Distributed systems are representative examples requiring hierarchical
structure. Aneris [20] verified distributed systems by extending HeapLang to AnerisLang with
well-structured semantics and ownership design. Trillium [29] verifies distributed systems based
on intensional refinements using LTS specifications. ConCRIS distinguishes itself by enabling users
to verify hierarchical structures through modular scheduler definitions. Unlike Trillium, ConCRIS
provides specifications that can be linked with other programs, just as CRIS does. Moreover, users
can freely extend both depth and width of application structure without additional modifications,
whereas other approaches require manual extensions beyond the presented 2-depth structure in §6.

References
[1] Martín Abadi and Leslie Lamport. 1991. The existence of refinement mappings. Theoretical Computer Science 82, 2

(May 1991), 253–284. doi:10.1016/0304-3975(91)90224-P
[2] Anonymous. 2025. Artifact for ConCRIS: Imaginary Specifications for Fine-grained Concurrency. Anonymous

submission for double-blind review.
[3] Yun-Sheng Chang, Ralf Jung, Upamanyu Sharma, Joseph Tassarotti, M. Frans Kaashoek, and Nickolai Zeldovich.

2023. Verifying vMVCC, a high-performance transaction library using multi-version concurrency control. In USENIX
Symposium on Operating Systems Design and Implementation. https://api.semanticscholar.org/CorpusID:259265778

[4] Minki Cho, Youngju Song, Dongjae Lee, Lennard Gäher, and Derek Dreyer. 2023. Stuttering for Free. Proceedings of
the ACM on Programming Languages 7, OOPSLA2 (Oct. 2023), 1677–1704. doi:10.1145/3622857

[5] Pedro Da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner. 2014. TaDA: A Logic for Time and Data
Abstraction. In ECOOP 2014 – Object-Oriented Programming. Vol. 8586. Springer Berlin Heidelberg, Berlin, Heidelberg,
207–231. doi:10.1007/978-3-662-44202-9_9 Series Title: Lecture Notes in Computer Science.

[6] Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer. 2020. RustBelt meets relaxed memory.
Proceedings of the ACM on Programming Languages 4, POPL (Jan. 2020), 1–29. doi:10.1145/3371102

[7] Paulo Emílio De Vilhena, François Pottier, and Jacques-Henri Jourdan. 2020. Spy game: verifying a local generic solver
in Iris. Proceedings of the ACM on Programming Languages 4, POPL (Jan. 2020), 1–28. doi:10.1145/3371101

[8] John Derrick, Brijesh Dongol, Gerhard Schellhorn, Bogdan Tofan, Oleg Travkin, and Heike Wehrheim. 2014. Quies-
cent Consistency: Defining and Verifying Relaxed Linearizability. In FM 2014: Formal Methods. Vol. 8442. Springer
International Publishing, Cham, 200–214. doi:10.1007/978-3-319-06410-9_15 Series Title: Lecture Notes in Computer
Science.

[9] Dan Frumin, Robbert Krebbers, and Lars Birkedal. 2021. ReLoC Reloaded: A Mechanized Relational Logic for Fine-
Grained Concurrency and Logical Atomicity. Logical Methods in Computer Science Volume 17, Issue 3 (July 2021), 6598.
doi:10.46298/lmcs-17(3:9)2021

https://doi.org/10.1016/0304-3975(91)90224-P
https://api.semanticscholar.org/CorpusID:259265778
https://doi.org/10.1145/3622857
https://doi.org/10.1007/978-3-662-44202-9_9
https://doi.org/10.1145/3371102
https://doi.org/10.1145/3371101
https://doi.org/10.1007/978-3-319-06410-9_15
https://doi.org/10.46298/lmcs-17(3:9)2021

Taeyoung Yoon et al.

[10] Timothy L. Harris, Keir Fraser, and Ian A. Pratt. 2002. A Practical Multi-word Compare-and-Swap Operation. In
Distributed Computing. Vol. 2508. Springer Berlin Heidelberg, Berlin, Heidelberg, 265–279. doi:10.1007/3-540-36108-
1_18 Series Title: Lecture Notes in Computer Science.

[11] Danny Hendler, Nir Shavit, and Lena Yerushalmi. 2004. A scalable lock-free stack algorithm. In Proceedings of the
sixteenth annual ACM symposium on Parallelism in algorithms and architectures. ACM, Barcelona Spain, 206–215.
doi:10.1145/1007912.1007944

[12] Maurice Herlihy, Nir Shavit, Victor Luchangco, and Michael Spear. 2021. The art of multiprocessor programming
(second edition ed.). Esevier, Morgan Kaufmann Publishers, Cambridge, MA, United States.

[13] Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: a correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems 12, 3 (July 1990), 463–492. doi:10.1145/78969.78972

[14] Chung-Kil Hur, Derek Dreyer, Georg Neis, and Viktor Vafeiadis. 2012. The marriage of bisimulations and Kripke
logical relations. In Proceedings of the 39th annual ACM SIGPLAN-SIGACT symposium on Principles of programming
languages. ACM, Philadelphia PA USA, 59–72. doi:10.1145/2103656.2103666

[15] Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. 2016. Higher-order ghost state. In Proceedings of the 21st
ACM SIGPLAN International Conference on Functional Programming. ACM, Nara Japan, 256–269. doi:10.1145/2951913.
2951943

[16] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the
ground up: A modular foundation for higher-order concurrent separation logic. Journal of Functional Programming 28
(2018), e20. doi:10.1017/S0956796818000151

[17] Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy, Marianna Rapoport, Amin Timany, Derek Dreyer, and Bart Jacobs.
2020. The future is ours: prophecy variables in separation logic. Proceedings of the ACM on Programming Languages 4,
POPL (Jan. 2020), 1–32. doi:10.1145/3371113

[18] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015.
Iris: Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. ACM SIGPLAN Notices 50, 1 (May
2015), 637–650. doi:10.1145/2775051.2676980

[19] Yonghee Kim, Taeyoung Yoon, Sanghyun Yi, Jaehyung Lee, Soonwon Moon, Yeji Han, Seonho Lee, Taeyoung Rhee,
Yujin Im, Donghyun Nam, Jieung Kim, and Chung-Kil Hur. 2025. CRIS: The Power of Imagination in Software Verification.
Technical Report SFLab-2025-001. SFLab. https://sf.snu.ac.kr/technical-reports/files/SFLab-2025-001.pdf

[20] Morten Krogh-Jespersen, Amin Timany, Marit Edna Ohlenbusch, Simon Oddershede Gregersen, and Lars Birkedal.
2020. Aneris: A mechanised logic for modular reasoning about distributed systems. In European Symposium on
Programming. Springer International Publishing Cham, 336–365.

[21] Dongjae Lee, Janggun Lee, Taeyoung Yoon, Minki Cho, Jeehoon Kang, and Chung-Kil Hur. 2025. Lilo: A Higher-Order,
Relational Concurrent Separation Logic for Liveness. Proceedings of the ACM on Programming Languages 9, OOPSLA1
(April 2025), 1267–1294. doi:10.1145/3720525 Publisher: Association for Computing Machinery (ACM).

[22] Sung-Hwan Lee, Minki Cho, Roy Margalit, Chung-Kil Hur, and Ori Lahav. 2023. Putting Weak Memory in Order via
a Promising Intermediate Representation. Proceedings of the ACM on Programming Languages 7, PLDI (June 2023),
1872–1895. doi:10.1145/3591297

[23] Zongyuan Liu, Sergei Stepanenko, Jean Pichon-Pharabod, Amin Timany, Aslan Askarov, and Lars Birkedal. 2023.
VMSL: A Separation Logic for Mechanised Robust Safety of Virtual Machines Communicating above FF-A. Proc. ACM
Program. Lang. 7, PLDI, Article 165 (June 2023), 25 pages. doi:10.1145/3591279

[24] YusukeMatsushita, Xavier Denis, Jacques-Henri Jourdan, and Derek Dreyer. 2022. RustHornBelt: a semantic foundation
for functional verification of Rust programs with unsafe code. In Proceedings of the 43rd ACM SIGPLAN International
Conference on Programming Language Design and Implementation. ACM, San Diego CA USA, 841–856. doi:10.1145/
3519939.3523704

[25] Yusuke Matsushita and Takeshi Tsukada. 2025. Nola: Later-Free Ghost State for Verifying Termination in Iris.
Proceedings of the ACM on Programming Languages 9, PLDI (June 2025), 98–124. doi:10.1145/3729250

[26] Youngju Song and Minki Cho. 2025. CCR 2.0: High-level Reasoning for Conditional Refinements. doi:10.48550/arXiv.
2507.04298 arXiv:2507.04298 [cs].

[27] Youngju Song, Minki Cho, Dongjae Lee, Chung-Kil Hur, Michael Sammler, and Derek Dreyer. 2023. Conditional
Contextual Refinement. Proceedings of the ACM on Programming Languages 7, POPL (Jan. 2023), 1121–1151. doi:10.
1145/3571232 Publisher: Association for Computing Machinery (ACM).

[28] The Rocq Development Team. 2025. The Rocq Prover. doi:10.5281/zenodo.15149629
[29] Amin Timany, Simon Oddershede Gregersen, Léo Stefanesco, Jonas Kastberg Hinrichsen, Léon Gondelman, Abel

Nieto, and Lars Birkedal. 2024. Trillium: Higher-Order Concurrent and Distributed Separation Logic for Intensional
Refinement. Proc. ACM Program. Lang. 8, POPL, Article 9 (Jan. 2024), 32 pages. doi:10.1145/3632851

[30] Aaron J. Turon, Jacob Thamsborg, Amal Ahmed, Lars Birkedal, and Derek Dreyer. 2013. Logical relations for fine-
grained concurrency. In Proceedings of the 40th annual ACM SIGPLAN-SIGACT symposium on Principles of programming

https://doi.org/10.1007/3-540-36108-1_18
https://doi.org/10.1007/3-540-36108-1_18
https://doi.org/10.1145/1007912.1007944
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/2103656.2103666
https://doi.org/10.1145/2951913.2951943
https://doi.org/10.1145/2951913.2951943
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/3371113
https://doi.org/10.1145/2775051.2676980
https://sf.snu.ac.kr/technical-reports/files/SFLab-2025-001.pdf
https://doi.org/10.1145/3720525
https://doi.org/10.1145/3591297
https://doi.org/10.1145/3591279
https://doi.org/10.1145/3519939.3523704
https://doi.org/10.1145/3519939.3523704
https://doi.org/10.1145/3729250
https://doi.org/10.48550/arXiv.2507.04298
https://doi.org/10.48550/arXiv.2507.04298
https://doi.org/10.1145/3571232
https://doi.org/10.1145/3571232
https://doi.org/10.5281/zenodo.15149629
https://doi.org/10.1145/3632851

ConCRIS: Imaginary Specifications for Fine-grained Concurrency

languages. ACM, Rome Italy, 343–356. doi:10.1145/2429069.2429111
[31] Simon Friis Vindum, Dan Frumin, and Lars Birkedal. 2022. Mechanized verification of a fine-grained concurrent queue

from meta’s folly library. In Proceedings of the 11th ACM SIGPLAN International Conference on Certified Programs and
Proofs. ACM, Philadelphia PA USA, 100–115. doi:10.1145/3497775.3503689

[32] Max Vistrup, Michael Sammler, and Ralf Jung. 2025. Program Logics à la Carte. Proceedings of the ACM on Programming
Languages 9, POPL (Jan. 2025), 300–331. doi:10.1145/3704847

[33] Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C. Pierce, and Steve Zdancewic.
2020. Interaction trees: representing recursive and impure programs in Coq. Proceedings of the ACM on Programming
Languages 4, POPL (Jan. 2020), 1–32. doi:10.1145/3371119

https://doi.org/10.1145/2429069.2429111
https://doi.org/10.1145/3497775.3503689
https://doi.org/10.1145/3704847
https://doi.org/10.1145/3371119

	Abstract
	1 Introduction
	2 Background
	2.1 CRIS primer

	3 Logical Atomicity in Imaginary Specifications
	3.1 Motivating example: a concurrent priority queue
	3.2 LAIS to the rescue

	4 Helping
	4.1 What is helping, and why is helping a challenge in ConCRIS?
	4.2 How did we solve it?
	4.3 The verification of the elimination stack

	5 Prophecy Variables in ConCRIS
	5.1 What are prophecy variables?
	5.2 Decoupling prophecy variables from the programming language
	5.3 The adequacy of the prophecy module

	6 Hybrid Schedulers and Heterogeneous Memory Model
	6.1 Scheduler as a Module
	6.2 Proof with Hierarchical Structured Scheduler

	7 Related Works
	References

