
Ph.D. DISSERTATION

End-to-End Verification Supporting
Integer-Pointer Casting

정수-포인터 변환을 포함한 프로그램을
처음부터 끝까지 검증하기

February 2025

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Yonghyun Kim

End-to-End Verification Supporting Integer-Pointer
Casting

정수-포인터 변환을 포함한 프로그램을
처음부터 끝까지 검증하기

지도교수 허 충 길

이 논문을 공학박사학위논문으로 제출함

2024 년 12 월

서울대학교 대학원

컴퓨터공학부

김 용 현

김 용 현의 공학박사 학위논문을 인준함

2024 년 12 월

위 원 장 이 광 근 (인)
부위원장 허 충 길 (인)
위 원 강 지 훈 (인)
위 원 김 지 응 (인)
위 원 이 재 욱 (인)

Abstract

This thesis presents an end-to-end verification method for C programs containing

integer-pointer casts. While previous approaches have developed formal memory

models supporting integer-pointer casts, each has limitations preventing complete

end-to-end verification: they are not designed for end-to-end verification. These

approaches either fail to support important source-level coding patterns, cannot

justify certain compilation passes, or lack a source-level logic for program

verification.

This thesis introduces Archmage, a framework designed for end-to-end

verification of programs containing integer-pointer casts. Archmage supports a

wide range of source-level coding patterns, backend optimizations, and provides

a formal source-level logic for verification. Within the Archmage framework, we

present two systems: CompCertCast, an extension of CompCert that provides a

fully verified compilation chain for programs containing integer-pointer casts,

and Archmage logic, a source-level logic for reasoning about integer-pointer casts.

We demonstrate the effectiveness of our approach by minimizing the overhead

of formally supporting integer-pointer casts in CompCertCast, and by verifying

examples including an xor-based linked-list.

Keywords: Integer-Pointer Casting, Compiler, CompCert, Separation Logic,

Coq, Formal Verification

Student Number: 2017-22945

i

Contents

Abstract i

Chapter 1 Prologue 1

1.1 Introduction . 1

1.2 Background . 2

1.2.1 CompCert . 2

Chapter 2 Introduction: Towards End-to-End Verification Sup-

porting Integer-Pointer Casting 7

Chapter 3 Overview of Contributions 12

3.1 The Memory Model Archmage 12

3.2 CompCertCast: Reconciling CompCert with Archmage 15

3.3 Archmage Logic . 17

Chapter 4 The Memory Model Archmage 21

4.1 The Definition of Archmage . 21

Chapter 5 CompCertCast: Reconciling CompCert with Arch-

mage 28

ii

5.1 Modifying CompCert to Support Integer-Pointer Casts 29

5.1.1 Mixed Simulations and Memory Relations 30

5.1.2 External Call Axioms . 34

5.1.3 Other Minor Modifications to the CompCert Infrastructure 35

5.2 Identifying and Alleviating Performance Overhead 36

5.2.1 Cast Propagation: Replacing Uses of Pointers with Integers 36

5.2.2 Flagging Stack Casts to Enable Stack-Local Optimizations 38

5.3 The Lower Bound Improvement: Generating

CompCert-Asm with Fully Physical Pointers 40

5.4 Implementation . 41

Chapter 6 Archmage Logic 44

6.1 The Predicates and Rules of Archmage Logic 45

6.2 Case Study 1: Proving Correctness of a Xor-Based Linked List

with Archmage Logic . 50

6.3 Case Study 2: Proving Correctness of a Simple Pointer Hardening

with Archmage Logic . 57

Chapter 7 Discussion and Related Works 62

Chapter 8 Conclusion and Future Work 68

8.1 Conclusion . 68

8.2 Future Work . 69

Acknowledgements 76

요약 78

iii

List of Figures

Figure 1.1 Type definitions for CompCert Logical Memory. 5

Figure 1.2 Selected and simplified rules for the semantics of Logical

Memory. 6

Figure 3.1 A code fragment illustrating integer-pointer casting with

one-past-the-end pointers. 13

Figure 3.2 An example of decreasing register pressure via applying

cast propagation. 16

Figure 3.3 A code fragment to illustrate the use of Archmage logic. 18

Figure 4.1 Type definitions for Archmage. 22

Figure 4.2 Selected and simplified rules for the semantics of Archmage. 27

Figure 5.1 Part of the definition of the function val_intptrM , for the

case where the first argument is a pointer (b, ofs) and the

second is an integer i. In this case, val_intptrM checks

whether (b, ofs) has the integer representation i through

toIntM (defined in Fig. 4.2). 30

iv

Figure 5.2 An example application of common subexpression elimi-

nation, which may only take place after replacing p with

i on line 4 through cast propagation. 37

Figure 5.3 An example illustrating the need to carefully define the

semantics of load. The right code snippet is the result of

applying cast propagation on the left code snippet. . . . 37

Figure 5.4 A small program that takes as argument a pointer p and

writes to p. 39

Figure 5.5 The additional compilation passes applied by CompCert-

Cast, indicated by the dotted box. Our new passes copy

and cast propagation, and the lower bound improvement

are highlighted. 42

Figure 6.1 User-level predicates, command rules, and selected rules

for predicates in Archmage logic. 46

Figure 6.2 Snippets of an xor-list implementation, showing the code

for struct node and the function delete_hd. 51

Figure 6.3 Correctness specifications for the functions add_hd, add_tl,

delete_hd, and delete_hd. 52

Figure 6.4 Pre- and postconditions generated at each step of the

proof when verifying delete_hd in Archmage logic. The

program code is black, the pre- and postconditions are

blue, and changes introduced to the predicates at each

step of the proof are highlighted in red. 54

Figure 6.5 A code fragment illustrating a simple function main that

is a client of the xor-list defined in xorlist.h. 56

Figure 6.6 Snippets of Simplified Pointer Hardening Example. . . . 57

v

Figure 6.7 Correctness specifications for the functions encode, decode,

bar, and foo. 58

Figure 6.8 Pre- and postconditions generated at each step of the

proof when verifying foo and bar in Archmage logic. The

program code is black, the pre- and postconditions are

blue, and changes introduced to the predicates at each

step of the proof are highlighted in red. 59

vi

Chapter 1

Prologue

1.1 Introduction

Integer-to-pointer casting is a common technique used in low-level C system

programming, making the verification of such programs an important chal-

lenge. While various formal methods supporting integer-pointer casts have been

proposed, existing approaches have limitations in end-to-end verification: they

either fail to support important source-level coding patterns [1, 2], cannot justify

certain compiler optimizations [3], or lack source-level methods for program

verification [4, 5].

In this thesis, we present Archmage, a framework that enables end-to-end

verification of C programs containing integer-pointer casts. The framework

addresses two key aspects of end-to-end verification: compiler verification and

program verification. The first contribution, presented in §5, is CompCertCast,

a verified C compiler supporting integer-pointer casts. Built as an extension of

CompCert, it ensures the correct compilation of C programs containing integer-

1

pointer casts from source code to assembly level. The second contribution,

presented in §6, is Archmage logic, a program logic for verifying C programs

with integer-pointer casts. This logic extends conventional separation logic and

is sufficiently expressive to verify complex implementations, such as XOR-based

doubly linked lists. Both systems are founded on a unified memory model called

Archmage (§4), specifically designed for end-to-end verification.

This thesis draws heavily on the work and writing in the following paper: [6]

The background on CompCert, a formally verified C compiler that serves as

our foundation, is described in detail §1.2.

1.2 Background

This section provides helpful background knowledge for understanding the

concepts presented in this thesis. Since Archmage builds upon CompCert for its

compiler verification we focus on CompCert’s core principles and architecture.

Readers who are already familiar with CompCert’s proof techniques and memory

model may skip to the next section.

1.2.1 CompCert

CompCert, the first verified C compiler, has been adopted by several end-to-end

verification projects [2, 7, 8] for compiler verification. In this subsection, we first

provide a high-level overview of CompCert and explain the techniques used to

prove compilation correctness. We then examine CompCert’s Logical memory

model, which has influenced many C formal memory models.

2

CompCert’s Architecture

CompCert compiles C source code into assembly code. During compilation,

CompCert uses 8 intermediate languages and executes 20 compilation passes.

CompCert’s compilation passes include important optimizations commonly

found in modern compilers, such as dead code elimination, function inlining,

and register allocation. Each compilation pass has been proven to be "correct".

The following paragraphs explain the definition of compiler correctness and the

techniques CompCert uses to prove it.

Compiler Correctness. Compiler correctness in CompCert (and many other com-

piler verification approaches) is defined via the concept of behavioral refinement.

That is, CompCert states that a compiler is "correct" if a source program SRC

compiles into a target program TGT, and the set of behaviors of the target

(denoted as Beh(TGT)) is a subset of the behaviors of the source (Beh(SRC)). A

program’s behavior refers to the trace—either finite or infinite—of I/O events,

such as system calls, that occur during program execution.

CompCert establishes behavioral refinement through showing simulation

holds between the source SRC and the target TGT. Specifically, CompCert

employs two types of simulations: forwards simulation and backwards simulation.

Intuitively, when interpreting both SRC and TGT as state transition systems,

a forwards simulation states for each execution step in the source program

(SRC), the target program (TGT) has corresponding steps it can take while

triggering the same event. More formally, this concept is captured in Eqn. (1.1)

for source-level states stSRC and st ′SRC, target-level states stTGT and st ′TGT, a

relation R, an event ev , and silent steps τ :

3

∀(stSRC, stTGT) ∈ R, ∀ev , st ′SRC, stSRC
ev
↪→ st ′SRC =⇒

∃st ′TGT, stTGT
τ
↪→∗ ev

↪→ τ
↪→∗

st ′TGT ∧ (st ′SRC, st
′
TGT) ∈ R .

(1.1)

Similarly, Backwards simulation also relates execution steps between source

and target programs, but establishes that for each execution step in the target

program (TGT), the source program (SRC) must be able to take correspond-

ing steps while triggering the same event. The formal definition of backwards

simulation is presented in Eqn. (1.2).

∀(stSRC, stTGT) ∈ R, ∀ev , st ′TGT, stSRC
ev
↪→ st ′TGT =⇒

∃st ′SRC, stSRC
τ
↪→∗ ev

↪→ τ
↪→∗

st ′SRC ∧ (st ′SRC, st
′
TGT) ∈ R .

(1.2)

Forwards simulation provides a more practical approach to compiler verifica-

tion, though it guarantees behavioral refinement only when the target language is

deterministic. 1 CompCert primarily employs forwards simulation in its verifica-

tion process, and §5 of this dissertation will discuss alternative proof techniques

that can serve as replacements for forward simulation.

The Logical Memory Model of CompCert

The memory model serves as a central component of CompCert’s architecture.

A distinctive feature of CompCert is that all of its languages—C, Assembly,

and the intermediate languages—share the same memory model. Therefore,

understanding this memory model is essential for comprehending CompCert’s

features. Using fig. 1.1 and fig. 1.2, we will examine CompCert’s logical memory

model in detail.

Definition of the Memory Model. In CompCert’s logical memory model, memory

(Mem) consists of a finite set of memory blocks, each identified by a unique
1More precisely, this requires a receptive source and determinate [9] target language.

4

M ∈ Mem
def
= BlockID

fin−⇀ Block

b ∈ BlockID
def
= N sz ∈ Size

def
= N v ∈ Val

def
= Int ⊎ Pointer ⊎ {undef }

Block
def
= { (live, sz , c) | live ∈ B ∧ sz ∈ Size ∧ c ∈ Valsz }

(b, ofs) ∈ Pointer
def
= BlockID× Int

Figure 1.1: Type definitions for CompCert Logical Memory.

identifier (BlockID). This feature is captured in fig. 1.1 as partial function

Mem
def
= BlockID

fin−⇀ Block. Each block in the logical memory model corresponds

to an actual memory object, which is defined by an array of values and a liveness

Boolean flag (live). The live flag indicates whether the block is accessible or

freed. Values in CompCert are represented as integers, pointers, or undefined

values. While CompCert also supports floating-point numbers, we exclude

these from our discussion for simplicity. A pointer in CompCert consists of a

pair (b, ofs), where b is a block identifier and ofs is an offset within block b."

While CompCert’s logical memory model provides useful properties for verifying

compiler optimization correctness (such as ensuring functions have exclusive

ownership of non-escaped blocks), it has limitations in handling integer-pointer

casting. CompCert implements integer to pointer casting as a simple identity

function, rather than generating an integer value that properly corresponds

to a pointer value (b, ofs). Although integer variables in CompCert can store

pointer values, CompCert does not support various operations on these pointer-

containing integers, such as bitwise-XOR and division. A detailed discussion of

formal memory models that address these limitations in integer-pointer casting

can be found in §7.

Remark. For simplicity of presentation, in this section, we will assume that
values are of size 1, which means that the size of a block is equivalent to
the number of values it can store, and that values are not subject to certain
alignment constraints that are present in the C standard (e.g., in C, 32-bit integer

5

b is fresh blk = (true, sz , undef sz)

(alloc(sz),M) → ((b, 0),M [b 7→ blk])
M(b) = (true, sz , c)

(free((b, 0)),M) → ((),M [b 7→ (false, sz , c)])

M(b) = (true, sz , c) c′ = c[ofs 7→ v]

(store((b, ofs),M) → ((),M [b 7→ (true, sz , c′)])

M(b) = (true, sz , c) c[ofs] = v

(load((b, ofs)),M) → (v ,M)

(ptoi(v),M) → (v ,M) (itop(v),M) → (v ,M)

Figure 1.2: Selected and simplified rules for the semantics of Logical Memory.

values must be aligned to 4-bytes). Additionally, while CompCert’s memory
access permissions for live memory areas have four variations (freeable, writable,
readable, and Nonempty), we simplified permissions to just a block liveness flag.

Operational Semantics of Memory Operations. Having examined CompCert’s

memory representation, we now turn to the operational semantics of memory

operations as defined in fig. 1.2.

The memory model defines four fundamental operations: (i) alloc operation

creates a new block with a fresh block identifier b, setting its size to sz and

initializing all contents with undefined values; (ii) free operation checks that

a block is freeable by checking the premise M(b) = (true, sz , c), then sets

the block’s liveness flag to false when the check succeeds; (iii) store operation

first ensures a block is writable by checking the premise M(b) = (true, sz , c),

then rewrites the ofs-th content of c to value v , producing c′ in the rule’s

conclusion; (iv) load operation checks block readability through the premise

M(b) = (true, sz , c), then reads the ofs-th content of c. As mentioned earlier,

CompCert implements integer-pointer casting as identity functions, as shown in

the final two rules of fig. 1.2.

6

Chapter 2

Introduction: Towards End-to-End
Verification Supporting
Integer-Pointer Casting

Pointers have long been a key feature of the C programming language. In

particular, C supports the idea of integer-pointer casting, which allows one to

cast a pointer p an integer i, which represents the concrete address in which p

resides in memory (and vice versa). This feature brings with it the advantage

that it extends the wide variety of operations that are supported on integers—for

example, bitwise operations such as bitmasks—towards pointers, for which it is

difficult to define such operations otherwise, giving programmers much more

power when manipulating pointers in their code. Integer-pointer casting is now

a critical feature of C, used in many coding patterns such as pointer hashing,

efficient linked list implementations, or tagged pointers, which in turn provide

time- and space-efficient implementations of widely used algorithms and data

structures.

7

Given the prevalence of integer-pointer casting in C code, a formal reasoning

scheme supporting integer-pointer casting is clearly desirable. Ideally, such a for-

mal scheme should satisfy two major desiderata: (i) the scheme should facilitate

source-level verification on C code (e.g., in the form of pre- and postconditions)

and (ii) the scheme should be compatible with a verified compiler—that is,

CompCert [1]—allowing the compiler to establish the soundness of compilation

and optimizations on code that contains integer-pointer casts. We argue that

these desiderata are essential for bringing verification on integer-pointer casts

up to par with other more well-studied features of the C language, which enjoy

the benefits of end-to-end verification.

However, it turns out that developing a reasoning scheme for integer-pointer

casts satisfying the aforementioned desiderata is a surprisingly complex task,

requiring careful consideration of the interplay of integer-pointer casting with

other features of the C language. Part of this conundrum is due to the fact that

the basic view of memory as defined by the C standard is actually comprised of

fully abstract logical blocks that have nothing to do with integers, eschewing

the intuition that pointers are integers that represent physical addresses in

memory. The C standard then gives a list of rules that pointers and the results

of integer-pointer casts should adhere to—a list that is sadly, as is standard

of the C standard, written in prose, and therefore very difficult to translate

fully to into a formal semantics. For this reason, CompCert is markedly limited

in its ability to support code that contains integer-pointer casts. For example,

CompCert does not support bitwise operations on integers resulting from a

pointer-to-integer cast, which in turn makes it impossible for CompCert to

support some commonly used C patterns such as pointer hashing.

There have of course been many previous attempts [4, 5, 10, 11, 12] to formal-

ize and verify integer-pointer casting outside of CompCert as well. For example,

8

PNVI-ae-udi [5] represents a significant attempt at formalizing various features

of the C standard, including integer-pointer casts, that is successful enough

for consideration to be added as part of the C standard. The Quasi-Concrete

model [4] supports a wide range of C idioms and compiler optimizations, and

is formalized in Coq. While not an example of formalizing C semantics, the

Twin-Allocation model [11] was developed in order to semi-formally justify

pointer-related optimizations that are performed by LLVM [13], and thus pro-

vides a good formal explanation of how integer-pointer casts should operate

within the compilation pipeline.

Unfortunately, despite each of these approaches having their own unique ad-

vantages, they (aside from perhaps the Quasi-Concrete model) share a limitation

in that they all use their own separate representation of memory. This makes it

difficult to merge these approaches with CompCert as to obtain a full verified

compiler that is capable of establishing the soundness of both code that does and

does not contain integer-pointer casts. Thus, for example, while VIP [10] may

be able to provide powerful source-level guarantees on certain commonly used

coding patterns, it is also incapable of preserving these guarantees throughout

the compilation pipeline—a feature that is clearly desirable, but difficult to

achieve without integration with CompCert.

In this paper, we introduce the Archmage framework, an end-to-end verifica-

tion framework for programs with integer-pointer casts. Archmage framework

is based on the eponymous memory model Archmage, a new memory model

that is designed to couple tightly with CompCert and thus facilitate end-to-end

verification of programs containing integer-pointer casts. Archmage strives to

support as many source-level features of C as possible, and allow CompCert

to correctly perform as many optimizations on these features. To make point

of these claims, we provide a concrete implementation of CompCert extended

9

with Archmage, named CompCertCast (§5): an actual verified compiler that

is engineered to preserve as many backend optimizations performed by the

original CompCert as possible. In addition to allowing CompCert to compile

and optimize code containing integer-pointer casts, CompCertCast also extends

certain optimizations towards code containing non-trivial integer-pointer casts;

this allows CompCertCast to minimize the performance gap that is inevitable

from considering integer-pointer casts and out-of-memory in a formal manner,

furthering the practicality of Archmage as a basis for end-to-end verification.

In addition to the tight integration with CompCert as shown by CompCert-

Cast, the Archmage framework also provides a source-level separation logic

for verifiying properties of programs that contain integer-pointer casts (§6).

Archmage logic is designed with ease-of-use for the end user in mind, while

at the same time supporting a wide range of commonly used coding patterns

thanks to the generality of Archmage. This unique combination of source-level

support and usability makes Archmage logic an ideal choice for source-level

verification of programs with complex pointer manipulation. As an example, in

§6, we rely on Archmage logic to prove the correctness of an XOR-based linked

list implementation: Archmage represents the first end-to-end verification of an

xor-list implementation.

Contributions. To summarize, this paper makes the following contributions:

• Archmage, the first memory model designed to facilitate end-to-end verification

(§4).

• CompCertCast, a faithful extension of CompCert to work with Archmage,

bringing verified compilation to integer-pointer casting and, when combined

with Archmage logic, brings true end-to-end verification to programs contain-

ing integer-pointer casts (§5).

10

• Archmage logic, a source-level separation-style logic for built on top of Arch-

mage, that allows users to easily write and prove properties about programs,

while supporting a wide range of C features used in practice (§6).

§3 provides a high-level overview of the entire Archmage framework, with a focus

on new contributions. §7 discusses related work; and §8 concludes. Archmage,

Archmage logic, and CompCertCast are all implemented using the Coq proof

assistant [14]. Together, they provide the first full realization of a end-to-end

verification pipeline with support for integer-pointer casts.

11

Chapter 3

Overview of Contributions

In this section, we provide an overview of the three main components of our

system: (i) the memory model Archmage, (ii) CompCertCast, the integration of

Archmage with CompCert, and (iii) Archmage logic, a source-level separation-

style logic built on top of Archmage, with an emphasis on the benefits that each

of the three components bring in comparison to existing work.

3.1 The Memory Model Archmage

Archmage is a memory model developed with the goal of enabling end-to-

end verification for programs containing integer-pointer casts integration with

CompCert. Archmage draws upon many concepts that were established in

previous memory models [4, 11, 5, 10, 12], and in particular has many similarities

to the Quasi-Concrete model [4]. However, there are also several key differences

to Archmage that allow Archmage to capture a wider range of source-level

coding patterns. We illustrate these differences through a coding pattern that is

well-known to be difficult to fully support: one-past-the-end pointers.

12

Supporting one-past-the-end pointers in Archmage. Like many other previous

models, Archmage represents memory as a set of blocks, which roughly correspond

to consecutive regions of memory.

We call such a block-based representation of memory as logical, as these

blocks do not have a physical manifestation. When a pointer is cast to an integer

in Archmage, the block corresponding to a pointer is assigned a concrete physical

address; such a representation is said to be physical.

char a [4] , b [4] ;
i = (intptr_t) a ;
j = (intptr_t) b ;
i f (i + 4 == j) {

p = (char ∗) (i + 4) ;
∗(p − 1) = 42 ;
q = (char ∗) j ;
∗q = 37 ;

}

Figure 3.1: A code fragment illus-
trating integer-pointer casting with
one-past-the-end pointers.

Fig. 3.1 illustrates one of the reasons

one-past-the-end pointers are challenging

to support: their ambiguity. In Fig. 3.1,

let us assume that blocks a and b have

been allocated consecutively on the stack,

and thus that the if-statement on line 4

evaluates to true.1 Within the true-branch,

we observe that the same integer value i+4

and j can be casted in two ways: (i) as

a one-past-the-end pointer to block a or

(ii) as a valid pointer to block b. The problem, then, occurs with the two writes

on lines 6 and 8: the write on line 6 is a valid write to block a while the write

on line 8 is a valid write to block b. However, the Quasi-Concrete model will

fail to support this kind of pattern. This is because integers (that is, physical

representations of a pointer) must be lifted to logical representations at the time

of the cast (i.e., on line 5) in the Quasi-Concrete model. However, because i+ 4

and j can be lifted in two ways, the Quasi-Concrete model must choose which

representation to take before encountering the write on line 6—and will thus
1We note that the fully logical memory model of CompCert actually does not support

equality checks such as the one on line 4, because i + 4 is not a valid pointer to block a.
Archmage, on the other hand, supports this check as i+ 4 and j are both integers.

13

choose the ‘valid’ representation as a pointer to b on line 5, only to fail on the

write on line 6. We observe that even if the Quasi-Concrete model chose to lift

i+ 4 as a one-past-the-end pointer to a, the write on line 8 would fail instead

(as the cast on line 7 must return the same result, because i+ 4 = j).

Archmage solves this problem by lazily casting integers to pointers only

when required, and retaining the physical representation otherwise. That is,

Archmage does not immediately lift (i + 4) to a logical representation upon

the cast on line 5; it instead simply postpones the cast by retaining i+ 4 in p.

Archmage then performs the cast to block a to perform the load—note that,

while the load is performed on the casted logical pointer a, the value retained in

p remains the integer i+ 4.

Afterwards on lines 7 and 8, q = p is an integer, and Archmage can simply

re-cast q to block b on line 8 as required. In essence, this lazy treatment has the

effect of allowing physical representations to ‘choose’ their corresponding block

when required, allowing Archmage to correctly model such complex behavior

related to one-past-the-end pointers.

A key idea of Archmage that makes such lazy castings possible is that even if

a physical pointer p has two possible logical representations (e.g., a normal valid

pointer for block b and a one-past-the-end pointer for block a as in Fig. 3.1),

the behavior of an operation, such as memory accesses and pointer comparisons,

is guaranteed to condense into a single result: that is, there does not exist any

scenario in which interpreting p as either a or b both lead to valid cases with

different results (Thoerem 1). It must be the case that either a or b result in

an invalid operation, or that the two results agree. In a sense, this is what

guarantees that Archmage does not introduce additional unwanted behavior in

order to capture complex one-past-the-end coding patterns.

One interesting feature of Archmage exposed by this lazy casting of integers

14

is that integers refine pointers in Archmage, in the sense that integers may be

treated as pointers without any adverse effects. The fact that integers refine

pointers whose physical addresses coincide with the integers brings with it a

variety of benefits, such as allowing for a wider range of optimizations to be

supported in Archmage. Integers refining pointers also introduces some challenges

as well: for example, operations such as pointer comparison must now consider

scenarios such as when one operand is a pointer and the other is an integer.

Such challenges will be discussed in more depth when we introduce the memory

model in detail (§4).

3.2 CompCertCast: Reconciling CompCert with Arch-
mage

Based on Archmage, this paper then presents CompCertCast, which is an

integration of Archmage into CompCert. CompCertCast represents, to the best

of our knowledge, the first verified compiler with support for a wide range of

integer-pointer casting idioms.2

Integrating the memory model of CompCert to work with Archmage rep-

resents a significant engineering effort that required many detailed updates to

existing CompCert infrastructure, such as extending the external call axioms, or

adding additional simulation relations: details about these modifications may be

found in §5. In addition to these modifications, CompCertCast also brings with

it two new ideas: (i) an improvement of the “lower bound” on the assembly that

CompCert generates, and (ii) a new optimization that mitigates the overhead

from formally considering integer-pointer casts.

The “lower bound” improvement is an additional proof that fully concretizes
2CompCertS is also a verified compiler with support for integer pointer casts. However,

CompCertS is incapable of supporting certain commonly used integer-pointer casting patterns
(e.g., pointer hashing).

15

foo () {
p = malloc (s i z e o f (i n t)) ;
i = (i n t) p ;
bar (p) ;
ta r (i) ;
bar (p) ;

}

foo () {
p = malloc (s i z e o f (i n t)) ;
i = (i n t) p ;
bar (i) ;
ta r (i) ;
bar (i) ;

}

foo () {
EBX = malloc (s i z e o f (i n t)) ;
EBX = (in t) EBX;
bar (EBX) ;
ta r (EBX) ;
bar (EBX) ;

}

Figure 3.2: An example of decreasing register pressure via applying cast propa-
gation.

the memory model used by CompCert-assembly, which is actually a fully logical

memory model, into a fully physical model. That is, while assembly generated by

original CompCert operates on a logical memory model, CompCertCast further

guarantees that this assembly can operate in fully physical memory where all

pointers are concretized as integers. This brings the assembly generated by

CompCertCast a step closer to actual assembly that can be run on a processor.

Second, CompCertCast also introduces a new optimization, which we call

cast propagation, in order to mitigate the performance overhead from formally

considering integer-pointer casts. The intuition is that for a pointer p and its

integer representation i, it is sound in Archmage to replace occurrences of p

with i because integers refine pointers. In turn, this allows a limited form of

copy propagation to occur by replacing p with i.

One important effect cast propagation has is reducing the register pressure

of compiled code. CompCert performs register allocation on an intermediate

representation in which logical pointers are retained, which creates a problem in

which a single pointer with both logical and physical representations consumes

two registers during register allocation: one for each representation. Fig. 3.2

illustrates such a scenario, where in the leftmost code snippet, where i is an

integer-cast of p— p and i are allocated different registers because they have

different values with overlapping lifetimes.

Applying cast propagation allows us to replace the occurences of p on lines 4

16

and 6 with i instead (as is in the middle of Fig. 3.2). Then, because the lifetime

of p is up to the right-hand side of line 3, the register EBX can be reused to

store i—which ultimately results in the code snippet using only one register, as

illustrated in the rightmost of Fig. 3.2.

Cast propagation also exposes places where further optimizations, such

as common subexpression elimination, may be applied. Details on the lower

bound improvement, cast propagation, and the engineering required to reconcile

CompCert with Archmage in general can be found in §5.

3.3 Archmage Logic

Finally, this paper also presents Archmage logic, a source-level separation-logic

style proof system that captures the semantics of statements related to integer-

pointer casts as inference rules, and allows users to write and verify specifications

on such programs using these inference rules. Archmage logic completes our

end-to-end verification chain: with Archmage logic, it is possible to perform

source-level verification for programs with integer-pointer casts, which can then

be compiled down into a verified binary with CompCertCast.

Archmage logic is designed with usability as a primary goal, such that using

Archmage logic as a tool for verifying programs is as simple as possible. In

particular, Archmage logic is designed to abstract much of the details about

integer-pointer casts away, and instead provide a clean interface in which users

can seamlessly transition between logical and physical representations of a

pointer. To this end, Archmage logic provides users with three main predicates

that capture the semantics of integer-pointer casts, where m represents block

data (a, sz) for a block a and its size sz :

• p1 ≈m p2, indicating that two pointers (either physical or logical) p1 and p2

are equivalent,

17

• p 7→m
q v , indicating that a pointer p points to a location containing the value

v ,

• livemq (p), indicating that a pointer p is at the beginning of a live (i.e., not

freed) block m.

Note that the first predicate is persistent (i.e., freely duplicable, seen as knowl-

edge), whereas the others are not (seen as ownership). Moreover, the second and

third predicates have fractional permission (or ownership) q, where 0 < q ≤ 1.

Intuitively, operations such as writes to p, which may cause race conditions, may

only occur when one can establish that p 7→m
1 v (i.e., when q = 1). In contrast,

benign operations such as read may occur with q < 1. This model of fractional

permissions is a standard idea that has been used in many separation logics; we

refer the reader to [15, 16] for details.

f oo () {
char a [4] , b [4] ;
i = (intptr_t) a ;
p = (char ∗) (i + 1) ;
∗p = 42 ;
j = (intptr_t) b ;
i f (i + 4 == j)

∗(b − 3) = 37 ;
re turn (p == a + 1)

}

Figure 3.3: A code fragment to
illustrate the use of Archmage
logic.

The first predicate represents a core fea-

ture of Archmage logic: given two (either log-

ical or physical) pointers p1 and p2, p1 ≈m p2

encodes that they are equal, or one is the phys-

ical address of the other. This relation gives

a notion of equivalence, which allows one to

freely substitute p1 for p2 (and vice versa) in

the logic. To see how this substitution princi-

ple works in practice, consider the small code

snippet depicted in Fig. 3.3. On line 3, the

pointer-to-integer cast generates that a ≈a i.

Then, on the precondition for the write to line 5, we will have that a+1 7→a
1 undef

(from line 2 upon allocation of a), which simply states that a+ 1 points to an

uninitialized value undef , that a ≈a i (from line 3), and that p = i+1 (from line

18

4 because the integer representation is retained). Then Archmage logic allows

the following inferences:

• a+ 1 ≈a i+ 1 (adding offsets to the equivalence relation),

• a+ 1 ≈a p (since i+ 1 = p),

• p 7→a
1 undef (replacing a+ 1 with p in a+ 1 7→a

1 undef).
3

As line 5 can be proven to have write permissions to p, it can generate the

postcondition p 7→a
1 42.

Lines 6-8 of Fig. 3.3 also illustrates why it is necessary to have the block

data annotation m over ≈m. Let us consider a scenario without m, and assume

that a and b are allocated consecutively on the stack. Then, in this scenario, we

have that b ≈ j (from line 6) and that i+ 4 = j (reaching line 8). Staring from

b ≈ j, one can obtain: (i) b− 3 ≈ j − 3 (offset subtraction), (ii) b− 3 ≈ p (since

j − 3 = i+ 1 = p), and (iii) b − 3 7→1 42 (replacing p with b − 3 in p 7→1 42).

Thus it becomes possible to access b− 3 at line 8, which is unsound in Archmage

because b− 3 is an out-of-range logical pointer. Also note that according to the

C standard, line 8 must be inaccessible triggering undefined behavior (otherwise,

many optimizations become difficult to justify because become alias analyses

impossible to perform). In contrast, adding the block data annotation as in

Archmage prevents the third inference, as b− 3 ≈b p (from the first and second

inferences) and p 7→a
1 42 are defined over different block data (i.e., a and b) and

thus the substitution principle does not apply.

The third predicate livemq (p) is used to encode that a pointer p is associated

with a live block m, required for validating, e.g., comparisons on p. Continuing

with the example in Fig. 3.3, one can prove that p == a+ 1 at line 9 evaluates
3Such replacements are only possible if the block in question a is identical; such details are

formalized in §6.

19

to true in Archmage logic as follows. Starting from livea1(a) and a.sz = 4 (from

line 2 upon allocation of a), a ≈a i (from line 3), and p = i + 1 (from line

4), one can first obtain livea0.5(a) ∗ livea0.5(a) (by splitting the permission), from

which livea0.5((a+ 1)− 1) ∗ livea0.5(p− 1) (by applying the substitution principle

for a ≈a p − 1) follows. This means that a+ 1 and p resolve to the same live

block a and offset 1. Since the offset 1 is in the weak valid range of a (i.e.,

0 ≤ 1 ≤ a.sz), one can prove that foo returns true.

The fact that we separate the liveness and read / writeability predicates,

in tandem with the fractional permissions, allow Archmage logic to capture

the permission model of CompCert (e.g., in CompCert, threads are allowed to

compare pointers without knowing what their contents are).

Despite Archmage logic being designed to be a succinct and easy-to-use

logic, it is nevertheless powerful enough to prove the majority of properties

of interest for integer-pointer casting programs. In particular, Archmage logic

does not require any modification to the source language in order to capture

the semantics of integer-pointer casts, and can operate directly on the source

program instead. As an example of the utility of Archmage logic, we present a

correctness proof of an xor-linked-list implementation in §6.2. To the best of

our knowledge, this proof is the first correctness proof of a xor-linked-list that

operates on a memory model with logical blocks and integer-pointer casts, and

thus allows for end-to-end verification of the xor-linked-list (in contrast, the

proof given by [17] operates on a flat memory model and thus does not compose

well with compiler optimizations).

20

Chapter 4

The Memory Model Archmage

This section presents a formal view of Archmage, a memory model developed

with the goal of facilitating end-to-end verification for C programs containing

integer-pointer casts. In this paper, we assume 64-bit integers (i.e., integers are

8 bytes in size).

4.1 The Definition of Archmage

Fig. 4.1 contains the definitions for the various constructs required for Archmage,

and Fig. 4.2 contains some selected operational semantics for memory operations

within Archmage. We will reference these two figures to explain Archmage:

first starting with how memory and pointers are defined in Archmage, then

explaining the operational semantics.

Definition of the Memory Model. In Archmage, memory is defined as a set of

indexed logical blocks; the indices are called BlockIDs (modeled simply via the

naturals), as captured by the partial function definition Mem
def
= BlockID

fin−−⇀

21

M ∈ Mem
def
= BlockID

fin−⇀ Block

b ∈ BlockID
def
= N sz ∈ Size

def
= N v ∈ Val

def
= Int ⊎ LogicalPtr ⊎ {undef }

Block
def
= { (live, pa, sz , c) | live ∈ B ∧ pa ∈ Int ⊎ {undef } ∧ sz ∈ Size ∧ c ∈ Valsz }

p ∈ Pointer
def
= LogicalPtr ⊎ Int (b, ofs) ∈ LogicalPtr

def
= BlockID× Int

Figure 4.1: Type definitions for Archmage.

Block. Blocks in Archmage are what consist the actual memory layout, where

a block is defined as a tuple of four elements: (i) a Boolean live that denotes

whether the block is live or dead (a free block will be dead); (ii) an integer pa

that denotes the physical address of this logical block, which may be undefined

for blocks that have yet to receive a physical address; (iii) an integer sz that

denotes the size of the block, and (iv) a list of values of length sz , that contains

the actual contents of the block. Values in Archmage are assumed to be integers,

logical pointers, or undefined values.

Pointers in Archmage are defined as logical pointers (LogicalPtr in Fig. 4.1) or

physical pointers (integers). Logical pointers in Archmage are equal to pointers

in the original CompCert. A logical pointer is a tuple of a blockID b (i.e., the

block that the logical pointer points to) and an offset ofs that indicates the

offset within the block. A physical pointer is simply an integer representing a

physical address pa: we assume that physical pointers may access any logical

block, given that pa coincides with the physical address assigned to that logical

block.

Remark. As we mentioned in §1.2.1, we simplified figures in this section for
presentation. The actual Coq formalization, which extends the memory model of
CompCert, does not have this simplification and has a faithful representation of
the size of values, and the alignment constraints that come with it, instead.

Operational Semantics of Memory Operations. Having understood memory

representation in Archmage, we now describe how memory operations manipulate

22

memory through the semantics presented in Fig. 4.2.

A fresh allocation in Archmage takes the size sz as argument, then creates a

new block where the physical address and the contents of the block are undefined

(the first rule in Fig. 4.2). A free operation will first convert a pointer (either

physical or logical) into a logical block (via toPtr defined in Fig. 4.2) and check

if the block can be freed (captured by the premise m(b) = (true, pa, n, c) in the

second rule of Fig. 4.2), then proceed to update the memory with the information

that the block has been freed (the conclusion of this rule). Similarly, for memory

accesses, Archmage will convert a pointer into a logical block and perform the

access according to the logical block.

Moving on to integer-pointer casting, casting in Archmage is performed in a

similar manner to the Quasi-Concrete model [4]. A pointer-to-integer cast on a

logical pointer (b, ofs) will either (i) assign a new physical address pa to the

associated block if it does not have a physical address (as shown in the rule), or

(ii) simply return pa of the associated block if the block already has a physical

address. If there are no available physical address to allocate, Archmage triggers

out-of-memory which is modeled as no behavior (NB, i.e., the program will do

nothing) in Archmage. On a physical pointer, a cast will simply return the

address paddr . These behaviors are formalized by the four rules for ptoi in Fig.

4.2, on the second and third rows.

On the other hand, integer-to-pointer casts are straightforward: an integer i

is cast into a physical pointer i (the rule for itop in Fig. 4.2).

It is important to note that fresh allocations within Archmage result only in

logical pointers, which are again lazily assigned physical addresses when required

by a pointer-to-integer cast. We will later illustrate that preserving a logical-only

representation of pointers for as long as possible also allows Archmage to support

a wider range of optimizations (for comparison, consider the fact that CompCert

23

supports the full range of optimizations by virtue of having only logical pointers).

Integers Refine Pointers: Semantics of Binary Operations on Pointers. As briefly

mentioned in §3, Archmage allows integers to refine pointers in order to achieve

a variety of benefits (e.g., additional optimizations such as cast propagation).

However, the fact that integers may refine pointers means that operations

defined on pointers must now be defined on integers as well. Defintions for these

operators can often naturally be extended by casting the integer to a pointer

(e.g., for loads) or directly performing the operation on the integer (e.g., for

pointer-offset addition), but an especially subtle case arises for binary operations

(denoted as ⊗ in Fig. 4.2), in which operations may be supplied mixed operands

(e.g., a logical pointer and an integer).

Archmage systematically extends the original semantics of CompCert J⊗KCompCert

to handle such possibilities. We first observe that binary operations between

pointers are limited to the case of subtraction and comparison. For a comparison

operator ⊗, when one operand is a logical pointer p and the other is a non-null

integer i, we consider two possible scenarios: lifting i to a logical pointer via

toPtr, and concretizing p to a physical one via toInt. Archmage then takes the

meet (i.e., intersection) of the result of the two scenarios, as defined via the meet

v1 ⊼ v2 in Fig. 4.2. Intuitively, this may be as that if either the concretization of

p or lifting of i is undefined, then that scenario will return undef and Archmage

will select the behavior of the other scenario by taking intersection. Otherwise,

when the type of the operands are identical, Archmage applies the original

CompCert semantics.

For subtraction, first note that CompCert uses separate operators (via over-

loading) for subtraction between pointer types (named psub) and subtraction

between other types (named npsub) in the typed source language Clight, which

are unified into a single operator sub when translated down to untyped inter-

24

mediate languages. However, Archmage does not perform this unification: to

understand why, consider a subtraction p− i between a logical pointer p and an

integer i. p− i has two possible interpretations in Archmage: (i) when i is an

actual integer, upon which p− i is an offset subtraction, or when (ii) when i is

the physical representation of a pointer, upon which p− i is pointer subtraction.

The semantics of these two cases are different, and thus Archmage maintains

the separation between psub and npsub to distinguish between these scenarios.

Then to define the semantics of subtraction, we give separate semantics for

psub and npsub. both of which extend the original semantics of CompCert.

JpsubKM is defined in a similar way to comparison: it takes the intersection of the

two possible scenarios, but does not consider the null pointer (physical address

0) as a special occasion. The rule in Fig. 4.2 does not explicitly invoke the meet

operator: this is because, if the toPtrM case does not result in vundef while

computing JsubK, the toIntM case is also guaranteed not to result in vundef.

Because the meet operation is guaranteed to succeed (Theorem 1), this allows

us to take the toIntM case exclusively in the definition for simplicity. npsub

covers the rest of the possible scenarios: the original semantics cover all cases

except when both operands are (logical) pointers, in which case npsub produces

undef in Archmage.

Here, an important part to note is that the meet operation ⊼, as defined in

Fig. 4.2, is guaranteed to succeed when combining the results of concretizing a

pointer and lifting an integer, for all binary operations.

Theorem 1. For any binary operator ⊗ and values v1, v2: J⊗KM (v1, v2) ̸= NB

Handling Out-of-Memory. Archmage formally treats out-of-memory by modelling

out-of-memory as no behavior (NB), following previous work such as the Quasi-

Concrete model or CompCert-TSO. NB is a dual notion of undefined behavior

25

(UB), where a program will do nothing after triggering NB (versus doing anything

after triggering UB). Because Archmage formally models out-of-memory, the

guarantees provided by Archmage are sound even for programs that may trigger

out-of-memory.

One drawback of modelling out-of-memory as no behavior is that opti-

mizations that reduce physical memory are unsound in Archmage, as such

optimizations may remove from the target an occurrence of out-of-memory that

appears in the source. Archmage attempts to alleviate as much of this overhead

as much as possible by assigning physical addresses to logical pointers as lazily as

possible (i.e., only when a cast is met during execution). This allows Archmage

to still perform memory-reducing optimizations (such as pure call elimination)

provided that the optimization does not reduce consumption of the physical

address space.

26

b is fresh blk = (true, undef , sz , undef sz)

(alloc(sz),M) → ((b, 0),M [b 7→ blk])
toPtrM (p) = (b, 0) M(b) = (true, pa, sz , c)

(free(p),M) → ((),M [b 7→ (false, pa, sz , c)])

toPtrM (p) = (b, ofs) M(b) = (true, sz , c) c′ = c[ofs 7→ v]

(store(p,M) → ((),M [b 7→ (true, sz , c′)])

toPtrM (p) = (b, ofs) M(b) = (true, sz , c) c[ofs] = v

(load(p),M) → (v ,M)

M(b) = (live, undef , sz , c) pa ∈ valid_pa(M, sz)

(ptoi((b, ofs)),M) → (pa + ofs,M [b 7→ (live, pa, sz , c)])

M(b) = (_, pa,_,_) pa ̸= undef

(ptoi((b, ofs)),M) → (pa + ofs,M)

M(b) = (_, undef ,_,_) valid_pa(M, sz) = ∅
(ptoi((b, ofs)),M) → NB

pa ∈ Int

(ptoi(pa),M) → (pa,M)

(itop(i),M) → (i,M) (v1 ⊗ v2,M) → (J⊗KM (v1, v2),M)

range(blk) def
= if blk.live ∧ blk.pa ̸= undef then [blk.pa, blk.pa + blk.sz − 1] else ∅

valid_pa(M, sz)
def
= {pa | sz > 0 ∧ [pa, pa + sz − 1] ⊆ ((0, INTMAX) \

⋃
(b,blk)∈M range(blk))}

toPtrM (v)
def
= match v with

|| undef || (b, ofs) ⇒⇒ v
|| i ⇒⇒ if ∃(b,blk) ∈ M, i ∈ range(blk) then (b, i− blk.pa) else undef

toIntM (v)
def
= match v with

|| undef || i ⇒⇒ v
|| (b, ofs) ⇒⇒ if M(b).pa ̸= undef then M(b).pa + ofs else undef

v1 ⊼ v2
def
= match v1, v2 with

|| _, undef ⇒⇒ v1
|| undef , _ ⇒⇒ v2
|| _, _ ⇒⇒ if v1 = v2 then v1 else NB

liftM (f)(v1, v2)
def
= if (v1, v2) ∈ LogicalPtr × (Int \ {0}) then f(v1, toPtrM (v2)) ⊼ f(toIntM (v1), v2)

elif (v1, v2) ∈ (Int \ {0})× LogicalPtr then f(toPtrM (v1), v2) ⊼ f(v1, toIntM (v2))
else f(v1, v2)

JpsubKM (v1, v2)
def
= if (v1, v2) ∈ LogicalPtr × Int then JsubKCompCert (toIntM (v1), v2)

elif (v1, v2) ∈ Int× LogicalPtr then JsubKCompCert (v1, toIntM (v2))

else JsubKCompCert (v1, v2)

J⊗KM (v1, v2)
def
=

liftM (J⊗KCompCert)(v1, v2) if ⊗ is a comparison
JpsubKM (v1, v2) if ⊗ = psub
if v1, v2 ∈ LogicalPtr then undef else JsubKCompCert (v1, v2) if ⊗ = npsub

J⊗KCompCert (v1, v2) otherwise

Figure 4.2: Selected and simplified rules for the semantics of Archmage.

27

Chapter 5

CompCertCast: Reconciling
CompCert with Archmage

Having formally defined Archmage, we now turn to task of reconciling Archmage

with CompCert in order to create CompCertCast, an extension of CompCert

that provides correctness of compilation and optimizations for code that contains

integer-pointer casts. CompCert is the de-facto standard of a verified C compiler

supporting many optimizations, allowing us to both (i) avoid having to re-

establish the soundness of existing optimizations unrelated to integer-pointer

casting, and (ii) provide guarantees on compiling integer-pointer casts in a

practical framework used by a wide audience.

The main challenge in extending CompCert to support integer-pointer casts,

is that we must replace the underlying memory model from the current logical

model (which, as discussed in §4, only has very limited support for integer-

pointer casting) to Archmage. Such a replacement of course brings with it a host

of complications, as replacing a memory model has an effect on the semantics

for a language, and thus, for example, existing soundness theorems must be

28

re-established if they are affected by this change. As discussed in §3, adding

support for integer-pointer casts also has an effect on the performance of the

final compiled result, as some optimizations become difficult to justify. On

the other hand, supporting integer-pointer casts—and in particular, allowing

integers to refine pointers, as in Archmage—also allows a new benefit, in that the

‘lower-bound’ of assembly generated by CompCertCast can now be configured

to operate entirely over integers, and completely hide logical pointers (which is

arguably closer to how machine code operates).

In this section, we provide a detailed view of the aforementioned challenges

and benefits: §5.1 explains technical details related to updating CompCert, §5.2

details steps towards mitigating the performance overhead caused by formally

considering integer-pointer casts, and §5.3 explains the improvement on generated

assembly.

CompCertCast is available as a fully proved Coq implementation.

5.1 Modifying CompCert to Support Integer-Pointer
Casts

As discussed in §1.2, CompCert defines compiler correctness through behavioral

refinement between a source program (SRC) and its target program (TGT).

CompCert establishes behavioral refinement through showing that a forwards

simulation holds between the source SRC and the target TGT. However, for a

forwards simulation to imply behavioral refinement, the target program TGT

must be deterministic. This assumption is a major point of incompatibility

between CompCert and Archmage: Archmage introduces nondeterminism via

pointer-to-integer casts (when physical addresses are assigned to a block) as a

block may be assigned any valid physical address.

29

Inductive val_intptrM : Val → Val → P :=
|| · · ·
|| val_intptr_ptr_int :
toIntM (b, ofs) = i → (i ̸= undef) → val_intptrM (b, ofs) i

Figure 5.1: Part of the definition of the function val_intptrM , for the case where
the first argument is a pointer (b, ofs) and the second is an integer i. In this case,
val_intptrM checks whether (b, ofs) has the integer representation i through
toIntM (defined in Fig. 4.2).

5.1.1 Mixed Simulations and Memory Relations

To address these challenges, we modify CompCert to show behavioral refinement

by extending the concept of mixed simulations [18] instead of relying solely on

forwards simulations. Intuitively, a mixed simulation holds if (i) a forwards

simulation holds and the target is locally deterministic [18]1, or (ii) a backwards

simulation holds, which is similar to the concept of a forwards simulation except

that there must exist a corresponding step in SRC for each execution step in

TGT.

The main contribution that CompCertCast provides in terms of proving

refinement is the extension of the memory relations in CompCert to work with

a concrete memory model as well. In original CompCert, this requirement is

less of a problem because only values of the same type (aside from undef) may

refine each other. However, in CompCertCast, integers refine pointers—and

in particular, we would like to take advantage of this fact in order to apply

optimizations such as cast propagation, as illustrated in §3.2. CompCertCast

thus defines an additional memory relation, in addition to the three existing
1‘Locally deterministic’ means that the state transition machine corresponding to the

program is deterministic (i.e., has only one possible transition) at the current (i.e., local) state.
Mixed simulations allow for a program to have a mix of deterministic and non-deterministic
states: one uses forward simulations for the locally deterministic states, and backward simula-
tions for the non-deterministic ones.

30

memory relations in CompCert (identity, extension, and injection), to capture

the fact that pointers may be refined by their underlying physical addresses.

val_intptrM from Fig. 5.1 defines the refinement relation between pointers and

integers for a memory M , using the relation toIntM , which checks whether a

logical pointer (b, ofs) has an integer representation i (toIntM was previously

defined in Fig. 4.2).

Similar to extending the memory relation to allow integers to refine pointers,

one must also establish a refinement relation for different events in the source

and target. For example, in CompCertCast, a system call that takes as argument

a logical pointer p in the source may instead take as argument an integer i in

the target, provided that i is the physical representation of p.

We observe that constructing a refinement relation between events is not as

a straightforward task as it seems, even without considering the concretization

of memory. The intuitive way to construct the relation might be to reference

the current state of memory when constructing the simulation. However, such a

relation would result in a very fragile refinement because it is difficult to relate

between different pointers in source and target. For example, consider a simple

print statement, print(p) for a pointer p. p may have the logical representation,

e.g., (b, sz) = (3, 0) in the source: but it is possible that in the target, p is

assigned a different representation (e.g., (2, 0)), perhaps due to an optimization

that removes an unused allocation.

CompCert circumvents this problem by only allowing “public global pointers”,

to be exposed via an event. Public global pointers do not allow optimizations to be

performed on them and are thus guaranteed to have fixed logical representations

in both source and target, which makes establishing the event refinement simple:

the logical pointers must match. CompCertCast extends this idea towards

integer-pointer casts by creating a ‘initial map’ when a program start, that

31

eagerly concretizes all public global pointers prior to execution. Then, it is

possible to determine the refinement relation for events that expose a pointer in

the source and an integer in the target by consulting the initial map.

Vertical composition of behavioral refinement that considers the aforemen-

tioned pointer-integer refinement can be then achieved by additionally requiring

that the target-side map initTGT extends the source-side map initSRC, i.e., if the

following equation is satisfied:

Beh(TGT) ≤initTGT Beh(SRC) ∧ initSRC ≤ initTGT

It actually suffices that initSRC = initTGT instead of initSRC ≤ initTGT, but we

just give a more general condition for vertical composition.

We observe that the eager concretization of public global pointers does not

conflict with the rest of Archmage, which otherwise casts pointers to integers

lazily. In particular, eagerly concretizing public global pointers has no detrimental

effect on the performance of generated code, as optimizations cannot be applied

to these pointers anyways.

One additional condition to note is that, optimizations that reduce the

consumption of physical memory are unsound in CompCertCast as discussed in

§3. Thus CompCertCast adds the additional condition that allocated physical

memory in the target must extend the allocated physical memory in the source.

In addition to the developments related to the memory relation, CompCert-

Cast also extends the mixed simulation defined in [18] to support out-of-memory

as well. Given a TGT trace for which out-of-memory is triggered, there should

exist a corresponding SRC trace such that the two traces match up until the

point OOM takes place in TGT. Because Archmage interprets out-of-memory

as no behavior, behavioral refinement is established if (i) TGT triggers OOM

somewhere in the trace, and (ii) there exists a simulation between SRC and

32

TGT upto the point where OOM is triggered in TGT, exactly as captured by

the aforementioned condition.

The idea of mixed simulation (which also considers out-of-memory) is for-

malized in Eqn. (5.1): When interpreting both SRC and TGT as state transition

systems, as presented in §1.2, we say that a mixed simulation considering

out-of-memory holds if the condition in Eqn. (5.1) is true.

∀tr , st ′SRC, stSRC
tr
↪→ st ′SRC =⇒ ∃st ′TGT, tr ′, (stTGT

τ
↪→◦ ∗ tr′

↪→◦ τ
↪→◦ ∗ st ′TGT ∧ (st ′SRC, st

′
TGT) ∈ R

∧ tr =initTGT tr ′);OR

∀tr , st ′TGT, stTGT
tr
↪→ st ′TGT =⇒ ∃st ′SRC, tr ′, (stSRC

τ
↪→∗ tr′

↪→ τ
↪→∗ st ′SRC ∧ (st ′SRC, st

′
TGT) ∈ R

∧ tr =initTGT tr ′) ∨

∃st ′SRC, tr ′, (stSRC
tr′

↪→ st ′SRC ∧ oom(tr)

∧ prefixinitTGT(tr , tr
′))

(5.1)

In Eqn. (5.1), the top implication encodes the forwards simulation from

Eqn. (1.1), with the additional requirement that transitions that occur in the

target are fully deterministic. The bottom implication encodes the backward

simulation, where one attempts to map transitions in the target to those in the

source (instead of the other way around).

We observe that Eqn. (5.1) now matches a trace of events tr instead of a

single event ev as in Eqn. (1.1): this is because a single transition may now trigger

multiple events due to out-of-memory (i.e., a transition such as an external

function call may trigger both its original event ev and an out-of-memory event

at once), which Eqn. (5.1) must also support. Since source and target programs

can produce different events, we modified the mixed simulation to ensure that

events are equal with respect to the target program’s ‘initial map’ (encoded

as =initTGT in Eqn. (5.1)). The out-of-memory condition appears in the fifth

and sixth lines of Eqn. (5.1): given a TGT trace tr for which out-of-memory

is triggered (oom(tr)), this condition asks for a corresponding SRC trace tr ′

such that tr and tr ′ match up with respect to ‘initial map’ of target program

33

(initTGT) until the point OOM takes place in tr (expressed by the predicate

prefixinitTGT(tr , tr
′) in Eqn. (5.1)).

5.1.2 External Call Axioms

Similar to how the memory and event relations must be updated to support the

addition of integer-pointer casts, the external call axioms of CompCert must also

be updated to be sound under integer-pointer casts and the fact that integers

refine pointers. Specifically, there are four main changes to the external call

axioms:

• The axiom that external calls may only trigger one event has been removed:

external calls may also trigger an additional out-of-memory after triggering

whatever event they originally trigger.

• External call axioms for existing memory relations have been updated to work

with backwards simulations.

• A new axiom stating that external calls may not ‘tamper’ with the memory

map—e.g., an external call may not suddenly update the physical address of

an already concretized pointer—has been added.

• A new axiom to let new memory relations (concrete_extends) work with

backwards simulations has also been added.

An important part to note about the modifications to existing axioms (the

first two changes) is that they are relaxed compared to the original external

call axioms of CompCert, in the sense that if the original axioms hold then

our modified axioms hold as well. Proofs that rely on the original external call

axioms will thus still hold with the modified axioms, meaning that existing

proofs (e.g., for optimizations) that make use of these axioms will still hold,

34

allowing us to reuse many proofs. Note that even under these additional axioms,

CompCertCast maintains the original guarantee of CompCert for behavioral

refinement under separate compilation.

5.1.3 Other Minor Modifications to the CompCert Infrastruc-
ture

In addition to the major changes to the memory relations and external call

axioms, replacing the memory model of CompCert with Archmage to support

integer-pointer casts also requires a host of smaller modifications to the existing

CompCert infrastructure.

Supporting the Modified Semantics of Operations. Because the original source

semantics used in CompCert only supports a narrow range of operations per-

formed on values resulting from pointer-to-integer casts, we must extend the

source semantics to support the full range of such operations in order to be

able to use CompCert as a tool for end-to-end verification of programs with

integer-pointer casts. Following this requirement, we have extended the source

semantics of CompCert with the semantics of operations on values resulting

pointer-to-integer casts as illustrated in §4.

Fixing Optimization Proofs. Finally, utilizing Archmage as the memory model of

CompCert requires some fixes to the existing proofs of soundness for optimization

in CompCert. Most heavily affected are optimizations that must deal with

external calls (which include integer-pointer casts): as previously explained,

external calls may be nondeterministic in Archmage and thus we revise the

existing forwards-simulation based proofs in CompCert to use mixed simulations

instead. In addition, because we have modified the semantics of some operators—

such as the introduction of psub, or the semantics of pointer comparison—proofs

for optimizations that deal with such modified operators must be fixed as well.

35

5.2 Identifying and Alleviating Performance Overhead

Although we have fixed proofs of soundness of optimizations in CompCert

to work with Archmage in the previous section, supporting a formal model of

integer-pointer casting and pointer arithmetic still incurs a performance overhead.

There are various reasons for this performance overhead: most significantly, the

additional complexity induced by integer-pointer casts renders CompCert unable

to recognize certain patterns in which optimizations may be still applied in

a sound manner. In this section, we identify and alleviate such performance

bottlenecks in detail.

5.2.1 Cast Propagation: Replacing Uses of Pointers with Inte-
gers

One pattern in which a naive implementation of CompCertCast would miss

optimization opportunities is cast propagation, as illustrated in §3.2. As discussed,

the fact that integers refine pointers in Archmage allows us to replace all usages

of a pointer p with its integer representation i—CompCertCast implements an

additional pass that identifies such scenarios to apply cast propagation as much

as possible.

In §3.2, we have already discussed how cast propagation, while seemingly

simple, is essential in reducing the register pressure of the final compiled program.

Here, we illustrate how cast propagation also plays a pivotal role in allowing

CompCertCast to identify further chances for optimization. Fig. 5.2 gives an

example of this phenomenon, where applying cast propagation opens up an

additional chance to perform common subexpression elimination (CSE).

In Fig. 5.2, the leftmost code snippet shows a function where, the argument

pointer p has been casted into a physical representation i, which is then re-cast

to a pointer on line 4 for comparison with q. Here, one can see that without cast

36

i n t foo (long ∗p , long ∗q){
i n t i = (i n t) p ;
i n t c1 = i < q ;
i n t c2 = p < q ;
return c1 + c2 ;

}

i n t foo (long ∗p , long ∗q){
i n t i = (i n t) p ;
i n t c1 = i < q ;
i n t c2 = i < q ;
re turn c1 + c2 ;

}

i n t foo (long ∗p , long ∗q){
i n t i = (i n t) p ;
i n t c1 = i < q ;
i n t c2 = c1 ;
re turn c1 + c2 ;

}

Figure 5.2: An example application of common subexpression elimination, which
may only take place after replacing p with i on line 4 through cast propagation.

f oo (void ∗p){
l 1 = p ;
i = (i n t) p ;
l 2 = p ;
l 3 = mal loc (8) ;

memcpy(&l3 , &l1 , 4) ;
memcpy(& l3 +4, &l 2 +4, 4) ;
// l 3 = p

}

foo (void ∗p) {
l 1 = p ;
i = (i n t) p ;
l 2 = i ;
l 3 = mal loc (8) ;

memcpy(&l3 , &l1 , 4) ;
memcpy(& l3 +4, &l 2 +4, 4) ;
// l 3 = ?

}

Figure 5.3: An example illustrating the need to carefully define the semantics of
load. The right code snippet is the result of applying cast propagation on the
left code snippet.

propagation, CSE cannot be applied as there are no common subexpressions—

however, applying cast propagation yields the second code snippet in Fig. 5.2,

where lines 4 and 5 share the subexpression i < q. This then gives us an

opportunity to apply CSE, ultimately yielding the final code snippet in Fig. 5.2.

One challenge that arises from applying cast propagation is that we must

carefully define the semantics of load operations. Figure 5.3 gives an example

of where load becomes problematic in the presence of cast propagation: in

the left snippet, it is easy to infer that l3 contains p after executing the two

memcpys on line 7 and 8. However, this inference becomes nontrivial in the right

snippet, which is the result of applying cast propagation to the left: applying

cast propagation sets l2 to i, and thus l3 now contains a mix of p and i. Then

because p and i are of different type, a naive load of l3 will yield undef —which

makes cast propagation unsound.

CompCertCast solves this problem by simply treating pointers as integers

37

when performing the load for mixed values, which unifies the the mixed pointer

and integer types in, e.g, l3 , to just integers. Observe that we are guaranteed to

be able to consider integer representations of pointers in these mixed scenarios,

because the fact that cast propagation has occured on p implies that p has

already been cast—and thus has a valid integer representation. Thus it is sound

to use the integer representation of p instead when performing the load.

We argue that any model that supports integer-pointer casting will want to

leverage the information that i is a physical representation of p in some way

during their backend optimizations, and the fact that integers refine pointers

combined with cast propagation gives Archmage a simple but highly elegant

way to do so. The same cannot be said for, e.g., the Quasi-Concrete model [4],

in which integers do not refine pointers and thus said optimizations are harder

(or even impossible) to apply.

We note that cast propagation requires copy propagation and static single

assignment (SSA) [19] to be fully effective, but original CompCert did not

perform copy propagation to the degree which we were expected nor did it

implement SSA. We thus utilized the SSA transformation pass from CompCert-

SSA [20] and implemented a new copy propagation algorithm that relies on SSA,

which is observed to be more efficient than that of original CompCert.

5.2.2 Flagging Stack Casts to Enable Stack-Local Optimizations

Another pattern in which a naive CompCertCast combination would fail to apply

optimizations are some optimizations that are performed on instructions operat-

ing on stack-local variables. We take as example again common subexpression

elimination.

38

i n t foo (void ∗p) {

i n t s tk [4 2] ;

i n t i = stk [3] ;

∗p = 42 ;

i n t j = stk [3] ;

r e turn i + j ;

}

Figure 5.4: A small program
that takes as argument a
pointer p and writes to p.

Consider Fig. 5.4, which depicts a simple func-

tion foo which takes as argument a pointer p,

reads from a stack-local array stk, write to p,

then reads again from stk. According to C seman-

tics, it is sound to replace line 6 with int j = i

via applying CSE, regardless of the value that is

passed through p. This is because p cannot be a

pointer to the block that corresponds to the stack

of foo, as a caller of foo is guaranteed not to have

access to the stack pointer of foo.

However, recall that in Archmage, physical rep-

resentations of pointers—that is, integers—have

the ability to point to any logical block as long as the physical representation

has a corresponding entry in Mem from Fig. 4.1, meaning that the write on

line 5 could possibly write to the stack. Thus this optimization becomes harder

to justify in Archmage—because the value of p is unknown, one must have a

guarantee that the stack pointer of foo does not have a physical representation

in Mem in order to apply the transformation in a sound manner.

To alleviate the aforementioned limitation, we implement an extra flag2 that

tracks whether a stack address has been cast to a physical address or supplied

as an argument to an external call, as going through a cast is the only way a

logical representation for the stack address to gain a physical representation

(external calls are added because they may contain pointer-to-integer casts).

Adding this flag allows us to apply CSE on the aforementioned pattern because

it is now guaranteed that a physical pointer p will be unable to write to the
2CompCert already records various attributes of the stack; we simply add a Boolean flag to

this data structure.

39

stack (since the stack has no physical representation).

We observe that despite implementing this flag, Archmage still is unable to

justify such applications of CSE if there does exist a physical representation

of the stack in Mem; e.g., when there is a pointer-to-integer cast of a stack

address. This limitation may actually be alleviated if the stack is split—that

is, different (address taken) variables are assumed to inhabit different logical

blocks, and a stack is interpreted as the union of all such blocks—which would

allow us to apply optimizations on sub-blocks that have not been cast, even if

the address of some different stack variable has been captured. However, the

current implementation of CompCert treats the whole stack of a function as a

single block in RTL, the intermediate representation for main optimizations. We

plan to enhance RTL to allow each function to have multiple stack blocks as in

mainstream compilers such as LLVM.

5.3 The Lower Bound Improvement: Generating
CompCert-Asm with Fully Physical Pointers

As discussed, CompCertCast allows us to achieve an improvement on the lower

bound of generated code. This improvement is in the sense that CompCert-

Asm (which we will from now on refer to as simply assembly) generated by

CompCertCast may only contain physical pointers in memory and registers, as

opposed to original CompCert, in which memory and registers may also contain

logical pointers. Because memory and registers are the only locations where data

can be stored at the assembly level, the lower bound improvement represents a

full concretization of logical memory at the last step of the compilation chain.

The key idea in guaranteeing the physical lower bound is to extend the

semantics of generated assembly, such that all logical pointers are concretized

and replaced with their integer representations before each step of the assembly

40

semantics. For example, an allocation statement x = alloc(8) will (i) generate

a new logical pointer p for alloc(8), (ii) concretize p to i before the store to

x, which is the added step, then (iii) store i to the register mapped to x.

The machinery developed previously in §5.1—the extended memory relations

and event refinements, accounting for the fact that integers refine pointers—

guarantee the soundness of such a semantics. Inserting the concretization step

after each step of the assembly semantics allows us to correctly deal with external

calls as well, which may insert logical pointers into memory and registers—the

concretization step ensures that the changes imposed by external calls are all

concretized, without having to impose additional axioms for external calls.3

We observe that the lower bound improvement brings the final assembly

closer to an actual bare-metal model: the results of, e.g., allocations, can now

all be treated as integers, and operations on pointers now happen all on their

integer representations, just like real machine code.

5.4 Implementation

In this section, we give a brief discussion of the actual implementation of

CompCertCast in Coq. Our implementation builds on top of CompCert version

3.9, while preserving the structure and optimizations of original CompCert as

much as possible. Specifically, CompCertCast supports all compilation passes

of original CompCert except for the front-end passes from C to Clight, while

adding new optimization passes (shown in dotted boxes in Fig. 5.5).

In the optimization chain (the upper dotted box), SSAgen and De-SSA

are an application of static-single assignment from CompCert-SSA [20]. Copy

propagation is standard copy propagation; however, as CompCert did not
3Sometimes it may be the case that an external call inserts malformed logical pointers (e.g.,

a pointer to a block that has never been allocated). CompCertCast treats such scenarios as
ill-formed, and ignores them.

41

Clight

Clight RTL SSA SSA SSA RTL

RTLLTLAsmLower
bound

SSAgen De-SSA

CSE
Reg alloc

Copy
Prop

Cast
Prop

SimplLocals

Figure 5.5: The additional compilation passes applied by CompCertCast, indi-
cated by the dotted box. Our new passes copy and cast propagation, and the
lower bound improvement are highlighted.

perform copy propagation optimally as discussed in §5.2, we implemented a

new, more efficient version from scratch. Implementing these three additional

optimizations were prerequisites to implementing cast propagation as described

in §5.2; the final application of CSE is a reapplication of the original CSE pass

to take advantage of cast propagation.

The lower bound improvement does not perform any changes to code, and

instead simply extends the semantics of assembly as discussed in §5.3.

In terms of code size in Coq, replacing the memory model of CompCert

with Archmage—that is, CompCertCast without the additional optimizations

and lower bound guarantee—constitutes around a 24% increase in code. The

implementation and proof of cast propagation took around an additional 6600

LoC, and the lower bound improvement took around an additional 3000 LoC.

We tested our implementation on existing CompCert benchmarks (which

do not contain integer-pointer casts) and confirmed that for these benchmarks,

CompCertCast emitted assembly identical to original CompCert except for a

single function (render_ray from render.c). render.c is a case where Com-

pCertCast cannot apply CSE because the stack has a physical representation, as

42

discussed in §5.2. We also tested that cast propagation was operating as intended

on several small, hand-crafted programs. Interested readers may consult our

Coq implementation [21].

43

Chapter 6

Archmage Logic

In this section, we present Archmage logic, which is a top-level proof system that

captures the semantics of statements related to integer-pointer casts as inference

rules, and allows users to write and verify specifications on such programs

using these inference rules. In essence, the core of Archmage logic is a small,

succinct set of rules that that capture the behavior of statements related to

integer-pointer casts.

As the source language of Archmage, we port a version of Clight (the source

language of CompCert), where gotos are removed, to interaction trees [22] to ob-

tain Clight+. Clight+ is a suitable source language for end-to-end verification as

we provide a refinement proof from Clight+ to Clight. In practice, we implement

Clight+ and Archmage logic on top of the CCR verification framework [23], to

obtain a verification interface for programs containing integer-pointer casts that

may further be compiled by CompCert.

Although Archmage logic is succinct and easy to use, it is nevertheless

powerful enough to prove the majority of properties of interest for integer-pointer

44

casting programs, by virtue of Archmage itself being designed as a memory

model with end-to-end verification in mind. In particular, after introducing the

rules of Archmage, we will show that Archmage logic can be used to express

and prove the correctness of an XOR-based linked list and simple pointer

hardening implementation. Existing verification frameworks are either incapable

of supporting the complex integer-pointer casting patterns used in the xor-

list [10], or are capable of verifying a source-level implementation, but fail to

provide end-to-end guarantees throughout the compilation chain because the

underlying program logic is inconsistent with compiler optimizations [17].

6.1 The Predicates and Rules of Archmage Logic

Archmage logic draws Iris-style separation logic built upon resource algebras (as

introduced in [24]) in order to track the ownership of pointers. It thus follows

that the predicates (i.e., pre/postconditions) of Archmage logic are also written

in the language of resources.

However, having to track and understand the semantics of such resources

directly is complex, and stands in contrast with our end goal of usability. We

thus apply an additional layer of abstraction, to obtain user-level predicates that

hide underlying resources and instead expose an intuitive interface (i.e., a set of

properties about the user-level predicates). These user-level predicates are defined

in ‘Predicates and Relations’ of Fig. 6.1, the former three of which encapsulate

the underlying resources related to pointers. The user-level properties of these

predicates are given in ‘Selected Rules for Predicates and Relations’ of Fig. 6.1.

We will first explain these user-level predicates, then illustrate how the rules of

Archmage logic capture the behavior of statements related to integer-pointer

casts with these predicates.

From a user perspective, it suffices to carry the intuition that there are three

45

Block Data m = (b, sz) ∈ BlockID× Int

p1 ≈m p2
def
= ∃ofs. offset(m, p1, ofs) ∗ offset(m, p2, ofs)

livemq (p)
def
= offset(m, p, 0) ∗ Allocatedq∈(0, 1](m.b)

p 7→m
q v

def
= ∃ofs. offset(m, p, ofs) ∗ Pointstoq∈(0, 1](m.b, ofs, v)

offset(m, p, ofs)
def
= BS(m.b,m.sz) ∗ (⌜p = (m.b, ofs)⌝ ∨ (∃i . BA(m.b, i) ∗ ⌜p = i + ofs⌝))

m1 # m2
def
= m1.b ̸= m2.b vld(m, ofs)

def
= 0 ≤ ofs < m.sz wvld(m, ofs)

def
= 0 ≤ ofs ≤ m.sz

User-Level Predicates and Relations

p1 ≈m p2 —∗ (p1 ≈m p2 ∗ p1 ≈m p2) (1)
p1 ≈m p2 —∗ (p1 + k) ≈m (p2 + k) (2)
p1 ≈m p2 —∗ p2 ≈m p1 (3)
(p1 ≈m p2 ∗ p2 ≈m p3) —∗ p1 ≈m p3 (4)

livemq1+q2
(p) ∗——∗ (livemq1 (p) ∗ livemq2 (p)) (5)

p 7→m
q1+q2

v ∗——∗ (p 7→m
q1

v ∗ p 7→m
q2

v) (6)

p1 ≈m p2 —∗ (livemq (p1) ∗——∗ livemq (p2)) (7)
p1 ≈m p2 —∗ (p1 7→m

q v ∗——∗ p2 7→m
q v) (8)

i1 ≈m i2 —∗ ⌜i1 = i2⌝ for integers i1, i2 (9)
(⌜vld(m1, ofs1) ∧ vld(m2, ofs2)⌝ ∗ livem1

q1 (p− ofs1) ∗ livem2
q2 (p− ofs2)) —∗ ⌜m1 = m2 ∧ ofs1 = ofs2⌝ (10)

Selected Rules for Predicates and Relations

{ ⌜n > 0⌝ } alloc(n) { r. ∃m. ⌜m.sz = n⌝ ∗ livem1 (r) ∗ (∗k∈[0,m.sz)(r + k) 7→m
1 undef) }

{ livem1 (p) ∗ (∗k∈[0,m.sz)(p+ k) 7→m
1 _) } free(p) {⊤}

{ p 7→m
q v } load(p) { r. ⌜r = v⌝ ∗ p 7→m

q v } { livemq (p− ofs) } ptoi(p) { r. p ≈m r ∗ livemq (p− ofs) }
{ p 7→m

1 _ } store(p, v) { p 7→m
1 v } {⊤} itop(i) { r. ⌜r = i⌝ }{

⌜wvld(m, ofs1) ∧ wvld(m, ofs2)⌝ ∗
livemq1 (p1 − ofs1) ∗ livemq2 (p2 − ofs2)

}
p1 ⊗ p2

{
r. ⌜r = ofs1 ⊗ ofs2⌝ ∗

livemq1 (p1 − ofs1) ∗ livemq2 (p2 − ofs2)

}
{
⌜m1 # m2 ∧ vld(m1, ofs1) ∧ vld(m2, ofs2)⌝ ∗

livem1
q1 (p1 − ofs1) ∗ livem2

q2 (p2 − ofs2)

}
p1 == p2

{
r. ⌜r = false⌝ ∗

livem1
q1 (p1 − ofs1) ∗ livem2

q2 (p2 − ofs2)

}

Rules for Commands

Figure 6.1: User-level predicates, command rules, and selected rules for predicates
in Archmage logic.

46

main predicates related to pointers in Archmage logic. Given a pointer p with

block data m:

• A predicate p ≈m p′ tracking casting : whether p = p′ or one is the physical

address of the other.

• A predicate livemq (p) tracking liveness: whether p is at the head of a live (i.e.,

unfreed) block m,

• A predicate p 7→m
q v tracking accessibility : whether p points to the value v

with permission q.

As these are resource predicates in separation logic, they are created when a

statement is executed and may be deleted by executing another statement. For

example, one should not be able to derive that a fresh pointer p is live except

from the result of an alloc statement. In addition, the latter two predicates

must be non-duplicable. For example, having two copies of p 7→m
1 v would allow

simultaneous writes on p, possibly resulting in race conditions. However, at

the same time, there must also exist a mechanism for dividing this predicate

amongst multiple actors: while race conditions due to simultaneous writes must

be blocked, simultaneous reads should be allowed. The accessibility predicate

thus also carries a fractional permission q ∈ (0, 1], where q may be divided

amongst the actors that require access to p, and the degree of accessibility is

determined by how much of q an actor possesses. For example, writes are only

allowed with the precondition p 7→m
1 v : i.e., when q = 1, or when the writer

possesses the entirety of the permission. Also, since freed blocks should not be

accessible, we delete the accessibility predicate with the entire permission (i.e.,

q = 1) when executing a free statement. Similarly, we use fractional permission

for the liveness predicate: while permission for liveness can be freely split as

needed, the entire permission should be collected and deleted at deallocation.

47

In addition to these three resource predicates, there are three additional

user-level pure (i.e., without involving resources) predicates which encapsulate

commonly used conditions: (i) m1#m2, stating that the block data m1 and m2

are different blocks, (ii) vld(m, ofs), checking that ofs is a valid with respect

to block data m (i.e., that a pointer p = (m.b, ofs) is an interior pointer),

and (iii) wvld(m, ofs), encoding the same idea for weak validity (i.e., including

one-past-the-end pointers).

The exact definitions of these six predicates are given in the section ‘User-

Level Predicates and Relations’ of Fig. 6.1. Among them, the definitions of the

three resource predicates are given in grey color since they do not need to be visi-

ble to users. Note that these definitions involve four underlying resources (whose

exact definitions can be found in our Coq development [21]): BS(m.b,m.sz) and

BA(m.b, i), persistent (i.e., duplicable) resources capturing the size and physi-

cal address of a block; and Allocatedq∈(0, 1](m.b) and Pointstoq∈(0, 1](m.b, ofs, v),

fractional resources capturing the liveness and accessibility of a block.

Instead of providing the definitions, we provide abstract properties about

the resource predicates that users will find useful when constructing proofs.

A number of selected rules are listed in the section ‘Rules for Predicates and

Relations’ of Fig. 6.1, where ⌜−⌝ is the lifting of a pure predicate into a resource

predicate.

• (1): Casting predicates are duplicable.

• (2): One may add fixed offsets k to casting predicates to get predicates about

the shifted location.

• (3)-(4): Casting predicates are symmetric and transitive.

• (5)-(6): Fractional permissions may be split into smaller values, or merged

back into their sums.

48

• (7)-(8): (Substitution Principle) If one knows that p1 ≈m p2, then one may

swap in p2 for p1.

• (9): The casting predicate coincides with equality on integer values.

• (10): The same pointer p cannot point to different live blocks with valid

offsets.

Having understood the user-level predicates, we now proceed to describing

how the rules of Archmage logic capture the behavior of commands containing

pointers: these rules are listed in the box ‘Rules for Commands’ of Fig. 6.1,

where pre-postconditions are highlighted in blue. We first observe the rule for

alloc: this rule essentially states that performing a new allocation p = alloc(sz)

with size sz > 0 creates two new resource predicates about the resulting pointer

r: (i) livem1 (r), i.e., that r is a live pointer pointing to the head of the newly

allocated block m, and (ii) (∗k∈[0,m.sz)(r + k) 7→m
1 undef), i.e., that r has full

write permissions to the whole block m containing uninitialized values undef .

We observe that alloc is the only statement that can create the liveness and

accessibility predicates: all other rules cannot generate these two predicates.

free(p), in turn, consumes both of the predicates generated by alloc: the

rule requires the entire (i.e., q = 1) liveness and accessibility predicates in the

precondition, and consumes them both removing them from the postcondition.

Because these two predicates are non-duplicable, and alloc is the only statement

that can create these resources; consuming them via free guarantees that subse-

quent statements will be unable to doubly free p or read from / write to a freed

pointer.

ptoi(p) is the final rule that can create or consume resource predicates:

it requires a live pointer p in the precondition, and generates a new casting

relation p ≈m r in the postcondition, while also preserving the precondition

49

livemq (p− ofs). In essence, ptoi(p) simply adds the knowledge (i.e., persistent

resource) that the pointer p now has a physical representation r.

The rest of the rules now merely check if the required resources are in place:

for example, load requires that we have the fractional predicate p 7→m
q v with

q > 0 to read v from p, while store requires that we have the full accessibility

predicate p 7→m
1 _ to write to p (and updates the predicate with the written

value). The rule for r = p1 ⊗ p2 captures pointer operations (i.e., equality,

comparison, and subtraction) for which p1 and p2 are pointers to the same block:

the precondition requires that p1 and p2 are both live, in which case they should

both be weakly valid, and the result of the operation may be computed from

the offsets. The special rule for pointer quality p1 == p2 applies to cases where

p1 and p2 point to different live blocks with valid offsets, for which the result is

always false.

6.2 Case Study 1: Proving Correctness of a Xor-Based
Linked List with Archmage Logic

To illustrate the power of Archmage logic, in this section we prove the correctness

of a xor-based linked list implementation using Archmage logic. Xor-based linked

lists (xor-lists) are space-efficient implementations of doubly linked lists: whereas

an ordinary linked list requires two address entries for each node (previous and

next node addresses prv and nxt), an xor-list requires only one address entry:

one that stores the bitwise-xor of prv and nxt. (denoted as xor prv nxt). Traversal

in the xor-list then proceeds by xor-ing this stored address with the address of a

previous node—e.g., a heads-to-tail traversal will compute xor prv (xor prv nxt),

where xor prv prv cancels out to yield nxt (the traversal function must provide

prv as an argument).

Xor-lists are a prime example of an implementation that involves subtle

50

struct node {
long item; // value in node
long link; // xor prev next

}
long delete_hd(node** hdH , node** tlH) {

long item = 0; // empty list
node* hd_old = *hdH;

if (hd_old != NULL) { // non -empty list
item = hd_old ->item;
node *hd_new = (node*) hd_old ->link;
*hdH = hd_new;
if (hd_new == NULL) {

*tlH = NULL;
} else {

intptr_t link = hd_new ->link;
hd_new ->link = link ^ (intptr_t)hd_old;

}
free(hd_old);

}
return item;

}
long delete_tl(node** hdH , node** tlH)
...

Figure 6.2: Snippets of an xor-list implementation, showing the code for struct
node and the function delete_hd.

reasoning about pointer-integer casting, because (i) the pointers prv and nxt

must be cast to integers to perform bitwise-xor, and (ii) this result must be

reinterpreted as a pointer to read from or modify the list. Existing approaches

to source-level verification of integer-pointer casting programs (that aim to also

be consistent with compiler optimizations) are thus unable to verify the xor-list:

for example VIP [10] fails on the xor-list because they cannot resolve which

block xor prv (xor prv nxt) should point to.1

On the other hand Archmage logic is capable of verifying the correctness of

xor-lists by virtue of the flexibility that Archmage provides in between logical

and physical pointer representations. To illustrate this fact, in this paper we

will focus on the correctness of a function that deletes an item from the head of

an xor-list delete_hd, whose exact implementation is provided in Fig. 6.2. The

xor-list node contains two integers, (i) item, which contains the value stored

in the list, and (ii) link, which contains xor prv nxt as discussed in the xor-list

traversal method. In delete_hd, the arguments hdH and tlH are pointers to

memory locations that store pointers to the head and tail nodes of the xor-list,

respectively. The full xor-list implementation and the proof of correctness for

each of the functions may be found as part of our Coq development [21]; we
1The Quasi-Concrete model [4]. or PNVI-ae-udi [5], can support xor-lists, but do not come

with a program logic.

51

def fragq mprv mnxt (prv hd tl nxt : Val) (xs : listVal) :=
match xs with
|| [] ⇒⇒ prv ≈mprv tl ∗ nxt ≈mnxt hd
|| x :: xs′ ⇒⇒ ∃mhd iprv imid,

⌜mhd.sz = 2⌝ ∗ prv ≈mprv iprv ∗ livemhd
q (hd) ∗ hd 7→mhd

q [x, xor iprv imid] ∗
fragq mhd mnxt hd imid tl nxt xs

′

end
def xorlistq (hdH tlH : Val) (xs : listVal) := ∃ mhdH mtlH hd tl,
hdH 7→mhdH

q hd ∗ tlH 7→mtlH
q tl ∗ fragq mNULL mNULL NULL hd tl NULL xs

Xorlist Spec

{ xorlist1 hdH tlH xs } add_hd(hdH, tlH, x) { xorlist1 hdH tlH (x :: xs) }
{ xorlist1 hdH tlH xs } add_tl(hdH, tlH, x) { xorlist1 hdH tlH (xs++[x]) }

{ xorlist1 hdH tlH (x :: xs) } delete_hd(hdH, tlH) { r. ⌜r = x⌝ ∗ xorlist1 hdH tlH xs }
{ xorlist1 hdH tlH (xs++[x]) } delete_tl(hdH, tlH) { r. ⌜r = x⌝ ∗ xorlist1 hdH tlH xs }

Pre & Post Conditions

Figure 6.3: Correctness specifications for the functions add_hd, add_tl,
delete_hd, and delete_hd.

focus on delete_hd to keep the presentation intuitive.

We start the verification of delete_hd by observing the correctness specifi-

cation for delete_hd, as listed in the second box of Fig. 6.3. The specification

is simple on a high level: given an xor-list of the form x :: xs (encoded by the

precondition xorlist1 hdH tlH (x :: xs)), delete_hd simply returns the removed

value x and guarantees that x is removed from the xor-list.2

The definition of the predicate xorlist is given on the top of Fig. 6.3:

intuitively, it checks that the locations pointed to by hdH and tlH store valid

pointers to an xor-list containing the values xs in its item entries, with fractional

permission q (the permission q is required when reading from the list, or in the

case of delete_hd, we require q = 1 to make modifications to the list). Note that

the correctness specification merely asks for the item entries, without exposing

the address link entries: this corresponds with the user-level abstraction of a
2The implementation of delete_hd also allows the case in which an empty list is given,

upon which delete_hd will return 0; here, we consider only non-empty lists for simplicity of
presentation.

52

list, which is simply a traversable list of values.

More specifically, xorlist requires that (i) there exists some hd and tl

that point to the head and tail of the xor-list, that hdH and tlH point to;

and (ii) hd and tl can be traversed as an xor-list containing the values xs

(fragq mNULL mNULL NULL hd tl NULL xs). The predicate frag is defined on the

top of Fig. 6.3, and encodes the actual xor-list traversal methodology described

at the start of this section—observe the case in which xs = x :: xs′, in which

frag requires that hd (i.e., the current head) points to a valid node3 with x as

item, and xor iprv imid as link, where prv must have a physical representation

iprv, and imid denotes the physical address of the next node to traverse (i.e.,

fragq mhd mnxt hd imid tl nxt xs′).

Having understood how the correctness specification is encoded, we proceed

to show how one proves that delete_hd satisfies the correctness specification

from Fig. 6.3. Fig. 6.4 lists the intermediate pre-postconditions that are generated

at each step of the proof; we show how each statement in delete_hd can be

shown to satisify these pre-postconditions using the rules of Archmage logic.

We focus on how going through each statement of delete_hd changes a given

precondition into another postcondtion, and thus illustrate the proof by focusing

on the transitions between predicates, which are numbered in Fig. 6.4 (1 to 12).

Changes in a postcondition compared to a precondition are highlighted in red.

We start with 1 , which is identical to the precondition of the correctness

specification; 1 to 2 is a simple expansion of the definition of xorlist.

On the transition from 2 to 3 , we have three loads, whose results are

highlighted in red at the end of 3 , and are derivable by an application of the

load rule. Note that the true-branching condition hd_old ̸= NULL follows from
3We denote p 7→m

q [v1, v2] as shorthand for p 7→m
q v1 ∗ p+ sizeof(Val) 7→m

q v2; i.e., p points
to a pair of values v1, v2.

53

1{ xorlist1 hdH tlH (x :: xs) }
long delete_hd(node** hdH , node** tlH) {

2

{
hdH 7→mhdH

1 hd ∗ tlH 7→mtlH
1 tl ∗mhd.sz = 2 ∗ livemhd

1 (hd) ∗ hd 7→mhd
1 [x, imid] ∗

frag1 mhd mNULL hd imid tl NULL xs

}
long item = 0;
node* hd_old = *hdH;
if (hd_old != NULL) {

item = hd_old ->item;
node *hd_new = (node*) hd_old ->link;

3

{
hdH 7→mhdH

1 hd ∗ tlH 7→mtlH
1 tl ∗mhd.sz = 2 ∗ livemhd

1 (hd) ∗ hd 7→mhd
1 [x, imid] ∗

frag1 mhd mNULL hd imid tl NULL xs ∗ hd_old = hd ∗ item = x ∗ hd_new = imid

}
*hdH = hd_new;

4

{
hdH 7→mhdH

1 imid ∗ tlH 7→mtlH
1 tl ∗mhd.sz = 2 ∗ livemhd

1 (hd) ∗ hd 7→mhd
1 [x, imid] ∗

frag1 mhd mNULL hd imid tl NULL xs ∗ hd_old = hd ∗ item = x ∗ hd_new = imid

}
if (hd_new == NULL) {

5

{
hdH 7→mhdH

1 NULL ∗ tlH 7→mtlH
1 tl ∗mhd.sz = 2 ∗ livemhd

1 (hd) ∗ hd 7→mhd
1 [x, NULL] ∗

frag1 mhd mNULL hd NULL tl NULL xs ∗ hd_old = hd ∗ item = x

}
*tlH = NULL;

6

{
hdH 7→mhdH

1 NULL ∗ tlH 7→mtlH
1 NULL ∗mhd.sz = 2 ∗ livemhd

1 (hd) ∗ hd 7→mhd
1 [x, NULL] ∗

frag1 mhd mNULL hd NULL tl NULL xs ∗ hd_old = hd ∗ item = x

}
} else {

7

hdH 7→mhdH

1 imid ∗ tlH 7→mtlH
1 tl ∗mhd.sz = 2 ∗ livemhd

1 (hd) ∗ hd 7→mhd
1 [x, imid] ∗

xs = x′ :: xs′ ∗mmid.sz = 2 ∗ hd ≈mhd ihd ∗ livemmid
1 (imid) ∗ imid 7→mmid

1 [x′, xor ihd imid′] ∗
frag1 mmid mNULL imid imid′ tl NULL xs′ ∗
hd_old = hd ∗ item = x ∗ hd_new = imid

intptr_t link = hd_new ->link;

8

hdH 7→mhdH

1 imid ∗ tlH 7→mtlH
1 tl ∗mhd.sz = 2 ∗ livemhd

1 (hd) ∗ hd 7→mhd
1 [x, imid] ∗

xs = x′ :: xs′ ∗mmid.sz = 2 ∗ hd ≈mhd ihd ∗ livemmid
1 (imid) ∗ imid 7→mmid

1 [x′, xor ihd imid′] ∗
frag1 mmid mNULL imid imid′ tl NULL xs′ ∗

hd_old = hd ∗ item = x ∗ hd_new = imid ∗ link = xor ihd imid′

hd_new ->link= link ^ (intptr_t)hd_old;

9

hdH 7→mhdH

1 imid ∗ tlH 7→mtlH
1 tl ∗mhd.sz = 2 ∗ livemhd

1 (hd) ∗ hd 7→mhd
1 [x, imid] ∗

xs = x′ :: xs′ ∗mmid.sz = 2 ∗ hd ≈mhd ihd ∗ livemmid
1 (imid) ∗ imid 7→mmid

1 [x′, imid′] ∗
frag1 mmid mNULL imid imid′ tl NULL xs′ ∗

hd_old = hd ∗ item = x ∗ hd_new = imid ∗ link = xor ihd imid′

}

10

{
hd_old = hd ∗mhd.sz = 2 ∗ livemhd

1 (hd) ∗ hd 7→mhd
1 [_, _] ∗

item = x ∗ ∃mhdH mtlH imid tl, hdH 7→mhdH
1 imid ∗ tlH 7→mtlH

1 tl ∗ frag1 mNULL mNULL NULL imid tl NULL xs

}
free(hd_old);

11

{
item = x ∗ ∃mhdH mtlH imid tl, hdH 7→mhdH

1 imid ∗ tlH 7→mtlH
1 tl ∗ frag1 mNULL mNULL NULL imid tl NULL xs

}
}
return item;

}
12{ r. r = x ∗ xorlist1 hdH tlH xs }

Figure 6.4: Pre- and postconditions generated at each step of the proof when
verifying delete_hd in Archmage logic. The program code is black, the pre- and
postconditions are blue, and changes introduced to the predicates at each step
of the proof are highlighted in red.

54

hd_old = hd and hd 7→mhd
1 [x, imid].

The transition from 3 to 4 is simple: the statement is a store to hdH, and

we simply use the store rule with the fact that hd_new = imid to obtain that

hdH 7→mhdH
1 imid.

Moving forwards from 4 , we now encounter an if-statement. 5 is the case

for the true branch, which captures the case where x was the only item in the

list and the list is now empty. Moving from 4 to 5 , we simply update the

predicate with the information that hd_new = imid = NULL. Going from 5 to

6 is a write to tlH, which is simply updated via the store rule.

7 is the case when the branch condition evaluates to false starting from

4 (not 6 , as we are now analyzing the false branch). In 7 , the updated red

predicate is simply an expansion of frag1 mhd mNULL hd imid tl NULL xs on the

second line of 4 , to the second case of frag as xs is non-empty (more precisely,

one may drop the first case as now imid = hd_new ̸= NULL, thus the first case of

frag is guaranteed to be false).

7 to 8 is simply a load statement whose result is stored in link; one

may follow hd_new = imid and imid 7→mmid
1 [x′, xor ihd imid′] to obtain link =

xor ihd imid′ .

8 to 9 is a store operation that encodes the new link for the new head

hd_new: because hd_old = hd ≈mhd ihd and link = xor ihd imid′ , the new value

of hd_new->link = imid′ as in 9 .

Having obtained the conclusion for both branches 6 and 9 , we proceed

to merge them as the condition 10 . The proof obligation is that 6 =⇒ 10

and 9 =⇒ 10 ; for 6 =⇒ 10 , imid = tl = NULL in 10 serves as witness for

the implication to hold. In the case of 9 =⇒ 10 , the implication holds as

the red frag1 mNULL mNULL NULL imid tl NULL xs in 10 is the result of re-folding

the predicates about imid on the second and third line of 9 , while hd ≈mhd ihd,

55

hd_new = imid, link = xor ihd imid′ and xs = x′ :: xs′ have been dropped.

Finally, the free statement consumes the resources for hd_old to yield 11 ;

one may simply re-fold the definition of xorlist to obtain 12 , the final desired

postcondition.

In addition to the correctness of delete_hd, Archmage logic will also allow

one to prove properties on xorlist as well, such as Theorem 2.

Theorem 2 (XorlistReverse). For any value q, v1, v2, xs:

xorlistq hdH tlH xs ∗——∗ xorlistq tlH hdH reverse(xs).

Theorem 2 allows us to reuse the specifications listed in fragq and xorlistq,

from the top of Fig. 6.3, to prove the correctness of delete_tl as well. Without

Theorem 2 the proof would be challenging, as the definition of, e.g., fragq

unfolds a list starting from the head, whereas delete_tl deletes an element

from the tail.

#inc lude " x o r l i s t . h"
i n t main () {

node ∗head = NULL, ∗ t a i l = NULL;
long item = 1 ;
add_hd(&head , &t a i l , 3) ;
add_tl(&head , &t a i l , 7) ;
item ∗= delete_hd(&head , &t a i l) ;
item ∗= de l e t e_t l (&head , &t a i l) ;
r e turn item ;

}

Figure 6.5: A code fragment illustrating
a simple function main that is a client
of the xor-list defined in xorlist.h.

Proof Size. To provide a measure of

how effective Archmage logic is in

proving programs with integer-pointer

casts, we report the lines of code (LoC)

required for fully mechanizing the cor-

rectness proof of the xor linked list

discussed in this section.

Writing out the full specification

of the xor linked list functions (add_hd, add_tl, delete_hd, delete_tl) took

around 100 LoC, and defining additional lemmas required for the proof (such as

reverse) took an additional 80 LoC. The proofs for each of these functions each

took around 300 LoC for add_hd and add_tl, and 250 LoC for delete_hd and

delete_tl, for a total of around 1300 LoC to specify and verify the xor linked

list implementation.

56

// Encoding function
uintptr_t encode(long k, void *p) {

uintptr_t encoded = (uintptr_t)p ^ k;
return encoded;

}

// Decoding function
void *decode(long k, uintptr_t ep) {

void *decoded = (void *)(ep ^ k);
return decoded;

}

// Function that uses encoded pointer
long bar(long k, uintptr_t ep , long x) {

long *q = decode(k, ep);
*q = x;
return *q;

}

// Function that creates encoded pointer
long foo(long *p, long k, long x) {

uintptr_t ep = encode(k, p); // pointer encoding
bar(k, ep , x); // pass encoded pointer
return *p; // *p = x

}

Figure 6.6: Snippets of Simplified Pointer Hardening Example.

In addition to verifying the correctness of the xor linked list itself, we are

also interested in whether verifying a client that calls the xor-list as a library is

also possible and efficient. Fig. 6.5 depicts a small function main that uses the

xor-list; verifying main took around an additional 250 LoC.

Considering that the implementation of the xor linked list is lines about

70 lines in C, we conclude that Archmage logic provides a effective, scalable

method of verifying source-level programs with integer-pointer casts.

6.3 Case Study 2: Proving Correctness of a Simple
Pointer Hardening with Archmage Logic

In this section, we will show the correctness of simple pointer hardening

example with Archmage Logic. Pointer hardening is a memory address protec-

tion technique used in low-level system programming to defend pointers from

attackers. A notable implementation can be found in Linux’s SLUB allocator [25],

which applies pointer hardening to protect memory addresses of freed objects

stored in its freelist. Fig. 6.6 shows a simple pointer hardening example where

function foo passes three arguments to function bar: an encoded pointer, its

encoding key k, and item x. Function bar then uses encoding key k to decode

the pointer and stores item x at the decoded address. Although this example is

57

{ livemq (p− ofs) } encode(k, p) { r. ⌜r = xor ip k⌝ ∗ livemq (p− ofs) ∗ p ≈m ip }
{ } decode(k, ep) { r. ⌜r = xor ep k⌝ }

{ p ≈m ip ∗ p 7→m
1 v ∗ ⌜ep = xor ip k⌝ } bar(k, ep, x) { r. ⌜r = x⌝ ∗ p 7→m

1 x }
{ p 7→m

1 v ∗ livem1 (p− 0) } foo(p, k, x) { r. ⌜r = x⌝ ∗ p 7→m
1 x ∗ livem1 (p− 0) }

Pre & Post Conditions

Figure 6.7: Correctness specifications for the functions encode, decode, bar,
and foo.

very simple, it employs similar subtle reasoning as used in proving the xor-list

example, because (i) pointer p must be cast to an integer to perform bitwise-xor

with encoding key k, and (ii) the encoded pointer must be reproduced as a

pointer to write item x in the memory location pointed to by original pointer p.

We will show that both foo and bar satisfy the Hoare triple style specifica-

tions shown in Fig. 6.7. Fig. 6.8 lists the intermediate pre- and postconditions

generated at each proof step. We will explain how each statement in foo and

bar satisfies these conditions using the rules of Archmage logic (we will omit the

proof of specifications for the decode and encode functions). As this example is

simpler than the XOR-based linked list example, we will provide a more detailed

explanation.

In fig. 6.8, we explain the proof of each function by focusing on the transitions

between numbered predicates. Changes in the postcondition compared to the

precondition are highlighted in red.

First, we focus on bar. Note that the original pointer p before encoding is

not included in the arguments of bar. 1 of bar is same as precondition of the

Hoare triple of bar. The translation from 1 to 2 is simple. the statement is

a call decode function, and we simply use hoare style specification of decode.

This rule adds predicate about physical address of decoded pointer (q = xor ep k)

in postcondition.

58

1{ p ≈m ip ∗ p 7→m
1 v ∗ ep = xor ip k }

long bar(long k, uintptr_t ep , long x) {
long *q = decode(k, ep);
2 {p ≈m ip ∗ p 7→m

1 v ∗ ep = xor ip k ∗ q = xor ep k}
3 {p ≈m q ∗ p 7→m

1 v}
4 {p ≈m q ∗ q 7→m

1 v}
*q = x;
5 {p ≈m q ∗ q 7→m

1 x}
return *q;

}
6{ r. ⌜r = x⌝ ∗ p 7→m

1 x }

1{ p 7→m
1 v ∗ livem1 (p− 0) }

long foo(long* p, long k, long x) {
*p = 0;
2 {p 7→m

1 0 ∗ livem1 (p− 0)}
uintptr_t ep = encode(k, p);
3 {p 7→m

1 0 ∗ livem1 (p− 0) ∗ p ≈m ip ∗ ep = xor ip k}
bar(k, ep, x);
4 {p 7→m

1 x ∗ livem1 (p− 0) ∗ p ≈m ip ∗ ep = xor ip k}
return *p;

}
5{ r. ⌜r = x⌝ ∗ p 7→m

1 x ∗ livem1 (p− 0) }

Figure 6.8: Pre- and postconditions generated at each step of the proof when
verifying foo and bar in Archmage logic. The program code is black, the pre-
and postconditions are blue, and changes introduced to the predicates at each
step of the proof are highlighted in red.

59

The transition from 2 to 3 checks that q is the physical address of p (p ≈m q).

To prove this, we follow several steps. First, we substitute ep = xor ip k into

q = xor ep k, yielding q = xor (xor ip k) k. Next, by applying the properties

of XOR operations, we can deduce that q = ip. Finally, substituting q = ip

into p ≈m ip (which appears in the precondition) establishes p ≈m q in the

postcondition.

Moving from 3 to 4 , we apply rule (8) from fig. 6.1 to the precondition

p ≈m q∗p 7→m
1 v . This rule establishes that once we have proven q is the physical

address of p, we can conclude that q has access permission to the same memory

location that p points to.

The transition from 4 to 5 represents a simple store operation that writes x

to the location pointed to by q.

The final transition from 5 to 6 involves a load operation that reads the

value at q and returns it. Since x was previously stored at q, the return value is

x. We then apply rule (8) from fig. 6.1 in the reverse direction compared to the

3 -to- 4 transition, which restores the points-to predicate back to pointer p.

Significantly, although function bar does not receive pointer p as an argument,

we can establish that q is the physical address of p (p ≈m q), enabling access to

the same memory location through the decoded pointer q.

We now examine the specification for function foo, which calls bar. 1

represents foo’s precondition, which requires two conditions: the accessibility of

the original pointer p (p 7→m
1 v) and its liveness (livem1 (p− 0)). The transition

from 1 to 2 represents a simple store operation that writes zero to the memory

location pointed to by p.

Moving from 2 to 3 , the code executes an encoding function that encodes

pointer p using key k. This encoding function accepts a pointer as its argument

and performs two operations: pointer-to-integer casting followed by a bitwise-

60

XOR operation. Its precondition requires the liveness of the original pointer,

while its postcondition establishes two new predicates: the relation between the

original pointer and its corresponding physical address (p ≈m ip), and the value

of the encoded pointer (ep = xor ip k).

3 advances to 4 through a function call to bar. The bar function performs

two operations: it decodes the encoded pointer and stores x at the resulting

location. Since the decoded pointer represents the physical address of the original

pointer, storing a value through the decoded pointer has the same effect as

storing through the original pointer. bar’s precondition requires two elements:

the information necessary for decoding the encoded pointer ep (p ≈m ip ∗ ep =

xor ip k) and permission to store a new value at the decoded pointer location

(p 7→m
1 0). Its postcondition captures the updated state, showing that x is now

stored at the location that pointed to by original pointer p (p 7→m
1 x).

Finally, 4 and 5 , a load statement reads the value from the memory location

pointed to by p and returns that value. Since the bar function previously stored

x at this memory location, the return value is x.

Proof Size. Similar to the xor-list example, we quantify the implementation effort

required to mechanize the correctness proof of the pointer hardening example

discussed in this section.

The complete implementation required approximately 400 lines of code

(LoC). The specification of pointer hardening functions took around 80 LoC,

while the additional lemmas needed for the proof required approximately 60

LoC. The verification proofs varied in size across functions: approximately 50

LoC for encode, 40 LoC for decode, 70 LoC for bar, and 80 LoC for foo.

61

Chapter 7

Discussion and Related Works

In this section, we provide a detailed discussion of the capabilities of Archmage

and CompCertCast with previous work on formalizing and verifying various

aspects of C and its compilation, focusing on those that concern integer-pointer

casts.

CompCertCast and the original CompCert backend One natural ques-

tion that readers may have about CompCertCast is: how much does the restric-

tion that physical memory consumption cannot be reduced affect the backend

optimizations in CompCertCast? Here, we clarify that all existing optimiziations

that are performed by original CompCert during compilation from the source

(Clight) to the target (Asm) language, may be performed in CompCertCast as

well. This is because CompCertCast preserves the original correctness princi-

ple of CompCert when performing optimizations: the compiler (both original

CompCert and CompCertCast) will not reduce the consumption of “public”

memory (memory blocks whose addresses may have been leaked to an external

62

function), and instead only perform consumption-reducing optimizations on

“private” memory. This is because even in original CompCert, reducing public

memory consumption may trigger undefined behavior in the target if the target

attempts to access a memory region that has been optimized away.

We will illustrate this fact through SimplLocal, an example optimization

pass in original CompCert and CompCertCast. SimplLocal is an optimization

that moves scalar variables whose addresses have not been taken to local

temporary storage. At first sight, this may seem to reduce memory consumption,

because variables are moved from memory to temporary storage. However,

SimplLocal does not move variables whose addresses have been taken, because

these variables are considered to be in public memory in original CompCert.

Variables which have been allocated a physical memory address in Archmage

and CompCertCast are guaranteed to have their address taken—and thus in

CompCertCast, SimplLocal is an optimization that only reduces consumption of

logical memory, which can be justified by Archmage.

That said, while CompCertCast does allow one to perform all existing

CompCert optimizations, there are certain cases in which optimizations are

less effective when compared to original CompCert. One case is dead code

elimination: CompCertCast is unable to remove dead casts, because removing a

cast would reduce the usage of physical memory in the target. Another case is

optimizations that rely on value analysis in CompCert: for example, common

subexpression elimination (as discussed in §5.2); constant propagation and

dead code elimination can also be less effective for similar reasons. Common

subexpression elimination also does not work well for psub, if there exists, e.g.,

an unknown builtin function call between the to-be eliminated psubs.

Architecture-wise, CompCertCast is implemented only for x86-64 archi-

tectures, and not for other target architectures such as ARM or PowerPC.

63

Extending CompCertCast towards other architectures should not pose a theo-

retical challenge, but is mostly an implementation challenge. For example, ARM

contains many variants of comparison, which would necessitate us to implement

different versions of comparisons for each of these comparison operators.

CompCertS CompCertS [26, 12, 27] represents a different approach to sup-

porting integer-pointer casts in CompCert, by extending the CompCert memory

model with symbolic expression pointers to support integer-pointer casts. The

main idea in CompCertS is to construct symbolic expressions whenever an

operation takes place, instead of computing a concrete value. These symbolic

expressions are only concretized on a by-need basis through a normalization

function that relies on an SMT solver.

Because the underlying approaches are so different, CompCertS and Archmage-

CompCertCast display a variety of differences: One notable difference is that

CompCertCast supports more source-level integer-pointer casting patterns com-

pared to CompCertS. In general, any program that displays nondeterminism

when concretizing pointers according to the semantics of Archmage will be

undefined in CompCertS [28]. One example of such a pattern would be a hash

table that takes a pointer as a key. We do observe that CompCertS would

be capable of verifying the xor-list example in §6, because upon access, when

concretization occurs in the symbolic-value model, all xor-operations on pointers

become canceled out.

Another major difference is in policies regarding memory usage: as previously

discussed, CompCertCast follows the same policy as original CompCert and

thus can preserve all backend optimizations. On the other hand, CompCertS

uses a separate policy: memory usage must be not be increased, which is not

simply a design choice but a necessity in the symbolic model of CompCertS [27].

64

In theory, this would prevent CompCertS from performing optimizations from

original CompCert that increase memory usage. CompCertS circumvents this

issue by computing and allocating the total additional memory usage it will

require during the optimization phase prior to starting the compilation chain

(so called memory provisioning). However, there are still some optimizations

that do not fit both the memory preservation policy and memory provisioning,

such as tail call optimizations and inlining, that would require future work on

the symbolic model to support in CompCertS.

Other work on formalizing integer-pointer casts Stackaware Com-

pCert [29] is an extension of CompCert that, while not directly related to

integer-pointer casting, provides an interesting point of comparison to our lower

bound improvement. The assembly generated by stackaware CompCert also

closely that of machine code, in that the stacks of functions are coalesced into a

single big stack, similar to how actual machine code will allocate function stacks

by moving a stack pointer in memory. However, assembly generated by stack-

aware CompCert still contains logical pointers; the lower bound improvement

presented in §5.3 thus represents an orthogonal improvement.

VST [2, 8] is a separation logic that targets a source language called verifiable

C, which is a subset of C. VST provides an end-to-end verification scheme for

verifiable C programs, packaged within a well-developed user interface; however,

verifiable C does not support integer-pointer casts [30], and thus VST is incapable

of supporting integer-pointer casts as well.

The Quasi-Concrete model [4] extends the CompCert memory model to

support integer-pointer casts. While the Quasi-Concrete model is capable of

supporting much of the coding patterns discussed in this paper, it does not

support one key pattern: casting integers into one-past-the-end pointers. In

65

particular, being unable to cast integers into one-past-the-end pointers prevents

integers from refining pointers in the Quasi-Concrete model. As discussed in

§5, this is a very desirable property in the context of optimizations; indeed, the

Quasi-Concrete model cannot justify optimizations such as cast propagation.

While not a memory model itself, the idea of angelic nondeterminism uti-

lized in DimSum [31] offers an alternative way of creating a memory model

that supports the casting of integers as one-past-the-end pointers. However,

using angelic nondeterminism for integer-to-pointer casts prevents reordering

optimizations between casts and other sources of nondeterminism (e.g., external

calls), creating another missed opportunity for applying optimizations.

PNVI-ae-udi [5] is a formalization of C semantics that also formalizes integer-

pointer casts through a memory model. Being a successful formalization, PNVI-

ae-udi is indeed capable of supporting the example coding patterns and opti-

mizations in this paper; however, PNVI-ae-udi is also highly complex, making it

an undesirable tool for source-level verification.

VIP [10] is a “simplification” of the memory model of PNVI-ae-udi, in that

VIP defines a simpler source-level semantics which PNVI-ae-udi refines. VIP

especially enjoys automation through integration with RefinedC [32], enabling

the automatic verification of some programs with integer-pointer casts. However,

despite being a memory model targeted at source-level verification, VIP cannot

support some coding patterns such as the xor-list. VIP also requires the source

program to be annotated with a special instruction.

The Twin-Allocation model [11] is a memory model that formalizes integer-

pointer casts in LLVM IR, and is capable of supporting many coding patterns

and optimizations. However, the Twin-Allocation model (and VIP as well) do

not formalize out-of-memory and simply assume that it does not happen, which

is unsound in a formal end-to-end verification setting as in §4.

66

seL4 [33] is an approach that performs translation validation to formally

verify an OS kernel, which, being low-level systems code, relies heavily on

integer-pointer casts. The approach taken in seL4 represents another way one

can establish end-to-end verification for code containing integer-pointer casts,

through translation validation. However, while translation validation allows us

to check that some emitted assembly is correct, it cannot provably generate

correct assembly code given some arbitrary source program like CompCertCast

can. In this paper, we mean end-to-end verification in the sense of a verified

compiler.

67

Chapter 8

Conclusion and Future Work

8.1 Conclusion

This paper introduces a framework for end-to-end verification of C programs,

specifically (i) Archmage, a memory model for integer-pointer casts, (ii) Com-

pCertCast, an extension of CopmCert that supports integer-pointer casting

and optimizations through Archmage, and (iii) Archmage logic, a source-level

separation logic built on top of Archmage that supports reasoning about complex

integer-pointer casting patterns. In particular, CompCertCast preserves the opti-

mizations of original CompCert while introducing new optimizations to mitigate

the overhead of formally considering integer-pointer casts, and Archmage logic

represents a scalable source-level logic capable of verifying complex programs

such as the xor-list in §6.2.

68

8.2 Future Work

Our work presents several opportunities for future research and development.

This section outlines three key directions that could extend and improve our

current findings.

First, there is future work needed to automate Archmage logic. We hope

to extend the work presented in this thesis by automating Archmage logic to

obtain a full verification chain capable of automatically verifying and compiling

integer-pointer casting programs. As discussed in §7, related works such as VIP

and RefinedC have successfully automated separation logic reasoning. Since

CCR, which is the foundation of our program verification approach, can support

most of the features of Iris [24] that are used in VIP and RefinedC, we believe

similar automation is possible for Archmage logic.

Second, there are limitations in our approach that need to be addressed

in future work. As discussed in §7, CompCertCast currently only supports

x86-64 as a backend architecture, while the original CompCert supports multiple

architectures including x86-32, x86-64, ARM, Power-PC, and RISC-V. Extending

CompCertCast to support widely-used architectures like ARM would be one of

the most efficient ways to expand Archmage’s verification coverage. Additionally,

as covered in §5, CompCertCast’s RTL treats a function’s stack as a single

memory object. This stack structure makes it difficult to apply static analysis

to stack-stored values in situations where the stack can be accessed from other

functions (e.g., when a stack pointer is escaped to other function). While this is

also an issue in CompCert, CompCertCast faces an additional problem: blocks

with physical addresses can be accessed by other functions even if stack pointers

haven’t leaked externally. Therefore, we believe addressing this stack-related

issue would provide greater benefits for CompCertCast compared to the original

69

CompCert.

Finally, there is a need to verify more complex examples involving integer-

pointer casting. While Archmage currently handles examples like xor-list and

simple pointer hardening, it was designed to verify more complex system pro-

grams. The SLUB allocator or KASAN [34] could be good targets for such

verification. Since verification targets may use features that Archmage does not

currently support, additional extensions to Archmage may be necessary.

70

Bibliography

[1] X. Leroy, “Formal certification of a compiler back-end or: Programming a

compiler with a proof assistant,” in Proceedings of the 33rd ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL 2006,

2006.

[2] A. W. Appel, Program Logics for Certified Compilers. Cambridge University

Press, 2014.

[3] J. C. Reynolds, “Separation logic: A logic for shared mutable data structures,”

in Proceedings 17th Annual IEEE Symposium on Logic in Computer Science,

pp. 55–74, IEEE, 2002.

[4] J. Kang, C.-K. Hur, W. Mansky, D. Garbuzov, S. Zdancewic, and

V. Vafeiadis, “A formal c memory model supporting integer-pointer casts,”

in Proceedings of the 36th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI 2015, 2015.

[5] K. Memarian, V. B. F. Gomes, B. Davis, S. Kell, A. Richardson, R. N. M.

Watson, and P. Sewell, “Exploring c semantics and pointer provenance,”

Proc. ACM Program. Lang., vol. 3, jan 2019.

71

[6] Y. Kim, M. Cho, J. Lee, J. Kim, T. Yoon, Y. Song, and C.-K. Hur,

“Archmage and compcertcast: End-to-end verification supporting integer-

pointer casting,” Proc. ACM Program. Lang., vol. 9, jan 2025.

[7] R. Gu, Z. Shao, H. Chen, X. Wu, J. Kim, V. Sjöberg, and D. Costanzo,

“Certikos: An extensible architecture for building certified concurrent os

kernels,” in Proceedings of the 12th USENIX Symposium on Operating

Systems Design and Implementation, OSDI 2016, 2016.

[8] W. Mansky and K. Du, “An iris instance for verifying compcert c programs,”

Proc. ACM Program. Lang., vol. 8, jan 2024.

[9] J. Ševčík, V. Vafeiadis, F. Zappa Nardelli, S. Jagannathan, and P. Sewell,

“Compcerttso: A verified compiler for relaxed-memory concurrency,” Journal

of the ACM (JACM), vol. 60, no. 3, pp. 1–50, 2013.

[10] R. Lepigre, M. Sammler, K. Memarian, R. Krebbers, D. Dreyer, and

P. Sewell, “Vip: Verifying real-world c idioms with integer-pointer casts,”

Proc. ACM Program. Lang., vol. 6, jan 2022.

[11] J. Lee, C.-K. Hur, R. Jung, Z. Liu, J. Regehr, and N. P. Lopes, “Reconciling

high-level optimizations and low-level code in llvm,” Proc. ACM Program.

Lang., vol. 2, oct 2018.

[12] F. Besson, S. Blazy, and P. Wilke, “A Concrete Memory Model for Com-

pCert,” in 6th International Conference on Interactive Theorem Proving,

ITP 2015, 2015.

[13] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong

program analysis & transformation,” in Proceedings of the International

Symposium on Code Generation and Optimization: Feedback-Directed and

72

Runtime Optimization, CGO ’04, (USA), p. 75, IEEE Computer Society,

2004.

[14] The Coq Development Team, “The Coq proof assistant 8.13.2 reference

manual,” 2021. https://coq.github.io/doc/V8.13.2/refman/.

[15] R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson, “Permission ac-

counting in separation logic,” in Proceedings of the 32nd ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL ’05,

(New York, NY, USA), p. 259–270, Association for Computing Machinery,

2005.

[16] J. Boyland, “Checking interference with fractional permissions,” in Static

Analysis (R. Cousot, ed.), (Berlin, Heidelberg), pp. 55–72, Springer Berlin

Heidelberg, 2003.

[17] J. C. Reynolds, “Separation logic: A logic for shared mutable data structures,”

in Proceedings of the 17th Annual IEEE Symposium on Logic in Computer

Science, LICS ’02, (USA), p. 55–74, IEEE Computer Society, 2002.

[18] Y. Song, M. Cho, D. Kim, Y. Kim, J. Kang, and C.-K. Hur, “Compcertm:

Compcert with c-assembly linking and lightweight modular verification,”

Proc. ACM Program. Lang., vol. 4, Dec. 2019.

[19] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck,

“Efficiently computing static single assignment form and the control depen-

dence graph,” ACM Trans. Program. Lang. Syst., vol. 13, p. 451490, oct

1991.

73

https://coq.github.io/doc/V8.13.2/refman/

[20] G. Barthe, D. Demange, and D. Pichardie, “Formal verification of an ssa-

based middle-end for compcert,” ACM Trans. Program. Lang. Syst., vol. 36,

mar 2014.

[21] Kim, Yonghyun and Cho, Minki and Lee, Jaehyung and Kim, Jinwoo

and Yoon, Taeyoung and Song, Youngju and Hur, Chung-Kil, “Archmage

artifact,” 2024. https://github.com/snu-sf/Archmage/.

[22] L.-y. Xia, Y. Zakowski, P. He, C.-K. Hur, G. Malecha, B. C. Pierce, and

S. Zdancewic, “Interaction trees: Representing recursive and impure pro-

grams in coq,” Proc. ACM Program. Lang., vol. 4, Dec. 2019.

[23] Y. Song, M. Cho, D. Lee, C.-K. Hur, M. Sammler, and D. Dreyer, “Con-

ditional contextual refinement,” Proc. ACM Program. Lang., vol. 7, jan

2023.

[24] R. Jung, R. Krebbers, J.-H. Jourdan, A. Bizjak, L. Birkedal, and D. Dreyer,

“Iris from the ground up: A modular foundation for higher-order concurrent

separation logic,” Journal of Functional Programming, vol. 28, 2018.

[25] L. Torvalds et al., “Linux kernel,” 2024.

[26] F. Besson, S. Blazy, and P. Wilke, “A precise and abstract memory model for

c using symbolic values,” in Asian Symposium on Programming Languages

and Systems, 2014.

[27] F. Besson, S. Blazy, and P. Wilke, “CompCertS: A Memory-Aware Verified

C Compiler Using a Pointer as Integer Semantics,” in Journal of Automated

Reasoning, 2019.

74

https://github.com/snu-sf/Archmage/

[28] J. Kang, C.-K. Hur, W. Mansky, D. Garbuzov, S. Zdancewic, and

V. Vafeiadis, “A formal c memory model supporting integer-pointer casts,”

ACM SIGPLAN Notices, vol. 50, no. 6, pp. 326–335, 2015.

[29] Y. Wang, P. Wilke, and Z. Shao, “An abstract stack based approach to

verified compositional compilation to machine code,” Proc. ACM Program.

Lang., vol. 3, jan 2019.

[30] A. W. Appel, L. Beringer, Q. Cao, and J. Dodds, Verifiable C, vol. 1. 2023.

[31] M. Sammler, S. Spies, Y. Song, E. D’Osualdo, R. Krebbers, D. Garg, and

D. Dreyer, “Dimsum: A decentralized approach to multi-language semantics

and verification,” Proc. ACM Program. Lang., vol. 7, jan 2023.

[32] M. Sammler, R. Lepigre, R. Krebbers, K. Memarian, D. Dreyer, and D. Garg,

“Refinedc: Automating the foundational verification of c code with refined

ownership types,” in Proceedings of the 42nd ACM SIGPLAN Interna-

tional Conference on Programming Language Design and Implementation,

PLDI 2021, (New York, NY, USA), p. 158–174, Association for Computing

Machinery, 2021.

[33] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,

D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch,

and S. Winwood, “seL4: Formal verification of an OS kernel,” in SOSP,

pp. 207–220, ACM, 2009.

[34] D. Vyukov et al., “KernelAddressSANitizer (KASAN).” https://www.

kernel.org/doc/html/latest/dev-tools/kasan.html, 2014. Linux ker-

nel memory error detector.

75

https://www.kernel.org/doc/html/latest/dev-tools/kasan.html
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html

Acknowledgements

가장 먼저 저의 지도교수님이신 허충길 교수님께 감사드립니다. 집요하게 문제

의 본질을 파악하는 자세와 동료들과 의견을 나누어야 한다는 가르침은 앞으로의

제 연구에서 가장 염두에 두어야 할 배움입니다. 교수님의 연구에 대한 열정적인

태도는 이따금씩 연구에 지쳐 있는 저에게 큰 격려가 되었습니다.

이광근 교수님께 감사드립니다. 교수님께서는 저에게 필요한 조언과 가르침을

아낌없이 베풀어 주셨습니다. 특히 발표에 있어서 교수님께서 주셨던 많은 조언들

덕분에 박사과정 중 중요한 고비에 있었던 발표들을 잘 헤쳐 나갈 수 있었습니다.

강지훈교수님께감사드립니다.처음에는연구실선배로,졸업한이후에는같은

분야를 연구하는 교수님으로 연구와 인생을 이끌어가는데 피와 살이 되는 가르침

을 주셨습니다. 제가 박사 과정 동안 진행했던 대부분의 연구는 강지훈 교수님의

연구에뿌리를두고있습니다.교수님의연구가단단한뿌리가되어주었기때문에

저의 연구가 앞으로 나아갈 수 있었습니다.

김지응 교수님께 감사드립니다. 교수님께서는 프로그래밍 언어 분야의 선배로

서도, 같은 주제를 연구하는 동료로서도 가장 좋은 분입니다. 저의 장래를 본인의

것처럼 같이 고민해 주시던 일을 절대 잊을 수 없을 것입니다.

이재욱 교수님께 감사드립니다. 교수님께서 주신 조언들 덕분에 생각하지도

못했던 새로운 예제들을 찾아보고 시야를 넓힐 수 있었습니다.

조민기에게감사합니다.민기가놀라운이해력과분석력으로제연구에기여한

76

바는 이루 다 말할 수 없고 그의 명랑한 성격이 아니었다면 저의 연구가 어려움에

빠졌을 때 다시 일어날 수 없었을 것입니다.

소프트웨어 원리 연구실과 프로그래밍 연구실의 동료분들께 감사드립니다. 이

렇게훌륭한동료들과함께연구할수있는환경에있었다는것이제인생에있어서

큰 행운이었습니다. 특히 강지훈 교수님, 김윤승 형, 이준영, 송용주, 조민기, 이성

환, 김동주, 김진우, 이재형에게 감사합니다. 함께 연구할 때 큰 힘이 되어주었던

김윤승 형, 조민기, 이재형, 김진우, 윤태영, 송용주, 김동주, 이동재에게 감사합

니다. 연구실 생활을 함께 하며 대학원 과정 중 있었던 즐거움과 어려움을 함께

나눴던 김윤승 형, 이준영, 송용주, 신동연 형, 이동권, 김세훈, 이성환, 조민기,

김동주, 주호영, 이동재에게 감사합니다.

대학원 과정을 잘 마무리할 수 있게 도와주신 부모님께 감사드립니다. 두 분

의 지원 덕분에 다른 걱정을 하지 않고 박사 과정을 마칠 수 있었습니다. 이것이

얼마나 큰 사랑인지 알고 있습니다.

대학원 밖에서 만났던 친구들에게 감사합니다. 대학에서 만난 뒤로 저에게 많

은 위로와 격려를 주었던 권순형, 박지원, 김지원, 김도현에게 감사합니다. 저에게

프로그래밍을 본격적으로 소개하고 가르쳐주어 전산학에 발을 들이는데 도움을

준 차동훈에게 감사합니다.

마지막으로,아내에게이논문을바칩니다.아내는저의대학원생활동안등불

과도 같은 존재였습니다. 아내의 도움이 없었다면 저는 박사 과정을 무사히 마칠

수 없었을 것입니다. 앞으로 아내가 저에게 주었던 큰 사랑을 갚아나가며 살겠습

니다.

77

요약

본 논문은 정수-포인터 변환한 C 프로그램을 처음부터 끝까지 검증하는 방법을

제시한다. 기존의 정수-포인터 변환을 다루는 엄밀한 메모리 모델과 관련된 접근

법은 처음부터 끝까지 검증하는 것을 고려하지 않고 디자인 되었기 때문에 다음과

같은 결점을 가질 수 있다. 첫째, 중요한 프로그래밍 패턴을 지원하지 않거나 둘째,

컴파일 과정의 일부를 설명하지 못하거나 셋째, 프로그램 검증을 위한 프로그램

논리를 지원하지 않는다.

본 논문에서는 정수-포인터 변환을 포함한 프로그램을 처음부터 끝까지 검증

하기 위해 디자인된 프레임워크 Archmage을 소개한다. Archmage은 넓은 범위의

프로그래밍 패턴을 지원하며, 컴파일러의 많은 최적화를 설명할 수 있고, 프로

그램 검증을 위한 프로그램 논리를 제공한다. Archmage은 두 개의 시스템으로

구성되어있다. 첫번째로 CompCertCast은 정수-포인터 변환을 지원하도록 확장

된 CompCert로 정수-포인터 변환을 포함한 프로그램이 올바르게 컴파일된다는

것을 보장한다. 두번째로 Archmage logic은 정수-포인터 변환과 관련된 증명을 다

룰수있는프로그램논리로,정수-포인터변환을포함한프로그램이프로그래머가

정의한 명세를 따른다는 것을 증명하는 도구를 제공한다. 우리는 CompCertCast

를 구현하면서 정수-포인터 변환을 지원하게 되며 생기는 성능 저하를 최소화하

고 xor-list를 포함한 예제들을 Archmage logic으로 검증하여 이 프레임워크의

유용성을 보였다.

주요어: 정수-포인터 변환, 컴파일러, CompCert, 분리 논리, Coq, 정형 검증

학번: 2017-22945

78

	Abstract
	Prologue
	Introduction
	Background
	CompCert

	Introduction: Towards End-to-End Verification Supporting Integer-Pointer Casting
	Overview of Contributions
	The Memory Model Archmage
	CompCertCast: Reconciling CompCert with Archmage
	Archmage Logic

	The Memory Model Archmage
	The Definition of Archmage

	CompCertCast: Reconciling CompCert with Archmage
	Modifying CompCert to Support Integer-Pointer Casts
	Mixed Simulations and Memory Relations
	External Call Axioms
	Other Minor Modifications to the CompCert Infrastructure

	Identifying and Alleviating Performance Overhead
	Cast Propagation: Replacing Uses of Pointers with Integers
	Flagging Stack Casts to Enable Stack-Local Optimizations

	The Lower Bound Improvement: Generating CompCert-Asm with Fully Physical Pointers
	Implementation

	Archmage Logic
	The Predicates and Rules of Archmage Logic
	Case Study 1: Proving Correctness of a Xor-Based Linked List with Archmage Logic
	Case Study 2: Proving Correctness of a Simple Pointer Hardening with Archmage Logic

	Discussion and Related Works
	Conclusion and Future Work
	Conclusion
	Future Work

	Acknowledgements
	요약

