
Ph.D. DISSERTATION

RUSC and CompCertM: A new foundation
for modular verification and its application

to compiler verification

RUSC와 CompCertM: 나눠서 검증하기 위한 새로운
이론적 토대와 컴파일러 검증에의 적용

BY

Youngju Song

FEBRUARY 2021

DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE

COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

Ph.D. DISSERTATION

RUSC and CompCertM: A new foundation
for modular verification and its application

to compiler verification

RUSC와 CompCertM: 나눠서 검증하기 위한 새로운
이론적 토대와 컴파일러 검증에의 적용

BY

Youngju Song

FEBRUARY 2021

DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE

COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

RUSC and CompCertM: A new foundation for
modular verification and its application to compiler

verification

RUSC와 CompCertM: 나눠서 검증하기 위한 새로운
이론적 토대와 컴파일러 검증에의 적용

지도교수 허 충 길

이 논문을 공학박사 학위논문으로 제출함

2021 년 1 월

서울대학교 대학원

전기 컴퓨터 공학부

송용주

Youngju Song의 공학박사 학위논문을 인준함

2021 년 1 월

위 원 장 이광근

부위원장 허충길

위 원 이우석

위 원 허기홍

위 원 강지훈

Abstract

Modern software systems are complex. To verify such a system, it is critically
important to have a modular verification technique. However, none of the existing
approaches are satisfactory. In this dissertation, we develop a novel modular
verification technique, called RUSC (Refinement Under Self-related Contexts),
and demonstrate its usefulness by applying it to both compiler verification and
program verification.

On the one hand, RUSC advances the state-of-the-art on compiler veri-
fication. Specifically, we develop CompCertM, a full extension of CompCert
supporting multi-language linking without any restrictions but still with low
verification overhead, thus surpassing the two state-of-the-arts, CompCertX and
Compositional CompCert. On the other hand, RUSC as a program verification
technique is in its early stage but shows considerable potential. Compared
to higher-order separation logic, our approach provides simpler specifications
and stronger results, but its verification overhead is much higher and does not
support advanced features yet.

Keywords: C, Modularity, Compositional Compiler Verification, CompCert,
Separate Compilation, Multi-Language Linking
Student Number: 2015-21244

i

Contents

Abstract i

Chapter I Overview 1
1 Compiler Verification . 2
2 Program Verification . 7

Chapter II RUSC 11
3 Background . 11
4 Problems . 15
5 Our Solution . 15

Chapter III Compiler Verification 22
6 Background . 22

6.1 CompCert’s Memory Model and Memory Relations 22
6.2 Interaction Semantics . 25

7 Problems . 26
8 Our Solution . 27

8.1 Assumptions on the Registers 27
8.2 Assumptions on the Stack 30
8.3 Mixed Simulation . 31

9 Advanced Optimizations with Module-Local Invariants 33
10 CompCertM . 37

10.1 Compositional Correctness 37
10.2 Evaluation of Verification Efforts 40

11 Formal Semantics . 42

ii

11.1 Loading in Interaction Semantics 43
11.2 Module Semantics . 44

12 Formalization of Verification Techniques 45
12.1 Mixed Simulation . 45
12.2 Parameters for Open Simulations 47
12.3 Open Simulations with Parameters 49
12.4 Horizontal Compositionality and Adequacy 53
12.5 Instances of Parameters 53

13 CompCertR . 55
14 Related Work . 57

14.1 Compositional Correctness for CompCert 58
14.2 Compositional Compiler Correctness for Higher-Order

Languages . 59

Chapter IV Program Verification 61
15 Background . 61
16 Problems . 62
17 Our Approach . 63

17.1 Verification of mutual-sum 63
17.2 Advantages . 65
17.3 Verification of utod . 66
17.4 Verification Effort . 67

18 Limitations and Future Works . 67
19 Related Works . 70

Chapter V Conclusion 71

초록 76

감사의 글 77

iii

List of Figures

Figure I.1 An end-to-end verification scenario 8

Figure II.1 Structured (or, open) simulations (simplified for presen-
tation purposes) . 13

Figure II.2 A compiler verification scenario with RUSC 18
Figure II.3 An expanded version of the verification scenario described

Figure II.2 . 20

Figure III.1 A counterexample showing the problem with the flat
memory model . 23

Figure III.2 An execution of interaction semantics 26
Figure III.3 A counterexample showing the problem with the assump-

tions on the registers . 28
Figure III.4 A counterexample showing the problem with the assump-

tion on the stack . 30
Figure III.5 A visualized example of mixed simulations 33
Figure III.6 An example of Unreadglob optimization 36
Figure III.7 Loading in Interaction Semantics 43
Figure III.8 Module and Module Semantics 45

Figure III.9 Three parameters for open simulations 48
Figure III.10 Parameterized Open Simulations 50

Figure IV.1 Verification of utod . 66

iv

List of Tables

Table III.1 SLOC of CompCertM and related works — compared to
its baseline CompCert, respectively 41

Table III.2 Breakdown of CompCertM pack 41
Table III.3 SLOC of additional developments 41

Table IV.1 SLOC of additional developments 67

v

Chapter I

Overview

Modern software systems are complex, and modularity is the crucial tool for
coping with such complexity. That is, software systems are typically broke up
into multiple modules so that software developers can focus on a single module
at a time. Moreover, instead of directly writing each module in assembly, they
are mostly written in high-level languages such as C. Then compilers translate
such high-level languages into assembly via multiple translation passes.

To verify such a system, it is critically important to have a modular veri-
fication technique. Specifically, the verification can be divided into two parts,
compiler verification and program verification. The former is about proving the
generated assembly code behaves as specified by the source program’s semantics,
and the latter is about proving desired properties about the behaviors of the
source program. In compiler verification, we want to focus on a single compiler
and its single translation at a time, even though each module is written in
different languages and compiled with different compilers. Similarly, in program
verification, we want to focus on a single module and its single abstraction at a
time, assuming interfaces of other modules.

However, none of the existing approaches are satisfactory. For compiler
verification, there are two state-of-the-art frameworks, CompCertX [7, 28] and
Compositional CompCert (shortly, CompComp) [4, 27], supporting modular
verification of multi-language systems. The former simplifies the problem by

1

imposing restrictions that the source modules should have no mutual dependence
and be verified against certain well-behaved specifications. On the other hand,
the latter develops a new verification technique that directly solves the problem
but at the expense of significantly increasing the verification cost. For program
verification, higher-order separation logic (such as VST[1]) has shown great
success, but it also has shortcomings: its underlying model (and thus soundness
result) is esoteric, it proves partial correctness instead of total correctness, and
its soundness theorem is applicable only when the whole program is verified
with the same logic.

In this dissertation, we develop a novel modular verification technique, called
RUSC (Refinement Under Self-related Contexts) (Chapter II), and demonstrate
its usefulness by applying it to both compiler verification (Chapter III) and
program verification (Chapter IV). Specifically, we develop CompCertM, a
full extension of CompCert supporting multi-language linking, and show how
RUSC enables modular compiler verification without any restrictions but still
with low verification overhead. Moreover, we verify interesting programs using
RUSC as a program logic and demonstrate that it does not suffer from the
drawbacks above of higher-order separation logic. Although the result shows
potential, RUSC-as-a-program-logic is still in its early stage, and we discuss
future research directions.

This dissertation draws heavily on the work and writing in the following
paper: [25]

1 Compiler Verification

CompCert [16, 17], the first verified optimizing compiler for the C programming
language, has served as a backend in end-to-end verified software [2]. Specifically,
CompCert compiles programs written in (a large subset of) C down to assembly
code via various translation passes including a number of common optimizations.
Moreover, it is formally verified in Coq that every translation of CompCert
preserves the semantics: the generated assembly code behaves as specified by
the semantics of the source program. Therefore, CompCert has been used to
transform verification results about the source C program into those about the
compiled assembly code in various projects such as CertiKOS [6, 8] and VST [1].

There is, however, a limitation in the original CompCert that restricts its
application to a more wide range of software verification—namely the lack of

2

support for handwritten assembly. This limitation can be serious in verification
of real-world software because handwritten assembly is often crucial for writing
low-level system software or library code.

To overcome this limitation, two extensions of CompCert, namely Comp-
CertX [7, 28] and Compositional CompCert (shortly, CompComp) [4, 27], have
been developed. Interestingly, they take different approaches to two key chal-
lenges:

1. how to modularly verify each translation of each module using a different
relational memory invariant (shortly, memory relation) and compose the
proofs all together; and

2. how to deal with illegal interference from arbitrary (handwritten) assembly
modules that can invalidate compiler translations of C modules (e.g., not
preserving the callee-save register values).

We elaborate more on the first, more fundamental, challenge. CompCert
uses three different memory relations called memory identity, extension and
injection (in the order of complexity and generality) for a proof engineering
purpose: it uses a simpler relation whenever possible to simplify the correctness
proof. The challenge occurs in an open setting where a translation of an open
module is verified separately. In a closed setting as in CompCert where the whole
closed program (i.e., all the modules) is compiled by the same translation pass
thereby being verified as a whole, verification of such a closed program using
a simpler relation essentially implies that using a more general one. However,
in an open setting (i.e., for verification of an open module), that implication
does not hold because such verification assumes that the unknown contexts also
preserve the same memory relation. In other words, using a simpler relation,
the verification guarantees a stronger property on its own module but assumes
a stronger property on the context modules. Therefore, verification of open
modules using different memory relations cannot be compared, which makes
composition of such verifications hard.

CompCertX’s Approach CompCertX is developed as a backend compiler
for the verified OS kernel CertiKOS [6, 8] and thus specialized for this purpose.
Specifically, CompCertX simplifies the two challenges by making two assumptions
that (i) there are no mutual dependencies among the input modules and (ii) each

3

input module is verified against a well-behaved specification, called Certified
Abstraction Layer (CAL).

First, these assumptions enable CompCertX to use closed simulations, the
simple verification technique used by the original CompCert. The simulations
are closed in the sense that they relate known source and target functions
under the condition that all invoked unknown functions have independent
good behaviors. Specifically, the unknown functions (i) provide full end-to-end
behaviors regardless of who the caller is (i.e., whether it is the source or the
target); and (ii) those behaviors satisfy a certain good-behavior property. Note
that these two requirements for closed simulations directly follow from the two
assumptions of CompCertX above, respectively. Then proving compositionality
between closed simulations using the three different types of memory relations
is straightforward as discussed above (i.e., verification using a simpler relation
implies that using a more general one). As a result, the correctness proofs of
all compiler passes using closed simulations in CompCertX are only 15.51%
larger than those in the original CompCert 3.0.1 in terms of significant lines of
code (SLOC)1, and the metatheory (i.e., all the rest) is 47.65% larger.

Second, thanks to the assumptions of CompCertX, interference from assembly
modules is also handled simply. The assumption that handwritten assembly
modules are verified against CAL specifications implies that those modules do
not cause any illegal interference (i.e., well-behaved).

CompComp’s Approach CompComp establishes a more general correctness
result without the restrictions of CompCertX but at the expense of using a
more heavyweight verification technique of its own, called structured simulations.
They are in the form of open simulations in the sense that they allow invoked
unknown functions to depend on their callers (e.g., via mutual recursion).
Since this openness technically makes compositionality proofs much harder as
discussed above, to simplify them CompComp uses a single memory relation,
called structured injection. For this reason, the verification technique is less
flexible. Specifically, the proofs of the whole compiler passes using the structured
injection deviate quite far from the original proofs in CompCert and require
significantly more efforts: the correctness proofs of all compiler passes are 145.77%
larger than those in the original CompCert 2.1, and the metatheory is 81.77%
larger.

1we counted SLOC using coqwc.

4

Also, CompComp handles interference from assembly modules more generally
without assuming the good-behavior property for input modules. Since such
interference only occurs via the register file and the function arguments area
of the stack (i.e., the shared resources that exist in assembly but not in C),
the interaction semantics of CompComp, which gives a logical semantics to
programs consisting of multi-language modules, duplicates those resources for
each invocation of an assembly module and does not propagate any illegal effects
outside the module.

However, the treatment comes with no adequacy proof with respect to the
physical semantics. Indeed, interaction semantics is not adequate: due to the
logical isolation of illegal effects, the interaction semantics of linked assembly
modules deviates from their physical semantics (i.e., the assembly semantics
of CompCert) when one of the modules indeed causes illegal interference, for
example, by not preserving the callee-save register values. Note that this problem
was also observed and discussed in the PhD thesis of [26] (see Section 14 for
comparison).

Finally, there is another difference between CompComp and CompCertX:
CompComp only supports C-style calling conventions, while CompCertX addi-
tionally supports assembly-style calling conventions (i.e., imposing no conditions
except on the return address) between assembly modules.

Our Approach In this dissertation, we develop a new framework achieving
both the flexibility of CompCertX and the generality of CompComp. We demon-
strate its power as a compiler verification framework by applying it to CompCert.
Specifically, we develop:

• Open (Mixed) Simulations: a simpler version of structured simulations, (i)
allowing arbitrary memory relations including memory identity, extension and
injection, and (ii) supporting mixed forward-backward simulation;

• RUSC (Refinement Under Self-related Contexts): our new lightweight theory
for composing arbitrary open simulations together, which is the highlight of
our theoretical contribution;

• Repaired Interaction Semantics: providing adequacy w.r.t. the physical se-
mantics and additionally supporting assembly-style calling conventions;

• CompCertM: CompCert v3.5 fully extended with the repaired interaction
semantics and open simulations to support multi-language linking (18.73%

5

larger in the correctness proofs of all compiler passes, and 32.59% larger in
the metatheory);

• Unreadglob: a new optimization pass we added that eliminates all unread
static variables and instructions writing to them, whose verification for open
modules requires a new kind of memory relation, memory injection with
module-local invariants;

The key theory enabling all these results is RUSC, which takes a set of (almost
arbitrary) open simulations R and lifts them to a larger relation ≽R that is
fully compositional. The idea is inspired by the situation where the transitivity
problem of logical relations is avoided by proving their inclusion in the contextual
refinement, which is trivially transitive. To increase its applicability, RUSC simply
generalizes the notion of contextual refinement (CR) by parameterizing over a
set of program relations R. Specifically, we say that p ≽R q if for any context C
that is related to itself by every relation in R, the observable behaviors of C[p]

are refined by those of C[q]. The key idea is to give the notion of well-behaved
contexts w.r.t. a set of program relations R as those that are self-related by
every relation in R. The intuition behind it is that a context self-related by a
program relation R preserves all the invariants of the relation R. The merits
of RUSC are that RUSC is (i) unlike CR, applicable even in the presence of
ill-behaved contexts, which is the case in our setting, and (ii) fully compositional
like CR. By setting R as the set of open simulations with four kinds of memory
relations—the three relations used by CompCert and our new relation, memory
injection with module-local invariants—we can freely choose one of them in
verification of a compiler pass, or a program against its specification.

Also, to generally support forward simulation in the presence of nondeter-
minism, we implement the notion of mixed forward-backward simulation from
[19] with a slight generalization needed for CompCert (see Section 8.3).

We repair the interaction semantics of CompComp by defining those behav-
iors causing illegal interference as undefined behaviors (UBs)2, which, however,
required a few nontrivial ideas. First, we identify the sources of inadequacy
of interaction semantics as those behaviors violating three assumptions—seen
as a part of the official calling convention—made by standard compilers such
as GCC and LLVM with concrete counterexamples. Second, to make those

2UBs can be understood as forbidden behaviors, so that compilers are licensed to translate
them into any behaviors.

6

illegal behaviors UBs, we strengthened only the interaction part of interaction
semantics without changing the underlying language semantics of CompCert,
which indeed is quite nontrivial as discussed in Section 7. Finally, we prove
two adequacy results: (i) the interaction semantics of linked assembly modules
is refined by their physical semantics, and (ii) the physical semantics (i.e.,
the language semantics of CompCert) of linked (typed-checked) C modules is
refined by their interaction semantics. These results mean that the repaired
interaction semantics does not give too few behaviors to assembly programs (e.g.,
missing physically observable behaviors), nor does it give too many behaviors
to well-typed C programs (e.g., giving UB to them).

CompCertM is a full extension of CompCert 3.5 without missing any trans-
lation pass and without changing the underlying semantics, which is developed
in two steps. First, we refactored the proofs of the original CompCert to get
CompCertR, where the main parts of the correctness proof of each pass is
separated out as a main lemma that can be later used for both closed and open
simulation proofs. CompCertR gives exactly the same results as CompCert with
only 4.41% increase in the correctness proofs of all passes and 2.74% increase in
the metatheory. Then, on top of CompCertR, we developed an add-on package,
CompCertM pack, supporting interaction semantics and multi-language linking.
CompCertM reuses all the main lemmas of CompCertR and adds (i) additional
proofs to reason about the interaction parts of interaction semantics in the
correctness proofs of all passes, which amount to 14.32% of the original proofs
in CompCert, and (ii) additional metatheory including interaction semantics
and RUSC, which amounts to 29.85% of the original metatheory in CompCert.

Finally, a newly added optimization, Unreadglob, shows the flexibility of
our framework: allowing arbitrary memory relations.

2 Program Verification

Program verification is about proving the source program behaves according
to mathematical specifications. Together with the compiler verification, this
constitutes an end-to-end verification of a system. Like compiler verification, it
is critically important to have a modular reasoning principle that allows one to
verify each module against its specification by a series of gradual abstractions.

However, program verification is distinct from compiler verification in few
ways. First, we need a way to describe mathematical specifications. Several
existing works [18, 12, 1, 7] take different approaches on this with pros and

7

Figure I.1: An end-to-end verification scenario

cons. The second difference is that compilers are conservative; when a compiler
translates a module, it does not assume any property about external function’s
implementation, and thus the translation is sound under arbitrary C context.
However, in program verification, we need to assume the external function’s
behavior, and that function should meet the assumption. For example, suppose
there is a source program that uses a sort function from an external library.
Then, the module is correct (behaves according to a mathematical specification)
only when the sort function behaves as expected. In other words, in program
verification, it is crucial to support cooperation between different modules nat-
urally. Third, compilers are general, which means that they are designed to
serve arbitrary C code, so their translations are relatively more straightforward.
However, in program verification, we write specifications for each C module, so
each abstraction is unique, requiring a deeper understanding of its algorithmic
nature.

Now we explain how we can apply RUSC to program verification with an
example (Figure I.1) where two mutually recursive modules, f.c and g.c, are

8

verified against its specifications even in the presence of an unknown assembly
module h.asm.

First, we write a specification as a module, not in C but an abstract mathe-
matical state transition system. For instance, if we have a C module computing
Fibonacci number employing dynamic programming technique, its specification
module directly returns Fib(n) for an argument n where Fib is a Gallina function.
Existing works[18, 12, 1, 7] often take different choices with us, where they write
specifications in a specific language, as a Hoare triple, or as a CAL. We use a
state transition system because it is the most general form, and fortunately, it
is already supported in interaction semantics.

Then, each implementation module (written in C or assembly) is verified
against its specification module using open simulations, thus implying RUSC
relation. The challenge here is: How to utilize the other modules’ specifications
even though what we are proving is RUSC, which quantifies over an arbitrary
context? Our key idea is that, instead of directly assuming the specifications
of other modules, we carefully massage each specification module with UB in
order to give an illusion as if we are assuming specifications of other modules.
Specifically, f.spec calls g – which can be an arbitrary function because we are
proving under an arbitrary context – and then check if g returns the expected
value. If so, it will proceed, but if not, it will trigger UB. As a result, when
verifying f.spec ≽R f.c one needs to proceed with the simulation proof only
when g behaves as expected because otherwise, the proof is trivial. After each
module’s verification is over, we can merge these modules to form fg.spec and
remove the potential source of UB. This way, we can handle cooperation among
the modules naturally.

Finally, recall that RUSC lifts (almost) arbitrary open simulations. Therefore,
even though verifying f.c against f.spec requires a specialized simulation,
RUSC can ably support them.

We demonstrate RUSC’s potential as a program verification framework with
interesting examples, for which we write mathematical specifications as abstract
modules in interaction semantics and prove refinement between the examples
and their specification modules. Specifically, we develop:

• Verification of utod: providing a correctness proof against its specification
module using an open simulation, where utod is a handwritten assembly func-
tion casting unsigned long to double, whose correctness against its specification
is axiomatized in CompCert but not any more in CompCertM;

9

• mutual-sum: an example consisting of (i) C and handwritten assembly mod-
ules that mutually recursively compute summation up to a given integer,
performing memoization using module-local static variables, and (ii) correct-
ness proofs against their specification modules using open simulations with
the new memory relation, memory injection with module-local invariants.

Our approach is promising – it does not suffer from a few drawbacks of
higher-order separation logic – but is still in early-stage, and further research
is needed. Specifically, we give clean and understandable specifications, prove
total correctness, and our results are sound under arbitrary context, but we
do not support advanced features (e.g., concurrency) yet, and our verification
overhead is relatively high. We will give a more comprehensive comparison and
discuss future research directions in Section 17 and 18.

All our results are formalized in Coq, and it is available at:

https://sf.snu.ac.kr/compcertm

10

https://sf.snu.ac.kr/compcertm

Chapter II

RUSC

We first give background on compiler verification techniques including the
notions of closed and open simulations (Section 3), discuss the problems with
open simulations (Section 4) and present our solution (Section 5).

3 Background

CompCert’s Verification CompCert’s correctness establishes behavioral re-
finement (also called semantics preservation) saying that the set of all observable
behaviors of a source program P , denoted Beh(P) (seen as a specification),
includes that of its compiled target program Q, i.e., Beh(Q) (seen as an imple-
mentation). Here an observable behavior of a program (either in C, assembly,
or an intermediate language) is a (finite or infinite) trace of observable events
(typically, invocation of system calls) occurring in a sequence of execution steps
according to the language semantics.

The semantics of a language L is given by a loading function ↑ ∈ Prog(L) →
Mem× State(L) from programs to machine states consisting of a memory and a
language state, and a step relation ↪→ ⊆ (Mem × State(L))× Event × (Mem × State(L))
between machine states producing an event. Specifically, ↑P denotes the initial
machine state after loading the program P , and (m, s)

e
↪→ (m′, s′) denotes that

the machine state (m, s) can transition to (m′, s′) producing an (observable or

11

silent) event e in a single step of execution.
CompCert is a multi-pass compiler and the whole verification is performed

modularly by composing independent verification of each pass. Specifically,
verification of a pass proves that the source and target programs of every
translation performed by the pass are related by a certain relation, called (closed)
simulation, to be described below. Since simulation relations are closed under
composition, every end-to-end translation, which is a composition of translations
of all passes, is also related by a simulation relation. Finally, CompCert’s
correctness follows from the fact that every simulation relation implies behavioral
refinement between the related programs.

In fact, there are two versions of simulations, forward and backward. The
former is more convenient for compiler verification but implies behavioral refine-
ment only when the target language is deterministic1. Since CompCert mostly
uses forward simulations, we will also focus on forward ones throughout the dis-
sertation and discuss how to mix forward and backward simulations to support
forward reasoning even when the target language is not deterministic in Section
8.3.

We say a translation of a program P into Q is related by a relation R

between machine states if the loaded initial states ↑P and ↑Q are related by R.
Then R is called a (closed forward) simulation if for any pair of machine states
(mssrc,mstgt) related by R, the target state mstgt simulates one step execution
of the source state mssrc (up to silent steps, denoted τ) and the resulting states
are again related by R (slightly simplified for presentation purposes):

∀(mssrc,mstgt) ∈ R, ∀e,ms′src, mssrc
e
↪→ ms′src =⇒

∃ms′tgt, mstgt
τ
↪→∗ e

↪→ τ
↪→∗

ms′tgt ∧ (ms′src,ms′tgt) ∈ R .

CompComp’s Verification The interaction semantics of CompComp gives
a way to execute an open module M (i.e., invoking external functions de-
fined outside M) in isolation by providing a logical mechanism to reflect pos-
sible interference from external function calls. More specifically, the semantics
provides two meta-level functions at external and after external. First,
at external s = Some (f, v⃗) denotes that at language state s, an external
function pointed to by a function pointer f is called with arguments v⃗. Second,

1CompCert uses a slightly different condition, namely that the source language is receptive
and the target is determinate.

12

1: ∀w, ∀(msrc,mtgt) ∈ mrel(w), ∀ssrc, stgt, ((msrc, ssrc), (mtgt, stgt)) ∈ R(w) =⇒
2: match at external ssrc with
3: | Some (fsrc, v⃗src) ⇒
4: ∃ftgt, v⃗tgt, at external stgt = Some (ftgt, v⃗tgt) ∧

5: (fsrc, ftgt) ∈ vrel(w) ∧ (v⃗src, v⃗tgt) ∈
−−−−−→
vrel(w) ∧

6: ∀w′ ⊒ w, ∀(m′
src,m

′
tgt) ∈ mrel(w′), ∀(rsrc, rtgt) ∈ vrel(w′),

7: ((m′
src, after external rsrc ssrc), (m

′
tgt, after external rtgt stgt)) ∈ R(w′)

8: | None ⇒
9: ∀e,m′

src, s
′
src, (msrc, ssrc)

e
↪→ (m′

src, s
′
src) =⇒

10: ∃m′
tgt, s

′
tgt, (mtgt, stgt)

τ
↪→∗ e

↪→ τ
↪→∗

(m′
tgt, s

′
tgt) ∧

11: ∃w′ ⊒ w, (m′
src,m

′
tgt) ∈ mrel(w′) ∧

12: ((m′
src, s

′
src), (m

′
tgt, s

′
tgt)) ∈ R(w′)

13: end

Figure II.1: Structured (or, open) simulations (simplified for presentation pur-
poses)

after external r s denotes the language state after the external function call
at s, assuming the call returned a value r.

Using interaction semantics, CompComp defines structured simulations relat-
ing two open modules. Here we briefly review the key ideas behind them, which
also occurred elsewhere, e.g., in [10, 19, 14]. First, unlike the closed simulations
above, structured simulations explicitly specify value and memory relations
(evolving over time) because values and memory are shared with external mod-
ules. Specifically, such relations are defined using Kripke-style possible worlds,
called structured injections (see Section 6.1 for more details), by giving (i) a
future world relation ⊒ for which w′ ⊒ w denotes that w′ is a future world of
w; and (ii) value and memory relations at each world w, denoted vrel(w) and
mrel(w). Then, a structured simulation R gives a relation between machine
states at each world w, denoted R(w), and should satisfy the open simulation
property (simplified for presentation purposes) given in Figure II.1.

Here the simulation involves rely-guarantee reasoning and is split into two
cases: one for interactions with external modules and the other for internal
steps (omitting two more cases for function start and end, for presentation
purposes). Specifically, given any world w, related memories at w and machine
states related by the simulation relation R at w (line 1), we check whether the

13

source state is invoking an external function or taking an internal step (line 2).
In the former case (line 3), the target state should also be invoking an external
function (line 4) and the invoked functions and arguments should be related
by the value relation at the world w (line 5), which is a guarantee condition
to the external modules. Then we assume that the invoked external functions
proceed to a future world w′ yielding related memories and related return values
at w′ (line 6), which is a rely condition from the external modules. Under the
assumption, the machine states after the external calls should also be related
by the simulation relation R at the future world w′ (line 7). In the latter case
(line 8), for any internal step from the source state (line 9), there should be
corresponding internal steps from the target state (line 10). Then the resulting
memories after the steps should be related at some future world w′ (line 11),
which is a guarantee condition to the external modules. Finally, the machine
states after the steps should also be related by the simulation relation R at the
future world w′ (line 12).

At high level, this simulation property specifies that internal executions of the
source and target modules should be related in lockstep satisfying the guarantee
conditions to the external modules, assuming that the rely conditions from them
hold after each external function call. Note that the rely and guarantee conditions
on memory (at lines 6 and 11) are matched and also those on values (at lines 5
and 6) will be matched if we include the omitted cases for function start and end.
This matching—in addition to the fact that the same rely/guarantee conditions
are used globally (i.e., for verification of every module)—is crucial for proving
preservation of the simulation property after linking modules because otherwise
what one module assumes about the other modules will not match with what
the other modules guarantee.

To use structured simulations for compiler verification, CompComp proves
the following three key properties, where we say a source module M simulates a
target module M ′ if there exists a structured simulation that relates M and M ′:

• (Vertical Compositionality) If M simulates M ′, which simulates M ′′, then
M simulates M ′′.

• (Horizontal Compositionality) If M1 and M2 simulate M ′
1 and M ′

2 re-
spectively, then the linked source module M1⊕M2 simulates the linked target
module M ′

1 ⊕M ′
2.

• (Adequacy) If M simulates M ′, then Beh(M) ⊇ Beh(M ′).

14

4 Problems

As discussed in the introduction, verification using structured simulations is
significantly more costly than that using closed simulations. The reasons are
twofold.

First, while closed simulations freely allow arbitrary memory relations—
therefore CompCert uses three different kinds of memory relations to simply
proofs—structured simulations only allow a single type of memory relations
called structured injections due to horizontal compositionality. The reason is that,
as discussed above, allowing different memory relations would introduce different
rely/guarantee conditions thereby breaking simulation after linking (i.e., hori-
zontal compositionality) due to the mismatch between different rely/guarantee
conditions.

Second, proving vertical compositionality for open simulations is in general
very technical and involved [21, 19]. Indeed the proof for structured simulations
is about 5,000 SLOC in Coq. Moreover, vertical compositionality also introduces
unnecessary complexities in structured simulations of CompComp such as effect
annotations and closedness under restriction [27].

To sum up, although it is quite straightforward to prove horizontal composi-
tionality and adequacy for a single relation (i.e., with the same rely/guarantee
conditions), it is challenging to prove (i) vertical compositionality even for a
single relation and (ii) horizontal compositionality between different relations
(i.e., with different rely/guarantee conditions).

5 Our Solution

Our solution is twofold. First, we develop a general and abstract theory, called
Refinement Under Self-related Contexts (RUSC), which is inspired by the stan-
dard notion of contextual refinement and the notion of self-related context from
[27] (see Section 14 for comparison). Specifically, given a set of (arbitrary and
independent) relations each of which is horizontally compositional and adequate,
RUSC completes the relations by giving a super-relation (i.e., including all
of them) that is horizontally and vertically compositional and also adequate.
Second, we prove that our version of structured simulations, called open simula-
tions, with almost arbitrary memory relations are horizontally compositional
and adequate, so that we can apply RUSC to open simulations with any chosen
set of memory relations.

15

Theory of RUSC RUSC can be defined abstractly for any linking algebra,
which consists of a set of modules, Module, with a notion of behavior2, de-
noted Beh(p) for p ∈ Module, a linking operation ⊕ between modules that is
associative3, and the identity (i.e., empty) module id ∈ Module:

⊕ : Module × Module → Module
∀p, q, r ∈ Module, p⊕ (q ⊕ r) = (p⊕ q)⊕ r

∀p ∈ Module, id⊕ p = p⊕ id = p

Note that RUSC can be applied to interaction semantics because it allows linking
between arbitrary modules sharing the same notions of value and memory (see
Section 6.2 and Section 11 for details).

To define RUSC, let R be a set of module relations each of which is horizon-
tally compositional and adequate: for any R ∈ R and p, p′, q, q′ ∈ Module,

(p, p′), (q, q′) ∈ R =⇒ (p⊕ q, p′ ⊕ q′) ∈ R (HorComp)
(p, p′) ∈ R =⇒ Beh(p) ⊇ Beh(p′) (Adequacy)

Then the RUSC relation for R, denoted ≽R, is defined as follows:

p ≽R p′ iff ∀c1, c2 ∈ Self(R), Beh(c1 ⊕ p⊕ c2) ⊇ Beh(c1 ⊕ p′ ⊕ c2)

Self(R)
def
= { c ∈ Module | ∀R ∈ R, (c, c) ∈ R }

The definition is simple: p is RUSC-related to p′ if the behaviors of p′ refine
those of p under arbitrary contexts that are related to themselves by every
relation in R.

Theorem 1 (Properties of RUSC). The RUSC relation ≽R satisfies the follow-
ing key properties.

(Inclusion) ∀R ∈ R, R ⊆ ≽R
(Adequacy) ∀p, p′ ∈ Module, p ≽R p′ =⇒ Beh(p) ⊇ Beh(p′)

(VerComp) ∀p, p′, p′′ ∈ Module, p ≽R p′ ∧ p′ ≽R p′′ =⇒ p ≽R p′′

(HorComp) ∀p, p′, q, q′ ∈ Self(R), p ≽R p′ ∧ q ≽R q′ =⇒ p⊕ q ≽R p′ ⊕ q′

(SelfComp) ∀p, q ∈ Self(R), p⊕ q ∈ Self(R)

Note that horizontal compositionality holds only for self-related modules,
which, however, is not a big deal in practice as we will discuss below.

2Behaviors just need to be defined for closed programs. Technically, we can give undefined
behavior (UB) to open modules.

3Commutativity does not hold for linking of CompCert modules because changes in the
order of global variables affect the initial memory after loading due to CompCert’s deterministic
memory allocation.

16

Proof. The proof of the theorem is simple. The inclusion R ⊆ ≽R trivially
follows from the horizontal compositionality and adequacy of R. Adequacy of
≽R directly follows from the definition of ≽R by taking the empty context.
Vertical compositionality (i.e., transitivity) of ≽R holds trivially by definition.
Horizontal compositionality, p ⊕ q ≽R p′ ⊕ q′, is proven in two steps using
transitivity: (i) p ⊕ q ≽R p′ ⊕ q, which follows from the definition of p ≽R p′

since q ∈ Self(R), and (ii) p′⊕q ≽R p′⊕q′, which follows similarly since q ≽R q′

and p′ ∈ Self(R). Finally, self-relatedness is closed under composition because
every relation in R is horizontally compositional.

The reason why vertical compositionality is easily proven for RUSC is that
we essentially prove it for closed programs by closing an open module with
contexts. Indeed, the technical difficulties with vertical compositionality for open
simulations arise from the openness: it is difficult to set up a setting properly
with arbitrary future memories given after an external function call.

The reason why horizontal compositionality holds between different relations
is interesting. Directly composing two simulations (p, p′) ∈ R1 and (q, q′) ∈ R2

with different relations R1 and R2 does not work in general. However, each
simulation can be easily extended with identical contexts because a pair of
identical modules usually respects any sensible relational principles. Therefore,
we have (p⊕ q, p′ ⊕ q) ∈ R1 and (p′ ⊕ q, p′ ⊕ q′) ∈ R2, which can be transitively
composed by vertical compositionality just as discussed above.

To sum up, RUSC provides a general condition for composing different
relational proofs: each proof just needs to be compatible with its context modules
in terms of self-relatedness, not necessarily with their relational proofs.

Open Simulations Since we can obtain vertical and horizontal composition-
ality using RUSC, we can use open simulations with almost arbitrary memory
relations. More specifically, we prove that open simulations with any Kripke-style
memory/value relation satisfying certain minimal conditions (see Section 12.2
for details) are horizontally compositional and adequate. Since the required
conditions are so minimal, they are satisfied by the three memory relations—
memory identity, extension and injection—and also by a more powerful relation,
called memory injection with module-local invariants. This new memory relation
is needed to verify a new pass we added, called Unreadglob, which requires
reasoning about module-local states enabled by static variables of C (see Section
9 for details).

17

Figure II.2: A compiler verification scenario with RUSC

Note that unlike CompCert 2.1 on which CompComp is based, CompCert 3.5
implements a static analyzer performing value analysis, which is used by several
passes. In order to support independent modular verification of such analyzers,
we also parameterize open simulations with memory predicates—representing the
analysis results of such analyzers—and prove their horizontal compositionality
and adequacy (See Section 12 for details).

Applications We use RUSC in two situations: compiler and program verifi-
cation.

First, we give an abstract example (presented in Figure II.2) for compiler
verification. Suppose our source program is written in three modules, a.c, b.c
and c.asm, and compiled via multiple passes: a.c → a.il1 → a.asm and
b.c → b.il2 → b.il3 → b.asm, each of which is verified using a different
relation R1 to R5. Then as long as the end modules, a.c, b.c, a.asm, b.asm,
c.asm, are self-related by the relations R1, . . . , R5, using RUSC we can obtain
the following behavioral refinement:

Beh(a.c⊕ b.c⊕ c.asm) ⊇ Beh(a.asm⊕ b.asm⊕ c.asm)

The underlying reasoning is simple: for R = {R1, . . . , R5 }, we get

18

• a.c ≽R a.asm and b.c ≽R b.asm by Inclusion and VerComp of Theorem 1;

• c.asm ≽R c.asm since (c.asm, c.asm) ∈ R1 ⊆≽R by Inclusion of Theorem 1;

• a.c⊕ b.c⊕ c.asm ≽R a.asm⊕ b.asm⊕ c.asm by HorComp of Theorem 1;

• Beh(a.c⊕ b.c⊕ c.asm) ⊇ Beh(a.asm⊕ b.asm⊕ c.asm) by Adequacy of Theorem 1.

Note that we need to prove the self-relatedness only for the end modules because
we only link those, not the intermediate ones like a.il1, b.il2, c.il3. Moreover,
proving self-relatedness by a relation is typically straightforward as long as the
relation is sensibly defined. Indeed, we could easily prove that all Clight4 and
assembly programs are self-related by all the relations used by CompCertM
(i.e., open simulations with memory identity, extension, and injection with or
without module-local invariants).

Second, we demonstrate, via small but interesting examples (see Section
17), that our framework can be used to verify program modules against (open)
mathematical specification modules, written in Coq’s Gallina language. In the
above example, for instance, we can prove

a.spec ≽R a.c b.spec ≽R b.c c.spec ≽R c.asm
abc.spec ≽R a.spec⊕ b.spec⊕ c.spec

and link them together with the compiler correctness results above to get

Beh(abc.spec) ⊇ Beh(a.asm⊕ b.asm⊕ c.asm)

as long as the mathematical specification modules a.spec, b.spec, c.spec,
abc.spec are in Self(R), which is usually straightforward to prove.

Comparison to Contextual Refinement As one can easily see, RUSC
refines the standard notion of contextual refinement: instead of quantifying
over all contexts, RUSC quantifies over only self-related contexts. The main
difference is that RUSC gives the notion of well-behaved context w.r.t. a given set
of program relations (i.e., reasoning principles) in terms of contexts self-related
by them. This is particularly useful when not all contexts are well behaved.
For example, in the interaction semantics allowing mathematical specification

4Clight is taken as the source language in most verification projects using CompCert such
as VST [1], CertiKOS and even CompComp. However, we also prove behavioral refinement
w.r.t. the C source language (see Section 10).

19

Figure II.3: An expanded version of the verification scenario described Figure II.2

modules as above, one can easily write a specification module that arbitrarily
changes the whole memory including other modules’ private memory. Under the
presence of such ill-behaved contexts, the contextual refinement will end up being
too strong preventing any reasoning about private memory such as functions’
stack frames. On the other hand, RUSC w.r.t. a set of sensible relations will
rule out such bad contexts and give us a sensible (better) relation.

Comparison to SepCompCert If we “unfold” the notion of RUSC in the
verification scenario above (Figure II.2), what is happening under the hood is
this: Figure II.3. Here, the key insight is that by inserting dummy passes – which
does not modify anything – only one module is actually translated between

20

each row. Then, self-relatedness of end modules and HorComp and Adequacy of
each relation Ri implies behavioral refinement between each row. For instance,
between the first and second row:

• (a.c, a.il1) ∈ R1 is given;

• (b.c, b.c) ∈ R1 and (c.asm, c.asm) ∈ R1 by self-relatedness of end modules;

• (a.c⊕ b.c⊕ c.asm, a.il1⊕ b.c⊕ c.asm) ∈ R1 by HorComp of R1;

• Beh(a.c⊕ b.c⊕ c.asm) ⊇ Beh(a.il1⊕ b.c⊕ c.asm) by Adequacy of R1.

Actually, the idea of inserting dummy passes has already been employed in
SepCompCert’s “Level B” correctness, but their technique is akin to contextual
refinement, and thus RUSC can be seen as a generalization of their technique.
Also, explicitly having a composable relation (RUSC) is both cognitively and
technically useful. Other minor differences are that in their setting, they used
the syntactic linking operator ◦ concatenating modules of the same language
only, where our linking algebra allows language-independent linking. Also, due
to this restriction, SepCompCert was able to use closed simulation while we use
open simulation.

21

Chapter III

Compiler Verification

We first give background on CompCert and CompComp’s interaction semantics
(Section 6), discuss the problems with interaction semantics (Section 7) and
present how we fixed it (Section 8). We show the flexibility of our framework by
adding an advanced optimization (Section 9), and report our overall results in
(Section 10). In Section 11 to 13, we flesh out formal details of our development.
Finally, we discuss related works in Section 14.

6 Background

In this section, we briefly review CompCert’s memory model and memory
relations (Section 6.1) and interaction semantics of CompComp (Section 6.2).

6.1 CompCert’s Memory Model and Memory Relations

Undefined Behavior UBs can be understood as erroneous (forbidden) oper-
ations so that compilers are licensed to translate them into arbitrary behaviors.
A typical example of such an erroneous operation is a buffer overrun, which may
spoil the stack frame and invalidate the compiler’s basic assumptions. Note that
compilers are not required to detect UB – it is impossible to detect it statically,
and doing so dynamically will give too much overhead. Instead, programmers
are obligated to avoid UB, and compilers can optimize, assuming the source

22

program is free of UB.
To capture those intuitions, UB is formally defined as a set of all possible

behaviors. Recall that the semantics preservation (Section 3) property states
that behaviors of the source program includes that of the target. By defining UB
this way, compilers are indeed licensed to translate UB into arbitrary behaviors.
Also, programmers are indeed obligated to avoid UB, because if UB is executed,
anything can happen (e.g., leaking private data).

CompCert Memory Model The memory model determines, for each mem-
ory operation, how the memory is changed and what are the return values.

The simplest way to define a memory model is to represent memory as
a single large map, just as in hardware. This model is often called a flat (or
concrete) memory model. Formally, the model is defined as follows.

Mem def
= uint32 → Option Val

Val def
= uint32

Note that both pointer and integer values are represented as a 32-bit integer in
Val. Mem(p) = Some v means that the location p is allocated, and it contains a
value v. On the other hand, Mem(p) = None means it is not allocated yet.

However, the flat memory model does not properly model buffer overrun as
UB, and thus it cannot validate essential compiler translations. Specifically, see
the following example:

int main() { int main {
int* x = malloc(4); int* x = malloc(4);
x[0] = 42; x[0] = 42;
f(); --> f();
out(x[0]); out(42);

} }

int f() {
int* y = malloc(4);
y[1] = 43;

}

Figure III.1: A counterexample showing the problem with the flat memory model

In this example, if the address of x and y+4 happens to be the same, the
translation is invalid because the source prints 43 while the target prints 42.
The root cause of the problem is that there is no way to distinguish two pointers
x and y+4 where the former should be allowed to access x[0] while the latter
should not.

23

To address this problem, CompCert uses a different memory model that is
also called logical memory model. Conceptually, in this model memory consists
of a finite set of blocks where each block is an array of finite size. It is formally
defined as follows (simplified for presentation purpose):

Mem def
= {(m,nb) ∈ (Block → Z → (Perm × Val))× Block |

∀ b, o, v,m(b, o) = (Valid, v) =⇒ b < nb}
Block def

= uint32

Val def
= uint32 ⊎ (Block × Z) ⊎ undef

Perm def
= Valid ⊎ Invalid

If a block’s permission (Perm) is Valid, it is an allocated block and accessible.
If it is Invalid, it is not allocated yet or already freed; thus, accessing it is
considered UB. Values are either a 32-bit integer, a pointer composed of a block
id and an offset inside it, or an undefvalue, which can be understood as an
uninitialized value. In Mem, for a given address (b, o), m returns permission, and
the value contained in that address. nb (which is an abbreviation of next block)
always points to the smallest fresh block id. Therefore, whenever a memory
block is allocated, it increments nb by one and returns (nb, 0).

With a logical memory model, the above translation is valid. Note that x

and y originate in different allocations, so they have different block id. Therefore,
one cannot access x with y no matter the offset. Actually, accessing y[1] executes
UB because its permission is Invalid, so the semantic preservation holds trivially.

Memory Relations of CompCert As previously mentioned, CompCert
uses three memory relations: identity, extension, and injection. The memory
identity imposes that the source and target memories are identical; and the
extension that the two memories contain identical block ids and each target
block extends the corresponding source block with more space and any values
in it at the end.

A memory injection injects a subset of the source blocks into target blocks
without overlap. More precisely, a (selected) whole source block is injected into
a single target block while allowing multiple source blocks to be injected into
the same target block without overlap. This injection map specifies the public
areas of the source and target memories and the correspondence between them.
In other words, the corresponding addresses by the injection map are treated
as equivalent (public) pointer values, so that at those corresponding addresses,

24

only equivalent1 values (i.e., equivalent non-pointer values or corresponding
addresses) should be stored . All the areas that are not on the injection map
are considered as private areas of the source and target memories.

Memory Relations of CompCertM CompCertM uses the original memory
identity and extension of CompCert (Section 6.1) and mildly strengthens the
original memory injection to reason about dynamically allocated local memory
such as a function’s stack frame for open modules, which can be compared to
the structured injection of CompComp (Section 9). Moreover, we generalize it
further to reason about statically allocated local memory such as static variables
of C by allowing module-local invariants on those static variables (Section 9).

6.2 Interaction Semantics

We give a brief overview of interaction semantics of CompComp, which interac-
tively executes modules equipped with their own independent module semantics.
Each module semantics M provides a set of module states (also called cores)
State(M) with the following operations:

• init core: given a function f with arguments v⃗, gives the initial module
state s ∈ State(M) executing the invoked function f with v⃗.

• at external: given s ∈ State(M), checks if an external function f is called
with arguments v⃗.

• after external: given s ∈ State(M) where an external function is called,
and a return value r, gives the module state s′ after the function call returns
r.

• halted: given s ∈ State(M), checks if the module execution is halted with a
return value r.

• corestep: given s ∈ State(M) and memory m, takes a local step producing
an event e and the next state s′ with updated memory m′.

We explain how interaction semantics works using an example in Figure III.2,
where the whole machine state consists of a memory, say m, and a stack of module
states (called core stack), say [s2; s1]. Then, interaction semantics checks whether

1Technically speaking, CompCert allow more undefined values in the source because it
proves refinement rather than equivalence between the source and target programs.

25

Figure III.2: An execution of interaction semantics

the stack-top module s2 is invoking an external function using at external, and
if so, pushes the invoked module’s initial state, say s3, obtained by init core.
Note here that the same module M1 can have multiple module states s1 and s3
in the stack. Then the new top module s3 takes a local step to s′3 with updated
memory m′ according to its corestep, and if s′3 is a halted state with a return
value r (checked with halted), the top module s′3 is popped and returned to
the next module s2, which is then updated to s′2 given by after external with
the return value r.

Finally, note that the language semantics of C, assembly and intermediate
languages can be lifted to give a module semantics by defining corestep to be
the same as the execution step of the language’s semantics, and the other module
operations to reflect the calling conventions. Note also that all language-specific
resources (i.e., other than the memory) such as the register-file of assembly
reside inside the module state, and thus are duplicated at each invocation of a
module.

7 Problems

The problems with the interaction semantics of CompComp are that it does
not satisfy two adequacy properties. First, the adequacy w.r.t. C says that for
any C modules M1, . . . ,Mn, the behaviors of the linked program according to
interaction semantics Beh(M1 ⊕ . . .⊕Mn) should be included in those according
to the physical semantics Beh(M1 ◦ . . . ◦Mn). The reason for failure was quite
simple and we could easily fix it: unlike CompComp, we allow passing the
undef value to an external module since the C semantics does so, while we turn
ill-typed values into undef when they are passed to an external module.

Second, the failure of the adequacy w.r.t. assembly is more serious. Adequacy
says that for any assembly modules M1, . . . ,Mn, the behaviors of the linked
program according to interaction semantics Beh(M1 ⊕ . . .⊕Mn) should include

26

those according to the physical semantics Beh(M1 ◦ . . . ◦Mn). Note that the
direction is opposite since assembly is the target language. As discussed before,
the reason for failure is that the interaction semantics of CompComp does
not have a mechanism to detect illegal interference and make it undefined
behavior (UB).

8 Our Solution

We identify the sources of inadequacy w.r.t. assembly as violations of three
assumptions made by standard compilers: two on the registers and one on the
stack. We discuss why they cause problems with counterexamples and show
how to semantically handle them without changing the underlying language
semantics.

8.1 Assumptions on the Registers

The two problematic assumptions on the registers are that an invoked assembly
function (i) should preserve the initial values of the callee-save registers, and
(ii) should not access the memory via the leftover pointer values remaining in
those registers that are not involved in passing meaningful information to the
callee, which we henceforth call non-info-passing registers.

Counterexamples The example in Figure III.3 shows how violations of the
two assumptions can invalidate correct compiler translations. The code in the
left box (a) shows a standard translation of C code into assembly (written in
pseudocode) performed by mainstream compilers like GCC and LLVM, where
the accesses to the array x are translated into accesses via the register %rbx
assuming that %rbx is set to contain the address of x. An important point here
is that the compiler assumes that (i) the value of %rbx is unchanged across the
function call f() since it is a callee-save register, and also (ii) the values in the
array pointed to by %rbx are unchanged across f() since the array’s addresses
do not escape except via non-info-passing registers like %rbx. Therefore, the
compiler expects that out(*(%rbx)) in the target code correctly outputs 0.

The right box (b) presents an example of handwritten assembly (written
in pseudocode) for function f that violates the above two assumptions of the
compiler. The code either increments %rbx by 4 or writes 1 to *(%rbx) depending
on the result of call to g. Now if we link the assembly code in (a) and that in (b)

27

(a)

int main() { main:
int* x = malloc(8); ...
x[0] = 0; *(%rbx) = 0;
x[1] = 1; *(%rbx + 4) = 1;
f(); --> f();
out(x[0]); out(*(%rbx));
... ...

}

⊕

(b)

f:
if (g(%rbx))

%rbx = %rbx + 4;
else

*(%rbx) = 1;

Figure III.3: A counterexample showing the problem with the assumptions on
the registers

together, one can easily see that out(*(%rbx)) incorrectly outputs 1 instead of
0 in either case: in the former case, %rbx points to the second element of the
array x, which contains 1; in the latter case, the value of *(%rbx) is directly
updated to 1. Therefore, it makes sense to define those illegal behaviors of (b)
as undefined behavior (UB).

Our Model We present our model making the illegal behaviors UBs in stages,
explaining at each stage why naive models do not work.

First, in order to enforce the preservation of callee-save register values, we
store the initial values of the callee-save registers at the init-core step of
assembly modules; and check, at the halted step, whether the final values of
those registers are equal to the stored initial values and if not, raise UB. Here,
the question is, when a new core with a fresh register file is pushed into the core
stack, what values should be set as initial values of the non-info-passing registers
including all of the callee-save registers. Since the registers may contain arbitrary
values in the physical assembly semantics, a natural choice would be to initially
set them to contain the undef value, which is an abstract value representing
all possible values. Indeed, this is the choice of CompComp. However, there
is a serious problem. Since, for instance, undef + 4 results in undef, checking

28

whether the final values of callee-save registers are equal to the initial values,
i.e., undef, is not sufficient. Specifically, the assembly code in (b) above does not
raise UB in this new semantics in case g(%rbx) returns 1 because the initial and
final values of %rbx are both undef and thus equal even though the callee-save
register %rbx is incremented by 4 in the physical semantics.

Second, another natural solution would be to initially set the non-info-
passing registers to nondeterministically contain arbitrary values including
undef. Though this model is more flexible, it still has a problem. For instance, in
the above example, to simulate the physical behaviors of the assembly function
f in interaction semantics, one can set the initial value of %rbx to be either (i)

undef (i.e., a more abstract value than the physical one), or (ii) a pointer to
the array x (i.e., a value equivalent to the physical one): other values cannot
be used since they are not refined by the value of %rbx in the target, which is
required since the value is passed to an unknown function g. In the former case,
if g(%rbx) returns 1, we have the same problem with callee-save checking as
shown above. In the latter case, if g(%rbx) returns 0, the function f successfully
updates the array x thereby invaliding the translation in (a) as illustrated above.

We solve this problem by further revising the second model: nondeterministi-
cally allocating an arbitrary number of junk blocks (i.e., blocks of size zero) and
then initializing the non-info-passing registers with arbitrary non-pointer values
or junk pointers (i.e., pointers to the junk blocks). Then we can simulate the
physical behaviors by initializing each register r (i) with the same non-pointer
value if the physical value of r is a non-pointer value; and (ii) otherwise with
a fresh junk pointer. The high-level idea is that, like undef, a junk pointer is
more abstract (i.e., causing more UBs) than any pointer but, unlike undef,
sufficiently distinguishable. For instance, in the previous example, if g(%rbx)
returns 1, the initial and final values of %rbx (i.e., p and p+4 for a junk pointer
p) are distinguished thereby raising UB by the callee-save checking; if g(%rbx)
returns 0, the memory access *(%rbx) = 1 raises UB because %rbx points to a
junk block of size zero.

Finally, note that introducing nondeterminism as above is not a showstopper
thanks to the mixed simulation, as discussed in Section 8.3: we can do forward
simulation everywhere except for the init core step of assembly modules,
where we should do backward simulation.

29

(a)

main:
...
leak = %rsp;
f(..., 0);

g:
*leak = 1;

⊕ (b)

void f(..., int64_t x) f:
{ ...

out(x); out(*(%rax));
g(); --> g();
out(x); out(*(%rax));

} ...

(c)

Figure III.4: A counterexample showing the problem with the assumption on
the stack

8.2 Assumptions on the Stack

The problematic assumption on the stack is that the outgoing arguments area
of a caller’s stack (i.e., where overflowing function arguments are stored) should
be fully owned by the callee. In other words, the callee can assume that the
arguments area is never modified by others unless its addresses are revealed to
the public by the callee itself.

Counterexamples The example in Figure III.4 shows how violations of the
assumption can invalidate correct compiler translations. The box (a) shows
handwritten assembly code implementing two functions main and g; the box (b)
shows a standard translation of C code into assembly essentially performed by
gcc -O0; and the left-hand side (LHS) of the box (c) depicts the shape of the
stack during execution in the physical semantics. The function main stores the
address of the outgoing arguments area (i.e., %rsp as depicted in LHS of (c)) in
the global variable leak and invokes the function f, where the last argument 0
is stored in the arguments area of the stack. Then the function f makes three
function calls, out(x), g() and out(x), where the argument x is directly read
from the arguments area pointed to by %rax in the assembly, as depicted in LHS
of (c), and out(x) outputs the read value. Finally, the function g updates the

30

arguments area pointed to by leak with 1, as depicted in LHS of (c), between
the two function calls out(x).

An important point here is that the compiler assumes that the arguments
area (i.e., %rax) is unchanged across the function call g() since it is fully owned
by f. Therefore, the compiler expects that both calls out(*(%rax)) in the target
code correctly output 0. However, since the function g updates the arguments
area with 1 via leak, the two calls incorrectly output 0 and 1. We confirmed
this incorrectness by compiling f with gcc -O2, which eliminates the second
load *(%rax) by propagating the result of the first load across g() thereby
outputting 0 twice.

Our Model In order to solve the problem, we have to distinguish accesses to
the arguments area via the caller from those via the callee and define the former
as UB. Though making such distinction is difficult in the physical semantics,
fortunately it is already made in interaction semantics due to the language-
independent design. For example, consider the interaction semantics of the above
example, depicted in the right-hand-side (RHS) of Figure III.4 (c). The difference
is that when the assembly function f is invoked, the initialization process (i.e.,
init core) of the module semantics newly constructs the arguments area of
the stack from the given logical arguments in order to make an environment
needed to execute the assembly function f. This is essentially needed because
the caller may not be an assembly module so that it may not have its own stack
at all. Then the callee sees the new arguments area created by init core while
the caller (in assembly) sees the original arguments area.

Although the original interaction semantics does not prevent access to the
arguments area via the caller, we can easily fix it. We simply (i) turn off the
access permission of the original arguments area in the at external step of
the caller module, and (ii) turn it back on in the after external step. Note
that the notion of permission already exists in the CompCert semantics, so that
we do not need to strengthen it. In the above example again, the update by g
will raise UB since the original argument area pointed to by leak has no access
permission.

8.3 Mixed Simulation

While the target language of CompCert is deterministic (more precisely, the
source is receptive and the target is determinate) thereby mostly using forward

31

simulations, the repaired interaction semantics of CompCertM is inherently
nondeterministic to handle illegal interference from assembly modules (Section
8.1) thus preventing the use of forward simulation.

In order to recover the ability to use forward simulation in the occasional
presence of nondeterminism, we adopt the idea of mixed (forward-backward)
simulation from [19]. The key observation is that the requirement for using
forward simulations (i.e., determinism of the target) is a per-state property, not
a per-language property: as long as a particular target machine state is locally
deterministic (i.e., its next state is unique), one can do forward simulation
at that state. Based on this observation, mixed simulations selectively allow
forward simulation when the target is locally deterministic, in addition to the
default backward simulation. Specifically, we say that a relation R is a (closed)
mixed simulation if for all (mssrc,mstgt) ∈ R,

1. ∀e,ms′tgt, mstgt
e
↪→ ms′tgt =⇒

∃ms′src, mssrc
τ
↪→∗ e

↪→ τ
↪→∗

ms′src ∧ (ms′src,ms′tgt) ∈ R; or

2. ∀e,ms′src, mssrc
e
↪→ ms′src =⇒

∃ms′tgt, mstgt
τ
↪→◦ ∗ e

↪→◦ τ
↪→◦ ∗

ms′tgt ∧ (ms′src,ms′tgt) ∈ R

where ms
e
↪→◦ ms′ denotes that ms is locally deterministic and ms

e
↪→ ms′.

Figure III.5 visualizes this formulation of mixed simulation, where solid and
dotted arrows represent universally and existentially quantified steps, respec-
tively, and double circles represent locally deterministic target states. In this
figure, since the first three target machine states are deterministic, we can do
forward simulation as shown in the figure; then, since the following target state
is nondeterministic, we should do backward simulation as shown in the figure.

Note that the repaired interaction semantics is nondeterministic only at
the initial step of a module invocation, so that we can do forward simulation
everywhere else using mixed simulations.

In order to support CompCert’s condition for forward simulation, we also
add the following to the above formulation of mixed simulation:

3. or, mssrc is receptive and
∀e,ms′src, mssrc

e
↪→ ms′src =⇒

∃ms′tgt, mstgt
τ
↪→• ∗ e

↪→• τ
↪→• ∗

ms′tgt ∧ (ms′src,ms′tgt) ∈ R

where ms
e
↪→• ms′ denotes that ms is locally determinate and ms

e
↪→ ms′.

32

forward simulation

backward simulation

: locally deterministic target states

Figure III.5: A visualized example of mixed simulations

Also we apply this mechanism of mixed simulation to our open simulations.

9 Advanced Optimizations with Module-Local Invari-
ants

To demonstrate the flexibility of our framework – allowing arbitrary memory
relations – we added a new optimization, Unreadglob, whose verification requires
a new memory relation. We flesh out the details in the following order: first we
present enriched memory injection, a mildly strengthened version of CompCert’s
original injection (Section 9), then the new memory relation (Section 9), and
finally Unreadglob optimization (Section 9).

Enriched Memory Injection For open modules, reasoning about dynam-
ically allocated local memory such as a function’s stack frame requires to
strengthen the original memory injection due to the presence of unknown mod-
ules. The reason is because when reasoning about a module M , we have to
assume that an unknown function invoked by M does not change the dynamic
local memory of M and also guarantee that a function of M invoked by an
unknown module does not change the caller’s dynamic local memory.

For this purpose, CompComp introduces structured injections that enrich
the original memory injections with ownership information (i.e., whether owned
by the current module or others) for all memory blocks including public ones.
Using them, structured simulations impose fine-grained invariants subject to
the ownership information and a concrete leakage protocol based on reachability
from pointers.

Unlike CompComp, CompCertM generalizes open simulations and memory

33

injections in a more abstract way following [5, 10].
First, we generalize the external call case of the open simulation in Figure II.1

by allowing private transitions, denoted ⊒prv, as follows (in red color):

5: ∃w′ ⊒prv w, (fsrc, ftgt) ∈ vrel(w′) ∧ (v⃗src, v⃗tgt) ∈
−−−−−−→
vrel(w′) ∧

6: ∀w′′ ⊒ w′, ∀(m′
src,m

′
tgt) ∈ mrel(w′′), ∀(rsrc, rtgt) ∈ vrel(w′′),

7: ∃w′′′ ⊒prv w
′′, w′′′ ⊒ w ∧

((m′
src, after external rsrc ssrc), (m

′
tgt, after external rtgt stgt)) ∈ R(w′′′)

Though private transitions are allowed before and after an external function
call (i.e., w′ ⊒prv w and w′′′ ⊒prv w′′), the overall transition should be public
(i.e., w′′′ ⊒ w) assuming the external call also makes a public transition (i.e.,
w′′ ⊒ w′).2

Second, we extend memory injections to specify others’ dynamic local mem-
ories in the source and target that should be unchanged by the current module.
Specifically, an (enriched) memory injection (ι,m

prv
src,m

prv
tgt) consists of an orig-

inal memory injection ι mapping the source public blocks into target blocks;
and additionally a private (i.e., dynamic local) memory of the source m

prv
src

and that of the target m
prv
tgt where m

prv
src and m

prv
tgt should be disjoint from the

public memories specified by ι. Then, private transitions from (ι,m
prv
src,m

prv
tgt) to

(ι′,m′prv
src,m

′prv
tgt) only require that ι′ should extend ι, while public transitions ad-

ditionally require that private memories should be unchanged (i.e., mprv
src = m′prv

src

and m
prv
tgt = m′prv

tgt). Note that all the areas of the source and target memories
that are not on m

prv
src, m

prv
tgt or the injection map ι are considered as private (i.e.,

dynamic local) memory of the current module.

int f() { int f() {
1: int a0; int a[2];
2: reg a1 = 0; --> a[1] = 0;
3: g(&a0); g(&a[0]);
4: return a1; return a[1];

} }

To show how it works, we give an example mimicking register spilling in the
presence of address-taken stack variables. Consider the transformation on the
right, where in the source a memory block for a0 and a function-local register for
a1 are allocated and the address of a0 escapes to g, while in the target a single

2We only allow private transitions just before and after external calls for simplicity. See
Section 14 for comparison with [5, 10].

34

block for both a[0] and a[1] is allocated and the address of the block escapes
to g. Here a0 can be seen as an address-taken stack variable and a1 a spilled
register. The key difference is that, in the source, a1 cannot be accessed by g
since it is a function-local register while, in the target, a[1] can be accessed via
the address of a[0].

We now show how the target f simulates the source f by logically protecting
a[1] from g. Though we give an informal description here to help understanding,
the formal definition of an open simulation R can be easily derived from the
description. At line 1, any world w0 and memories (msrc,mtgt) related at w0

are given. We take a step to line 2 by extending w0.ι (i.e., the public injection
of w0) to map a0 to a[0], say w1, which is a public transition. At line 2, we
take a step to line 3 without changing the world w1. At line 3, we first make a
private transition from w1 to w2 by extending w1.m

prv
tgt to include the memory

chunk a[1] = 0. Then we assume that g makes a public transition from w2

to w3 returning any memories related at w3. Thanks to w2.m
prv
tgt = w3.m

prv
tgt,

we know that the chunk a[1] = 0 remains the same. Then we make a private
transition from w3 to w4 by dropping the chunk a[1] = 0 from w3.m

prv
tgt. Since

w4.m
prv
tgt = w1.m

prv
tgt, we have a public transition from w1 to w4. Finally, at line 4,

we know that both the register a1 and the memory-allocated variable a[1]
contain 0 and thus the same value 0 is returned.

It is important to note that the (others’) private memories w.m
prv
src and

w.m
prv
tgt of a memory injection w are preserved as long as a function accesses (i)

the memory via public addresses, or (ii) its own private memory. In the former
case, since a public block of the source is fully injected into a block of the target,
whenever a pointer offset goes beyond the public area mapped by the injection
w.ι, the source program accesses an unallocated area thereby raising UB. In
the example above, if g in the target accesses *(&a[0]+1), then in the source it
accesses *(&a0+1), which raises UB. In the latter case, since the function’s own
private memory is disjoint from all the memories specified by w, accessing it
does not affect w. In the example above, at line 2 in the target, the assignment
a[1] = 0 preserves w1.m

prv
tgt (and also the target public memory of w1) because

we know that the current private memory a[1] is disjoint from the area specified
by w1 by construction.

Also note that any part of the public memories cannot be converted to a
private one since the injection map is only extended at each step; and any part
of the others’ private memories (i.e., mprv

src and m
prv
tgt) cannot be converted to

35

static int x = 0; static int x = 0;
int f() { int f() { int f() {

g(); [CP] g(); [UG] g();
x = 1; -----> x = 1; ----->
return x; return 1; return 1;

} } }

static int y = 0;
void g() {

if (y == 0) {
y = 1; f();

}
}

Figure III.6: An example of Unreadglob optimization

the current module’s private one since all proper steps (i.e., local steps or steps
across an external call) only allow public transitions (i.e., preserving m

prv
src and

m
prv
tgt).

Memory Injection with Module-Local Invariants For open modules,
reasoning about statically allocated local memory such as static variables of C
requires a further generalization. The problem is that when an open module
M invokes an unknown function f , one cannot assume that the static memory
of M is unchanged during the call because f may call back a function from
M , which may change the static memory. However, since the static memory is
only accessible to the known functions in M , one can find a certain invariant
on the static memory by analyzing all the functions of M and expect that an
external call preserves the invariant although the static memory can be changed.
Enabling such reasoning is simple: CompCertM just adds another component
in a memory injection w that globally imposes a given invariant on selected
static variables disjoint from w.m

prv
src, w.m

prv
tgt and w.ι. We give examples using

module-local invariants in Section 9 and 17.

Unreadglob Optimization We developed a new optimization Unreadglob
eliminating all unread static variables and instructions writing to them. Figure III.6
shows an example optimization, where (i) the first program is optimized to
the second one by constant propagation (CP) replacing return x by return
1; and (ii) the second one is optimized to the third one by Unreadglob (UG)

36

eliminating the unread static variable x and the command x = 1. It is important
to note that across the function call g(), the static variable x may be updated
from 0 to 1 because the function g can indirectly update it by calling f as shown
in the fourth program in Figure III.6.

In verification of the optimization UG above, we have to use memory injections
w with module-local invariants introduced in Section 9. The reason is that the
static variable x in the source cannot reside (i) in the injection map w.ι since x
does not exist in the target; or (ii) in the source private w.m

prv
src since x can be

modified during the external call g(). To verify UG above, we can impose the
trivial invariant Top on the eliminated static variable x, meaning that x can be
modified arbitrarily, which is sufficient because x is unread.

Note that CompCertX may be able to verify Unreadglob using memory
injections because it assumes no mutual dependency among modules, so that
no static variables can be accessed via external function calls, unlike the above
example with mutual recursion.

10 CompCertM

Based on the theories we presented so far, we develop CompCertM, an extension
of CompCert with the repaired interaction semantics and open simulations to
support multi-language linking. We state CompCertM’s compositional correct-
ness results (Section 10.1) and evaluate its verification efforts (Section 10.2).
CompCertM currently supports the x86 backend only. We do not currently see
any technical problem with supporting other architectures.

10.1 Compositional Correctness

CompCertM uses open simulations with three parameters: memory relations,
symbol relations and memory predicates (see Section 12.3 for details). It sup-
ports (i) the memory relations discussed in Section 6.1: identity, extension and
(enriched) injections with no or any given module-local invariant; (ii) two symbol
relations: one for keeping identical symbols in the source and target and the
other for allowing elimination of global variables in the target (only allowed for
memory injections), needed for Unusedglob and Unreadglob; (iii) two memory
predicates: one for no analysis and the other for the value analysis of CompCert.

Let R be the set of open simulations with all possible parameters. To apply
RUSC, we prove that the CompCertM compiler C transforms the source module

37

with a series of passes that are independently verified using open simulations in
R.

Lemma 2 (Pass Correctness). For any Clight module S and Asm module T , if
C(S) = T , then there exist intermediate modules M0,M1, · · · ,Mn such that:

1. M0 = S and Mn = T ; and

2. ∀i ∈ [0, n), ∃R ∈ R, (Mi,Mi+1) ∈ R .

We also prove all Clight and Asm modules are self-related.

Lemma 3 (Self-Relatedness). For any Clight or Asm module M , we have
M ∈ Self(R).

Note that since we define illegal interference from Asm (i.e., causing different
behaviors in the source and target) as undefined behaviors (UBs) as shown in
Section 8, every Asm module can be self-related.

From Lemmas 2 and 3, the RUSC relation for the compiler follows.

Theorem 4 (Modular Correctness). For any Clight module S and Asm module
T , if C(S) = T :

S ≽R T with S, T ∈ Self(R) .

This theorem provides a truly compositional correctness thanks to the com-
positionality of RUSC (Theorem 1): the relation can be freely (i.e., vertically
or horizontally) composed with any verification using RUSC including that
against mathematical specifications. As an example, the following compositional
correctness follows.

Corollary 5 (Compositional Correctness 1). Let (S1, T1), . . . , (Sn, Tn) be pairs
of source and target modules. If each pair is either compiled (i.e., C(Si) = Ti

with Si Clight and Ti Asm), or a self-related context (i.e., Si = Ti ∈ Self(R)),
then

Beh(S1 ⊕ · · · ⊕ Sn) ⊇ Beh(T1 ⊕ · · · ⊕ Tn) .

This correctness theorem is compositional in the sense that behavior is refined
in the presence of any self-related contexts such as arbitrary Clight and Asm
modules (Lemma 3).

Note that Clight, not CompCert C, is the source language in the above
theorems. One of the reasons is that Clight is the source language for most
verification frameworks based on CompCert, such as VST [1], CompComp, and

38

CompCertX. More importantly, we found that CompCert C is incompatible
with memory injections. Specifically, CompCert C imposes a strict alignment
requirement on memory blocks of size zero, which, however, is not preserved
by memory injections. In other words, CompCert C modules are not always
self-related by memory injections.3

Supporting CompCert C However, we can still prove a compositional
correctness (not modular correctness as in Theorem 4) for CompCert C following
SepCompCert’s Level A technique [15], which exploits the fact that all CompCert
C modules are transformed to Clight modules by the same two passes. Specifically,
the first pass is verified using an open simulation with the memory identity and
the second pass with memory injections, as done in the original CompCert. Then
the following lemma follows from horizontal compositionality and adequacy
of open simulations (with memory identity and injection) and transitivity of
behavioral refinement.

Lemma 6 (ClightGen Correctness). Let (S1, T1), . . . , (Sn, Tn) be pairs of source
and target modules. If each pair is either translated (i.e., ClightGen(Si) = Ti with
Si CompCert C and Ti Clight), or a self-related context (i.e., Si = Ti ∈ Self(R)),
then

Beh(S1 ⊕ · · · ⊕ Sn) ⊇ Beh(T1 ⊕ · · · ⊕ Tn) .

By composing Corollary 5, Lemma 6 and Lemma 3, we have the following
theorem.

Theorem 7 (Compositional Correctness 2). Let (S1, T1), . . . , (Sn, Tn) be pairs
of source and target modules. If each pair is either compiled (i.e., C(Si) = Ti

with Si CompCert C or Clight and Ti Asm), or a self-related context (i.e.,
Si = Ti ∈ Self(R)), then

Beh(S1 ⊕ · · · ⊕ Sn) ⊇ Beh(T1 ⊕ · · · ⊕ Tn) .

Adequacy w.r.t. Physical Semantics We show that the repaired interac-
tion semantics is adequate w.r.t. the physical semantics of CompCert, where
the former uses the language-independent linking ⊕ and the latter the syntactic
linking ◦ concatenating modules of the same language.

3This problem would be solved if one strengthens memory injections with more strict
alignment requirements.

39

We prove that the physical semantics refines the repaired interaction se-
mantics for Asm modules using a closed simulation of CompCert with memory
injections.

Theorem 8 (Adequacy w.r.t. Assembly). Let M1, · · · ,Mn be Asm modules.
We have:

Beh(M1 ⊕ . . .⊕Mn) ⊇ Beh(M1 ◦ . . . ◦Mn) .

This theorem allows us to carry verification results on the interaction semantics
such as Theorem 7 down to CompCert’s Asm semantics with syntactic linking.

Conversely, we prove that the repaired interaction semantics refines the phys-
ical semantics for CompCert C modules using a closed simulation of CompCert
with memory identity. This result is useful because we want to allow separate
compilation (of C modules) on the compiler side, and on the program verification
side, we want to hide complexities from inter-module steps.

Theorem 9 (Adequacy w.r.t C). Let M1, · · · ,Mn be well-typed CompCert C
modules. We have:

Beh(M1 ◦ . . . ◦Mn) ⊇ Beh(M1 ⊕ . . .⊕Mn) .

In some sense, the Theorems 7 to 9 together forms a strong stress-test for a
language-independent linking, and our results show strong evidence that our
repaired interaction semantics is indeed adequate (in a literal sense). Specifically,
if one of the three desiderata is missing, it is trivial to find language-independent
linking satisfying the others. Without Theorem 8, one can define interaction
semantics to always execute UB; then, the other theorems become trivial.
Without Theorem 9, one can define the behavior of interaction semantics to an
empty set. Without Theorem 7, one can define ⊕ def

= ◦.
Interestingly, by composing Theorems 7 to 9, we obtain the same separate

compilation correctness result of SepCompCert [15]:

Corollary 10 (Separate Compilation Correctness). Let S1, . . . , Sn be CompCert
C modules and T1, . . . , Tn be Asm modules. If C(Si) = Ti for each i, we have:

Beh(S1 ◦ · · · ◦ Sn) ⊇ Beh(T1 ◦ · · · ◦ Tn) .

10.2 Evaluation of Verification Efforts

To demonstrate that CompCertM is lightweight, we compare significant lines of
code (SLOC) of CompCertM, CompComp, and CompCertX with those of their

40

Table III.1: SLOC of CompCertM and related works — compared to its baseline
CompCert, respectively

Portion
CompCert

3.5 CompCertR 3.5 CompCertM pack
CompCert

2.1 CompComp
Pass Proofs 34,376 35,893 (+4.41%) 4,923(+14.32%) 21,215 52,140 (+145.77%)
The Rest 85,617 87,965 (+2.74%) 25,558(+29.85%) 59,365 107,910 (+81.77%)
Total 119,993 123,858 (+3.22%) 30,481(+25.40%) 80,580 160,050 (+98.62%)

Portion
CompCert

3.0 CompCertX
Pass Proofs 26,466 30,572 (+15.51%)
The Rest 82,312 121,532 (+47.65%)
Total 108,778 152,104 (+39.83%)

Table III.2:
Breakdown of CompCertM pack
Portion SLOC
Proofs about Intermodule Steps 4,923
Interaction Semantics/Properties 1,940
Language Semantics/Properties 1,701
Self Simulations 5,593
CompCert Metatheory Extension 4,688
CompCertM Metatheory 7,656
Mixed Simulation 1,090
Adequacy w.r.t. Asm 2,890

Table III.3: SLOC of additional de-
velopments

Portion
Unreadglob

3.5
Unreadglob

pack
Adequacy
w.r.t. C

Pass Proofs 1,842 338 -
The Rest 260 1,933 4,044
Total 2,102 2,271 4,044

baseline CompCert versions 3.5, 2.1, and 3.0, respectively. Overall, CompCertM
adds less code to CompCert than CompComp and CompCertX do, and in
particular significantly less code than CompComp for the proofs of compiler
passes.4 Also note that CompCertR uses the enriched memory injections of
Section 9 instead of the original memory injections in order to give reusable
main lemmas for both closed and open simulations. Since CompCertR’s pass
proofs are only 4.41% larger than CompCert’s, the overhead due to handling the
private memory components of enriched memory injections is, roughly speaking,
at most 4.41%.

Table III.1 summarizes the comparison. For each compiler (i.e., each column),
the rows report SLOC for the proofs of all compiler passes (Pass Proofs), the
rest of the development (The Rest), and their summation (Total). Note that
CompCertM is split into CompCertR and CompCertM pack, for which the
former is our refactoring of CompCert and the latter is an additional package to

4Note that CompComp allows horizontal compositionality between any intermediate lan-
guages (ILs) while CompCertM only between Clight and Asm since self-relatedness is proven
only for the two. Though practically unnecessary, supporting linking between arbitrary ILs in
CompCertM would increase SLOC to prove self-relatedness for the other ILs.

41

support multi-language linking. We counted SLOC reported by coqwc.5 When
counting SLOC, we excluded the following code for fair comparison: (i) code for
other architectures than x86 because all three projects support only x86; (ii)
code for the parser and type checker introduced in later versions of CompCert;
and (iii) code for ClightGen, which is not supported by both CompCertX
and CompComp. We also excluded CompComp’s legacy proofs for the original
compiler correctness. We used the latest development branches for the three
projects.6

Table III.2 analyzes the 30,481 SLOC for CompCertM pack. The pass proofs
consist of 4,923 SLOC for reasoning about intermodule steps, which is sometimes
nontrivial since they perform the logical instrumentation presented in Section 8.
Note that CompCertR provides proofs for intramodule steps as main lemmas,
which are reused in CompCertM. The rest consists of 1,940 SLOC for the
repaired interaction semantics and its properties; 1,701 SLOC for properties
of each language such as determinism and receptiveness; 5,576 SLOC for self-
relatedness (Lemma 3); 4,687 SLOC for extending the metatheory of CompCert;
7,569 SLOC for open simulations and other metatheory for CompCertM; 1,090
SLOC for mixed simulation; and 2,890 SLOC for adequacy w.r.t. assembly
(Theorem 8).

Table III.3 shows SLOC for the new optimization pass. Note that Unreadglob
3.5 adds the optimization to CompCertR proving closed simulation and Unreadglob
pack to CompCertM proving open simulation, which reuses the proof of Unreadglob
3.5 for intramodule steps.

11 Formal Semantics

In this section we give a few interesting details of formal semantics: the loading
of interaction semantics (Section 11.1) and a few tweaks we made for module
semantics (Section 11.2).

42

(loading process)

Figure III.7: Loading in Interaction Semantics
11.1 Loading in Interaction Semantics

Loading the initial states of multiple modules requires an interesting coordination
of the modules, especially in the presence of module-local static variables. In
essence, we should disallow accesses to a static variable from other modules
than the defining one. For this, the loading of modules M1, · · · ,Mn proceeds as
follows, which is illustrated for two modules in Figure III.7.

First, each module has symbol code, which consists of symbols (i.e., global
variables and functions) and their signatures (e.g., x: int, f: void(int)). For
each i, let Mi.scode be the symbol code of Mi. Crucially, symbol codes have
the same type even if their modules are written in different languages.

Second, since symbol codes have the same type, we can calculate the physical
linking sc = M1.scode ◦ · · · ◦Mn.scode of the symbol codes of modules. Now
sc is the symbol code for entire program consisting of all the symbols and
signatures. The physical linking is defined in [15].

Third, we load sc to get the initial memory mem (by load mem) and the
program’s global symbol environment se (by load se), which is the run-time
information of symbols (e.g., x points to 0x700 and f points to 0x800). This

5Concretely, we counted “spec” and “proof” lines reported by coqwc. Because we use a
different criteria for line numbers, they are different from those reported in prior work [27, 7, 28].

6Development as of November 8, 2019, available at: https://github.com/
snu-sf/compcertr, https://github.com/snu-sf/compcertm, https://github.com/
PrincetonUniversity/compcomp, https://github.com/DeepSpec/dsss17/tree/master/CAL

43

https://github.com/snu-sf/compcertr
https://github.com/snu-sf/compcertr
https://github.com/snu-sf/compcertm
https://github.com/PrincetonUniversity/compcomp
https://github.com/PrincetonUniversity/compcomp
https://github.com/DeepSpec/dsss17/tree/master/CAL

loading process follows the original CompCert’s.
Fourth, we initialize module semantics for each module Mi with the program’s

global symbol environment se. In particular, we calculate Mi’s local environment,
which contains information of only those symbols defined in the module. Crucially,
this prevents the other modules from accessing the static variables of Mi. Note
that CompComp does not have local environments because it does not support
static variables.

Finally, the initial memory and module semantics form the initial state for
interaction semantics.

11.2 Module Semantics

We briefly discuss the notions of module and module semantics presented in
Figure III.8. To support loading described in Section 11.1, a module M consists
of M.scode, which is its symbol code, and M.get sem, which returns a module
semantics given a program’s symbol environment. The local environment senv
of the module semantics should coincide with the global environment restricted
on M.scode.

The module semantics of CompCertM is slightly more general than that
presented in Section 6.

• A module semantics has a symbol environment senv that determines whether
a symbol belongs to the module or not.

• init core is defined as a predicate rather than a function in order to allow
such nondeterminism introduced in Section 8.

• Module operations other than corestep (denoted here ↪→) can also change
the memory, which is needed to turn on and off the access permission of the
arguments area as discussed in Section 8.

• Module semantics supports not only C-style but also assembly-style calling
convention in the sense of CompCertX, where the former just passes argument
and return values between the caller and callee while the latter the whole
register file. Like CompCertX, only assembly functions are allowed to make
assembly-style calls.

44

(module)
M ∈ Module = {(scode, get sem) ∈ (Scode × (Senv → ModSem)) | ∀se, get sem(se).senv = se|scode}

(module semantics)
sem ∈ ModSem =

{ state ∈ Set, senv ∈ Senv, ↪→ ∈ P((Mem × state)× Event × (Mem × state)),
init core ∈ CallData → P(Mem × state),
at external ∈ (Mem × state) → Option CallData,
after external ∈ (state× RetData) → Option (Mem × state),
halted ∈ (Mem × state) → Option RetData |
{ms | ∃e,ms′, ms

e
↪→ ms′}, {ms | ∃c, at external(ms) = Some c}, {ms | ∃r, halted(ms) = Some r} disjoint }

CallDatadef
= {(m, f, vs) ∈ (Mem × Val ×

−→
Val)} ⊎ {(m, f, rs) ∈ (Mem × Val × (Reg → Val))}

RetData def
= {(m, v) ∈ (Mem × Val)} ⊎ {(m, rs) ∈ (Mem × (Reg → Val))}

Figure III.8: Module and Module Semantics

12 Formalization of Verification Techniques

Now we present the formalization of our verification techniques. We parameterize
the notion of open simulation presented in Section 3 with three parameters:
memory relations, symbol relations, and memory predicates. We present formal
details about mixed simulation (Section 12.1), the three parameters (Section
12.2), the parameterized open simulations (Section 12.3), and their horizontal
compositionality and adequacy theorems (Section 12.4). Finally, we present
some interesting instances for the three parameters (Section 12.5).

12.1 Mixed Simulation

In this section, we flesh out technical details about mixed simulation. Recall that
our mixed simulation technique supports three modes; (1) backward, (2) forward
with locally deterministic target states, and (3) forward with locally receptive
source states and locally determinate target states. Technically, modes (2) and
(3) are implemented as an instance of a more general mode (4) that subsumes
the two. Therefore, we first define that “general” mode and then explain the
others.

Intuitively, mode (2) imposes a strong restriction on the target and no
restriction on the source, whereas mode (3) imposes a moderate restriction on
both source and target. In mode (4), we introduce a parameter ST that controls

45

the amount of restriction imposed on the source and target.

ST ∈ SimilarTraces ={ ∼ ∈ Option Event × Option Event |
(∀ e, None ∼ e =⇒ e = None) ∧ (∀ e, e ∼ None =⇒ e = None)}

Then, depending on the parameter ST, we define the notion of locally receptive
and locally determinate as follows.

receptive at(s : state) def
= ∀ e1, s1, e2, (s

e1
↪→ s1 ∧ e1 ∼ e2) =⇒ ∃s2, s

e2
↪→ s2

determinate at(s : state) def
= ∀ e1, s1, e2, s2, (s

e1
↪→ s1 ∧ s

e2
↪→ s2) =⇒

(e1 ∼ e2 ∧ (e1 = e2 =⇒ s1 = s2))

Finally, mode (4) is defined as follows:

4. There exists ST such that receptive at(mssrc) holds and
∀e,ms′src, mssrc

e
↪→ ms′src =⇒

∃ms′tgt, mstgt
τ
↪→• ∗ e

↪→• τ
↪→• ∗

ms′tgt ∧ (ms′src,ms′tgt) ∈ R

where ms
e
↪→• ms′ denotes that determinate at(ms) holds and ms

e
↪→ ms′.

Proof. The proof is basically the same with forward to backward simulation
proof in CompCert except that ST is parameterized. If the mssrc cannot take
any step, it is undefined behavior, so the proof is over. Otherwise, we have e1
such that mssrc

e1
↪→ ms′src. By applying mode (4) proof with e1 and ms′src, we

have (τ steps omitted for brevity) mstgt
e1
↪→ ms′tgt ∧ (ms′src,ms′tgt) ∈ R. Now,

it suffices7 to prove this:

∀e2,ms′′tgt,mstgt
e2
↪→ ms′′tgt =⇒ ∃ms′src,mssrc

e2
↪→ ms′src∧ (ms′src,ms′′tgt) ∈ R.

By determinate at, we have (e1 ∼ e2 ∧ (e1 = e2 =⇒ ms′tgt = ms′′tgt)). If
e1 = e2, we have ms′tgt = ms′′tgt. We finish the proof by instantiating ∃ms′src
with ms′src. Otherwise, we still have e1 ∼ e2. By receptive at, we have ms′′src
such that mssrc

e2
↪→ ms′′src. Then, by applying mode (4) proof with e2 and ms′′src,

we get ms′′′tgt such that mstgt
e1
↪→ ms′′′tgt ∧ (ms′′src,ms′′′tgt) ∈ R. By applying

determinate at with e2,ms′′tgt, e2,ms′′′tgt, we get (e2 ∼ e2 ∧ (e2 = e2 =⇒
ms′′tgt = ms′′′tgt)). Hence, we have ms′′tgt = ms′′′tgt, and by simple rewriting,
(ms′′src,ms′′tgt) ∈ R. We finish the proof by instantiating ∃ms′src with ms′′src.

7We omit the details about coinductive reasoning here.

46

We get modes (2) and (3) by instantiating ∼ of (4) with proper instances; the
former with equality, and the latter with a certain relation called “match traces”
from CompCert. Note that the above proof outline does not use conditions
(∀ e, None ∼ e =⇒ e = None) ∧ (∀ e, e ∼ None =⇒ e = None) in ST. These
are mainly added for technical reasons and might not be essential.

12.2 Parameters for Open Simulations

Figure III.9 presents the sets of three parameters for open simulations: the set
of memory relations MR, the set of symbol relations SR, and the set of memory
predicates MP.

Memory Relation The first parameter ranges over Kripke-style memory/-
value relations in MR. Following [5, 10], we model the evolution of memory
relations using possible worlds and private and public transitions over the worlds.
Note that this parameter will be instantiated with the three memory relations
used in CompCert—namely memory identity, extension, and injection—and the
memory injection with module-local invariants we introduced.

A memory relation in MR consists of (i) a set t of possible worlds; (ii) public
and private transition relations ⊑ and ⊑prv over the worlds; and (iii) for each
world w ∈ t, memory relation mrel(w) and value relation vrel(w). A world w

represents an invariant on the memory, which can evolve over time according to
the public/private transition relations, as we discussed in Section 6.1. There are
four natural well-formedness conditions, which are self-explanatory. We can also
straightforwardly extend the value/memory relation to relations on CallData
and RetData, denoted ≿w.

Symbol Relation The second parameter ranges over symbol relations in SR
that relate information about global symbols (e.g., which block each global
variable points to) in the source and target. This parameter is needed to verify
optimizations like Unusedglob, Unreadglob that remove unnecessary static
variables thereby having non-identical symbol information in the source and
target.

A symbol relation in SR consists of (i) a set t of symbol relation states; (ii) an
extension relation ⊑ on the states; (iii) for each state d, a (compile-time) symbol
code relation screl(d); and (iv) for each state d and world w ∈ MR.t, (run-
time) symbol environment relation serel(d,w). There are seven well-formedness

47

(memory relation)

MR ∈ MemRel =
{ (t,⊑,⊑prv, mrel, vrel) ∈ (Set × P(t× t)× P(t× t)× (t → P(Mem × Mem))× (t → P(Val × Val))) |

(⊑ is preorder) ∧ (⊑⊆⊑prv) ∧ (∀w,w′, w ⊑ w′ =⇒ vrel(w) ⊆ vrel(w′)) ∧
(∀w, i, (Vint i, vtgt) ∈ vrel(w) =⇒ vtgt = Vint i) }

csrc ≿w ctgt
def
= (csrc.m, ctgt.m) ∈ mrel(w) ∧ (csrc.f, ctgt.f) ∈ vrel(w) ∧ (csrc.vs, ctgt.vs) ∈

−−−−−→
vrel(w) ∧

(csrc.rs, ctgt.rs) ∈
−−−−−→
vrel(w)

rsrc ≿w rtgt
def
= (rsrc.m, rtgt.m) ∈ mrel(w) ∧ (rsrc.v, rtgt.v) ∈ vrel(w) ∧ (rsrc.rs, rtgt.rs) ∈

−−−−−→
vrel(w)

(symbol relation)

SR ∈ SymbRel =
{(t,⊑, screl, serel) ∈ (Set × P(t× t)× (t → P(Scode × Scode))× (t → MR.t → P(Senv × Senv))) |
(1) ⊑ is preorder
(2) ∀scsrc, sc′src, sc′′src, sctgt, sc′tgt, sc′′tgt, sc′′src = scsrc ◦ sc′src ∧ sc′′tgt = sctgt ◦ sc′tgt =⇒

∀d, d′, (scsrc, sctgt) ∈ screl(d) ∧ (sc′src sc
′
tgt) ∈ screl(d′) =⇒

∃d′′, (sc′′src, sc
′′
tgt) ∈ screl(d′′) ∧ d ⊑ d′′ ∧ d′ ⊑ d′′

(3) ∀scsrc, sctgt, d, (scsrc, sctgt) ∈ screl(d) =⇒
∃w, (load mem(scsrc), load mem(sctgt)) ∈ mrel(w) ∧ (load se(scsrc), load se(sctgt)) ∈ serel(d,w)

(4) ∀d,w,w′, w ⊑prv w
′ =⇒ serel(d,w) ⊆ serel(d,w′)

(5) ∀d,w, sesrc, setgt, (sesrc, setgt) ∈ serel(d,w) =⇒ sesrc.pubs = setgt.pubs ∧
∀(vsrc, vtgt) ∈ MR.vrel(w), vsrc ∈ ftns(sesrc) =⇒ vtgt ∈ ftns(setgt)

(6) ∀d, d′, w, scsrc, sctgt, sesrc, setgt, d ⊑ d′ ∧ (scsrc, sctgt) ∈ screl(d) ∧ (sesrc, setgt) ∈ serel(d′, w) =⇒
(sesrc|scsrc , setgt|sctgt) ∈ serel(d,w)

(7) ∀d,w, sesrc, setgt, csrc, ctgt, (sesrc, setgt) ∈ serel(d,w) ∧ csrc ≿w ctgt =⇒
∀e, rsrc, external call sesrc csrc e rsrc =⇒ ∃rtgt, external call setgt ctgt e rtgt ∧ ∃w′ ⊒ w, rsrc ≿w′ rtgt }

(memory predicate)

MP ∈ MemPred =
{ (t,⊑,⊑prv, mpred, vpred, sepred) ∈ (Set × P(t× t)× P(t× t)× (t→P(Mem))× (t→P(Val))× (t→P(Senv))) |

(⊑ is preorder) ∧ (⊑⊆⊑prv) ∧ (∀u, u′, u ⊑ u′ =⇒ vpred(u) ⊆ vpred(u′)) ∧
(sepred should satisfy the unary version of serel’s conditions where SR.⊑ and screl are the total relations) }

cpred(u) def
= {c ∈ CallData | c.m ∈ mpred(u) ∧ c.f ∈ vpred(u) ∧ c.vs ∈

−−−−−−→
vpred(u) ∧ c.rs ∈

−−−−−−→
vpred(u)}

rpred(u) def
= {r ∈ RetData | r.m ∈ mpred(u) ∧ r.v ∈ vpred(u) ∧ r.rs ∈

−−−−−−→
vpred(u)}

Figure III.9: Three parameters for open simulations

conditions: (1) the extension relation ⊑ is transitive and reflexive; (2) screl
is closed under the syntactic linking; (3) if symbol codes are related by screl,
then the initial memories and symbol environments loaded by load mem and
load se are related by mrel and serel, respectively; (4) serel is monotone
w.r.t. private transitions; (5) for symbol environments related by serel, their
public symbols are identical and their functions have the same signatures; (6)
serel is compatible with ⊑: for d ⊑ d′, serel(d′) restricted on screl(d) should
be in serel(d); and (7) the memory and symbol relations should be compatible

48

with CompCert’s axiom about system calls (i.e., external call).

Memory Predicate The third parameter ranges over Kripke-style memory
predicates in MP, which are needed to modularly verify CompCert’s analysis
engines such as value analysis (see Section 12.3). MP is essentially a unary
version of MR combined with SR where SR.⊑ and screl are taken as the
total relations (i.e., relating everything): it consists of (i) the set t of possible
worlds; (ii) public and private transition relations ⊑ and ⊑prv over the worlds,
respectively; and (iii) for each world w ∈ t, a memory predicate mpred(w), a
value predicate vpred(w), and a symbol environment predicate sepred(w). The
well-formedness conditions are self-explanatory.

12.3 Open Simulations with Parameters

Figure III.10 presents our parameterized open simulations, which are given in
the form of forward simulation for simplicity though they are actually in the
form of mixed simulation presented in Section 8.3. In this section, we omit MR,
SR, and MP when clear from context (e.g., vrel(w) for MR.vrel(w)). Also,
R and G means rely and guarantee conditions for the external modules.

Simulation of Machine States A relation match states on machine states
is an open simulation if all related states either (i) transition to related states,
(ii) invoke related external calls (hence the name “open” simulation), or (iii)

halt with related return values and memories. Specifically, given source and
target module semantics semsrc, semtgt and a (source) soundness predicate
sound state (discussed later), the relation match states over worlds is an open
simulation if the relatedness of mssrc and mstgt at a world w with the soundness
of mssrc implies one of the followings.

• (STEP) The source and target states transition to related states. Specifically:

line 1: the source machine state takes intramodule steps, and

line 2: if the source machine state transitions to a next state emitting an event
e,

line 3: then the target machine state is able to transition to a next state
emitting the same event e, possibly with additional silent transitions,
and

49

(sim:states)

match states ∈ open sim(semsrc, semtgt, sound state)
def
=

∀w,∀((msrc, ssrc), (mtgt, stgt)) ∈ match states(w), (∃u, (msrc, ssrc) ∈ sound state(u)) =⇒
(STEP) semsrc.at external(msrc, ssrc) = None ∧ semsrc.halted(msrc, ssrc) = None ∧

∀e,m′
src, s

′
src, (msrc, ssrc)

e
↪→ (m′

src, s
′
src) =⇒

∃m′
tgt, s

′
tgt, (mtgt, stgt)

τ
↪→∗ e

↪→ τ
↪→∗ (m′

tgt, s
′
tgt) ∧

∃w′ ⊒ w , ((m′
src, s

′
src), (m

′
tgt, s

′
tgt)) ∈ match states(w′)

∨ (CALL) ∃w′ ⊒prv w , ∃csrc, ctgt, csrc ≿w′ ctgt ∧
semsrc.at external(msrc, ssrc) = Some csrc ∧ semtgt.at external(mtgt, stgt) = Some ctgt ∧
∀w′′ ⊒ w′ , ∀rsrc, rtgt, rsrc ≿w′′ rtgt =⇒
∀m′

src, s
′
src, semsrc.after external(ssrc, rsrc) = Some (m′

src, s
′
src) =⇒

∃m′
tgt, s

′
tgt, semtgt.after external(stgt, rtgt) = Some (m′

tgt, s
′
tgt) ∧

∃w′′′ ⊒prv w
′′, w′′′ ⊒ w ∧ ((m′

src, s
′
src), (m

′
tgt, s

′
tgt)) ∈ match states(w′′′)

∨ (RET) ∃w′ ⊒ w , ∃rsrc, rtgt, rsrc ≿w′ rtgt ∧
semsrc.halted(msrc, ssrc) = Some rsrc ∧ semtgt.halted(mtgt, stgt) = Some rtgt

(sim:modsem)

semsrc ≿d,sound state semtgt
def
= ∃match states ∈ open sim(semsrc, semtgt, sound state),

(INIT) ∀w ∈ MR.t, ∀csrc, ctgt, csrc ≿w ctgt =⇒
csrc.f ∈ ftns(semsrc.senv) ∧ ctgt.f ∈ ftns(semtgt.senv) =⇒
(semsrc.senv, semtgt.senv) ∈ serel(d,w) =⇒ ∀(msrc, ssrc) ∈ semsrc.init core(csrc),
∃(mtgt, stgt) ∈ semtgt.init core(ctgt),

∃w′ ⊒ w , ((msrc, ssrc), (mtgt, stgt)) ∈ match states(w′)

(sim:mod)

Msrc ≿ Mtgt
def
= ∃d ∈ SR.t, ∃sound state : MP.t → P(Mem ×Msrc.state),

(1) (Msrc.scode,Mtgt.scode) ∈ screl(d)

∧ (2) ∀sesrc, sound state ∈ open prsv(Msrc.sem sesrc)

∧ (3) ∀d′ ⊒ d, ∀w, ∀(sesrc, setgt) ∈ serel(d′, w) ,

Msrc.sem (sesrc) ≿d,sound state Mtgt.sem (setgt)

(sim:prog)

Progsrc ≿ Progtgt
def
=

∀i ∈ N, Progsrc[i] ≿ Progtgt[i]

(preservation)

sound state ∈ open prsv(semsrc)
def
=

(INIT) ∀u ∈ MP.t, ∀csrc ∈ cpred(u) , semsrc.senv ∈ sepred(u) =⇒ ∀(msrc, ssrc) ∈ semsrc.init core(csrc),

∃u′ ⊒ u , (msrc, ssrc) ∈ sound state(u′)

∧ (STEP) ∀u, ∀(msrc, ssrc) ∈ sound state(u),∀e,m′
src, s

′
src, (msrc, ssrc)

e
↪→ (m′

src, s
′
src) =⇒

∃u′ ⊒ u , (m′
src, s

′
src) ∈ sound state(u′)

∧ (CALL) ∀u, ∀(msrc, ssrc) ∈ sound state(u),∀csrc, semsrc.at external(msrc, ssrc) = Some csrc =⇒
∃u′ ⊒prv u , csrc ∈ cpred(u′) ∧

∀u′′ ⊒ u′, ∀rsrc ∈ rpred(u′′) , ∀m′
src, s

′
src, semsrc.after external(ssrc, rsrc) = Some (m′

src, s
′
src) =⇒

∃u′′′ ⊒prv u
′′, u′′′ ⊒ u ∧ ∃m′

src ∈ mpred(u′′′) ∧ (m′
src, s

′
src) ∈ sound state(u′′′)

∧ (RET) ∀u, ∀(msrc, ssrc) ∈ sound state(u),∀rsrc, semsrc.halted(msrc, ssrc) = Some rsrc =⇒
∃u′ ⊒ u , rsrc ∈ rpred(u′)

Figure III.10: Parameterized Open Simulations

50

line 4: the next states are related by match states(w′) for a public future
world w′ ⊒ w.

• (CALL) The source and target states invoke related external calls. Specifically:

line 1: certain external functions and arguments in the source and target are
related at a private future world w′ ⊒prv w, and

line 2: the source and target machine states invoke the related external func-
tions with the related arguments, and

line 3: for any return values and memories related at any public future world
w′′ ⊒ w′,

line 4: if the source safely returns from the external call,

line 5: then the target also safely returns from the external call, and

line 6: the states after return are related by match states(w′′′) for a world
w′′′ that is a private future of w′′ and a public future of w.

• (RET) The source and target states halt with related values and memories.
Specifically:

line 1: with return values and memories related at w′ for a public future world
w′ ⊒ w,

line 2: the source and target machine states halt.

Simulation of Module Semantics Module semantics are related if their
initial machine states are related. Specifically, for a symbol relation d ∈ SR and
a (source) soundness predicate sound state, a target module semantics semtgt

simulates a source one semsrc if for an open simulation match states:

• (INIT) the initial machine states of semsrc and semtgt are related by match states.
Specifically:

line 1: for any source and target call data related at any world w ∈ MR,

line 2: if the functions of the source and target call data belong to the modules
and

line 3: the symbol environments are related at d and w, then for any initial
machine state of the source function call,

51

line 4: there exists an initial machine state of the target function call such
that

line 5: the two initial machine states are related by match states(w′) for w′

a public future of w.

Simulation of Modules Modules are related if their module semantics are
related. Specifically, a target module Mtgt simulates a source one Msrc if
the following hold for a symbol relation d ∈ SR and a soundness predicate
sound state:

line 1: the source and target symbol codes are related at d,

line 2: sound state satisfies the open preservation property (discussed below),
and

line 3: for any symbol environments related at any symbol relation d′ extending
d and any world w,

line 4: the source and target module semantics for the related symbol environ-
ments are related at d and w.

Note that the symbol environments are related at d′, which represents the
possible symbol information after linking with an arbitrary module, while the
module semantics are related at d, which represents the module’s own symbol
information.

Simulation of Programs Two programs each of which consists of a list of
modules are simulated if each corresponding modules are simulated.

Open Preservation with Parameters CompCert’s passes are categorized
into two groups: analysis pass and translation (optimization) pass. The former
computes useful information about the source program so that it can be used in
translation passes. Such separation encourages code reuse as an analysis pass
can be employed in multiple translation passes.

In verification, CompCert verifies the soundness of an analysis pass modularly,
independent from its clients. Specifically, CompCert uses a relation match states

to prove correctness of a translation pass and a predicate sound state to prove
correctness of the analyzer such as value analysis, where sound state specifies

52

those states where the analysis results hold. As we do for match states, we
perform a similar generalization from a closed setting to an open setting for
sound state. Specifically, we generalize the conditions for sound state from
preservation to open preservation (cf. from simulation to open simulation); and
parameterize over memory predicates MP (cf. memory relations MR), which
intuitively encodes the analysis results of the analyzer. Also, as we do for open
simulation, we prove that all Clight and Asm modules satisfy open preservation
with MP, which intuitively means that all those context modules preserve the
analysis results of the analyzer. Note that the definition of open preservation,
open prsv, is essentially a unary version of that of open simulation, where the
(INIT) case corresponds to that of the module semantics simulation and the
(STEP), (CALL), and (RET) cases to those of the state simulation.

12.4 Horizontal Compositionality and Adequacy

To use open simulations in RUSC, we prove their horizontal compositionality
and adequacy. Let P and Q be programs (i.e., lists of modules) and we define
P ⊕ Q to be the list concatenation of P and Q. Let MR ∈ MemRel, SR ∈
SymbRel,MP ∈ MemPred be parameters, and ≿ be the program simulation
relation for the parameters, given in (sim:prog) of Figure III.10. Then we have:

Theorem 11 (HorComp). For any programs Psrc, Ptgt, Qsrc, Qtgt, if Psrc ≿
Ptgt and Qsrc ≿ Qtgt:

Psrc ⊕Qsrc ≿ Ptgt ⊕Qtgt .

Proof. Immediate from the definition of ⊕ and (sim:prog).

Theorem 12 (Adequacy). For any programs Psrc and Ptgt, if Psrc ≿ Ptgt:

Beh(Psrc) ⊇ Beh(Ptgt) .

Proof. By “weaving” module simulations as in [10].

12.5 Instances of Parameters

This section presents intuition behind the three parameters (Section 12.5) with
some interesting instances of them.

The virtue of parameterizing MR is that in the (CALL) case of Figure III.10,
possible future worlds are restricted with w′′ ⊒ w′ . Actually, all the guarantee

conditions w′ ⊒ w elsewhere are required to ensure this condition. The most

53

interesting instances of MR are already presented in Section 9. They are carefully
designed so that each function guarantees others’ private memories (e.g., dynamic
local memories) are unchanged (w′′ ⊒ w′), and in return, they are guaranteed
that their own private memories are unchanged after an external function call.

SR is introduced to verify optimizations that change their symbol code, such
as Unusedglob. Except for those optimizations, we always use the following
trivial quadruple.

(Scode × Scode,
fun → ⊤,

fun d scsrc sctgt → d = (scsrc, sctgt),

fun sesrc setgt → sesrc = setgt)

For Unusedglob, we use the following instance.

((d, s, t) ∈ P(Ident)× Scode × Scode),
(fun (d, s, t) (d′, s′, t′) →

d ⊆ d′ ∧ s ⊆ s′ ∧ t ⊆ t′ ∧ (∀i ∈ Ident, i ∈ d′ ∧ i /∈ d =⇒ (i /∈ s ∧ i /∈ t))),

(fun (d, s, t) scsrc sctgt →
s = scsrc ∧ t = sctgt ∧ (∀i ∈ Ident, i /∈ d =⇒ s@i = t@i)∧
(∀i ∈ Ident, i ∈ d =⇒ i ∈ (statics of s) ∧ t@i = None)),

. . .)

Here, d means dropped identifiers, s source Scode, and t target Scode.
statics of means the list of identifiers marked as static variable and s@i
is a definition in s whose identifier is i. We omit the exact definition of serel; it
morally means that the injection does not map dropped identifier in the source,
and all other identifiers are mapped one-to-one.

Similarly to the above, the virtue of parameterizing SR is that in (INIT)
case of Figure III.10, one can rely on (semsrc.senv, semtgt.senv) ∈ serel(d,w) .
For this, a pair of the module first guarantees their symbol codes are related:
(Msrc.scode,Mtgt.scode) ∈ screl(d) . Recall that in the loading process (Sec-
tion 11.1), individual symbol codes are linked to constitute a global symbol
code, loaded into the global symbol environment, and finally projected into
individual symbol environments. There should be a mechanism that ensures
the information written in screl (i.e., the list of dropped identifiers) to be
transferred into serel (i.e., dropped identifiers are not injected). For instance,
suppose that module A claims that a static identifier i of another module B

54

is dropped while it actually is not. Then, the resulting injection will not map
i, so the serel of B is broken. In order to prevent this, screl requires that
the identifiers one claims to be dropped should be its own static variables
(statics of s), which prevents invalidating other modules’ invariants. Then,
such information is maintained throughout the linking process by ⊑ relation.

The idea behind MP is already discussed in Section 12.3. For passes that do
not employ the value analysis, we offer the following trivial instance accompanied
by an open preservation proof with a trivial sound state, so there is no additional
proof obligation:

(Unit, fun → ⊤, fun → ⊤, fun → ⊤, fun → ⊤, fun → ⊤)

sound state
def
= fun → ⊤

For passes that employ value analysis, we use a unary version of enriched memory
injection. Its definition is largely straightforward, so we omit here; instead, we
note some interesting points. The idea behind the two examples Section 9 and
Figure III.1 are similar: protection of private memory. However, while the former
in its essence requires relational reasoning so it should be verified with enriched
memory injection, the latter suffices to use unary reasoning, so it is verified with
memory identity plus open preservation, which greatly simplifies the proof.

13 CompCertR

In this section, we list the major differences between CompCert and CompCertR.
As discussed, we enriched CompCert’s existing memory injection so that it

can be used in an open simulation. Roughly speaking, CompCert only relies on
private memory protection (by system call axioms) while it does not guarantee
it. This is indeed okay because system calls are expected not to make a mutually
recursive call and well-behaved. However, in our open setting, an external call
can make a mutually recursive call, and each translation should also guarantee
the condition. For instance, suppose that f calls g and g calls f again. Here, for
the first f to rely on private memory protection, second f needs to guarantee it.

For technical reasons, we also refactored some language’s semantics but
CompCert’s correctness results remain the same. Specifically, we changed the
followings:

• We changed the Callstate of each language to carry function pointer instead
of identifiers. Note that in the open setting, a module can call another module’s

55

function via a function pointer. To be specific, suppose that module X’s symbol
code is [b, c] and the global symbol code is [a, b, c, d]. Then, the global
symbol environment is [1 7→ a, 2 7→ b, 3 7→ c, 4 7→ d], and module X’s is
[2 7→ b, 3 7→ c]. If the Callstate carries identifiers, X cannot call a function a
via its function pointer 1 because it first needs to lookup its environment with
1 and find the corresponding identifier, but it is lacking. For this reason, we
changed Callstate to carry more raw information, a function pointer itself,
than an identifier.

It is worth noting that CompComp takes a different approach; in their setting
X’s symbol environment is [1 7→ extern a, 2 7→ b, 3 7→ c, 4 7→ extern d],
where extern means that it just has an identifier and its body is missing. How-
ever, this symbol environment is quite different from the one originally used in
CompCert, [1 7→ b, 2 7→ c]. We deviated from CompComp’s approach because
it is desirable to maintain each symbol environment as a mere relocation from
the original ones. This property is beneficial when proving optimizations that
are sensitive to symbol code/symbol environment, such as Unusedglob, which
was missing in the days of CompComp.

• CompCert’s main function – the entry point of the whole program – does
not accept any argument, and this fact is exploited in various proofs. We
relaxed such proofs not to rely on empty arguments so that such proofs can
be reused in the open setting where each module can be called with arbitrary
arguments.
In detail, in CompCertM we employ a special gadget called dummy stack in
three consecutive intermediate languages (LTL, Linear, Mach) to take initial
arguments into account. Those languages are unusual because the callee reads
arguments from caller’s stack frame; higher-level languages directly pass the
argument, and a lower-level language (assembly) passes arguments via memory.
Therefore, unlike CompCert, where the initial stack frame of those languages
is empty, in CompCertM, we put a dummy stack that only contains initial
arguments but nothing else. 8 For this, we relaxed CompCert’s simulation proof
so that it can be used in both CompCert and CompCertM. The two passes
that introduce (Allocation.v; translation to LTL) and eliminates (Asmgen.v;
translation from Mach) dummy stack required slight change. The other

8Correspondingly, the corestep is defined as follows: corestep(st0, e, st1)
def
= st0

e
↪→ st1 ∧

get stack(st0) ̸= []. This is in contrast with CompComp, where they did not reuse the existing
e
↪→ and defined a totally new corestep, which led to more engineering effort.

56

passes whose source and target both have dummy stack (e.g., Linearize.v,
Tunneling.v) are almost unchanged, except for the Stacking.v whose proof
is deeply involved with the structure of stack frame.

• In CompCert’s assembly semantics, the RSP register is initialized to an integer
0. This is okay for CompCert generated assemblies where the initial value of
RSP is never used, but in our setting, we may include a hand-written assembly
module, so a more faithful formalization would be desirable. Therefore, we
initialize RSP with a junk pointer.9 As we did in Section 8.1, we adjust the
initial memory to contain a junk block (block number 1), and initialize RSP
with that address.

The correctness result of CompCert remains the same, and the reason is as
follows.

• The semantics of the source language is unchanged. In ClightBigstep.v the
equivalence between small-step style and big-step style is proven. We did not
modify the big-step style at all, and the equivalence is still proven.

• The only thing that is changed in the target language’s semantics is the initial
value of RSP register, where our version admits more behavior.

Additionally, we have strengthened the C type checker in order to prove
Theorem 9; our modification is faithful w.r.t modern C compliers.Specifically, our
modified type checker additionally rejects the following cases: (1) void function
returning a value, (2) non-void function not returning a value, and (3) ill-formed
composite types. With these enhancements, we proved that when executing
a well-typed C module, arguments of a function call and a return value of a
function are always well-typed. 10 This additional property guarantees that
nothing weird happens in the inter-module step, which is necessary for proving
Theorem 9.

14 Related Work

We discuss related work on compositional compiler correctness for CompCert
and other higher-order languages.

9We can also use undef value but junk pointer is more convenient in simulation proof.
10CompCert’s type soundness theorem already maintains all the value in its state are

well-typed.

57

14.1 Compositional Correctness for CompCert

CompComp Besides what we have discussed, CompComp introduces self-
relatedness as a part of the notion of well-defined context and shows refinement
under well-defined contexts as a result of the compiler correctness proof, whereas
we uses such refinement as a method to prove compiler correctness. Also, the
PhD thesis of [26] observed, with a counterexample, one of the three reasons
for inadequacy of interaction semantics at assembly level: not enforcing the
assumption on the outgoing arguments area of the stack. It informally concludes
that assembly contexts should respect the compiler’s assumption without giving
a formal solution. Our repaired interaction semantics gives a formal way to
enforce the assumption by giving UB to those behaviors violating it.

CompCertX Besides what we have discussed, the latest version of Comp-
CertX [28] supports two features that CompCertM currently does not support.
First, it proves that CompCertX preserves the stack consumption by instru-
menting the languages’ semantics to record the size of the concrete stack frames.
Second, it carries the compiler correctness down to assembly with the flat mem-
ory model instead of CompCert’s block-based memory model. On the other
hand, CompCertX instruments the languages’ semantics to record permissions
in the stack frames in order to support address-taken stack variables, whereas
CompCertM supports them, without instrumenting the semantics, by adding
the private memory components to memory injections as shown in Section 9.
Interesting future work would be to apply the techniques of CompCertX to
CompCertM to support the two missing features, and conversely apply the tech-
nique of CompCertM to CompCertX to support address-taken stack variables
without recording permissions on the stack.

SepCompCert SepCompCert [15] proves a weaker form of compositional cor-
rectness for CompCert, namely correctness of separate compilation. Specifically,
the proof assumes that all modules are separately compiled by the same compiler
and then linked together without linking with any handwritten assembly. For
this, SepCompCert employs a surprisingly lightweight closed simulation tech-
nique, which, therefore, has been officially adopted by CompCert since version
2.7.

58

CASCompCert CASCompCert [11] extends CompComp to support concur-
rency in the absence of data races, which demonstrates that the proof technique
of CompComp (i.e., structured simulations) scales to a concurrent setting. How-
ever, in the Coq formalization, CompComp tames the complexity of structured
simulations by (i) not allowing address-taken stack variables (although how to
support them using structured simulations is described with paper proofs in the
associated technical report11); and (ii) only covering 12 out of the 20 passes in its
base version, CompCert 3.0.1 (although the 12 passes are exactly those that are
covered by the original CompComp): these restrictions unnecessitate the use of
memory injection. Also, CASCompCert can only allow special nondeterminism
caused by scheduling threads by slightly relaxing the conditions for forward
simulation, while CompCertM can allow arbitrary nondeterminism by mixing
forward and backward simulations.

We do not currently see any problem with applying the approach of CAS-
CompCert to CompCertM to support concurrency in the absence of data races.
Moreover, we expect that the compiler verification technique for promising
semantics [13], which is also based on simple closed simulations, applies to
CompCertM to fully support relaxed-memory concurrency.

14.2 Compositional Compiler Correctness for Higher-Order Lan-
guages

Pilsner Pilsner [19, 10] is a multi-pass optimizing compiler from a higher-
order imperative language down to an idealized assembly language. To verify
horizontally and vertically compositional correctness in the presence of higher-
order functions, Pilsner uses very general and flexible open simulations, called
parametric simulations, whose vertical compositionality proof is also technically
very involved. Since it would be hard to define interaction semantics due to
the different representations of values and memory in the source and target
languages, the RUSC technique is unlikely to be applicable to Pilsner.

Also, our approach to reasoning about dynamically and statically allocated
local memory, presented in Section 12, follows that of Pilsner, which is based
on the work of [5]. A minor difference is that we simplify the formulation by
restricting the occurrence of private transitions only to just before and after
external calls, while Pilsner allows private transitions at every local step only
requiring public transitions between the end-to-end worlds of the execution of a

11https://plax-lab.github.io/publications/ccc/ccc-tr.pdf

59

https://plax-lab.github.io/publications/ccc/ccc-tr.pdf

function.

Multi-language semantics Ahmed and her collaborators propose multi-
language semantics [23, 22, 24, 20, 21] as an approach to prove compositional
correctness and full abstraction of a compiler for both assembly-like and higher-
order languages. Specifically, they define a language that combines all of the
source, intermediate and target languages, and prove contextual equivalence
and/or full abstraction for each translation pass in the combined language
using logical relations (with back-translations). In this approach, they rule out
ill-formed contexts by syntactic type systems and use the typed contextual
equivalence for compositionality. Since RUSC rules out ill-formed contexts by
semantic program relations, it would be interesting to see if RUSC could be
applicable and beneficial to the approach of Ahmed et al., in particular, for full
abstraction.

60

Chapter IV

Program Verification

In this chapter, we will show the potential of RUSC-as-a-program-logic with
interesting examples and give a comprehensive comparison with modern variants
of Hoare logic (such as [1]), arguably the most successful and widely used
program verification technique so far. We first give a short introduction to
Hoare logic (Section 15), discuss its problems (Section 16), and present how we
verify interesting examples without the aforementioned problems (Section 17).
However, RUSC-as-a-program-logic is still in its early stage, so we clarify its
current limitations, compare it with Hoare logic, and discuss future research
directions (Section 18). Finally, we list up related works (Section 19).

15 Background

Hoare logic, since its origination in the 1960s, has shown great success as a
program verification technique, and modularity is at the heart of its success. In
Hoare logic, for a given program prog, verifier tries to establish the following
formula: {P} prog {Q}. This is called Hoare triple and means that if the prog

starts in a state satisfying the precondition P , its returning state should satisfy
the postcondition Q. Then, the following sequence (or sequential composition)
rule holds.

61

(Sequence)
{P} c0 {Q} {Q} c1 {R}

{P} c0; c1 {R}

The rule says that two Hoare triples can be composed as long as the former’s
postcondition coincides with the latter’s precondition. Thanks to this sequence
rule, the verifier can modularly verify each instruction of the program and then
compose them to establish whole program correctness.

Modern higher-order variants of Hoare logic[1, 3] supports another useful
modular reasoning principle, which is written below (simplified for presentation
purpose).

(Call)
{Pg} call g {Qg} =⇒ {Pf} f {Qf}
{Pf} call f {Qf} =⇒ {Pg} g {Qg}

{Pf} f {Qf}
{Pg} g {Qg}

When verifying two mutually recursive functions, f and g, this reasoning principle
allows one to verify f assuming the specification of g and vice versa. Then,
together with the sequence rule, one can pass by call f (and call g, respectively)
instead of going through its body. The principle is seemingly unsound because it
is circular reasoning, but it is indeed sound. In order to justify the principle, a
technique called step-index is employed. With this, it is sufficient to verify that
f’s specification holds until k + 1 steps assuming the specification of g holds
until k steps and vice versa. Then, by using induction on the step-index k, one
can show that f and g’s specifications hold for any finite number of steps, which
is sufficient because Hoare triple requires only the partial correctness. Partial
correctness means that it does not say anything about termination; recall that
Hoare triple requires the postcondition to hold if it happens to terminate.

16 Problems

However, those modern variants of Hoare logic also have few drawbacks. First,
the step-index complicates the underlying model, which makes soundness result
(or even the meaning of a Hoare triple) esoteric. Second, it supports only partial
correctness (i.e., cannot prove termination). In fact, if we change the meaning
of Hoare triple to guarantee total correctness (i.e., both the postcondition

62

and termination), the call rule becomes unsound. 1 Therefore, to prove total
correctness, one needs to employ a separate tool. Third, its adequacy results
hold only when the whole program is verified with the same Hoare logic. This
is restrictive because we often want to verify each module with different tools
(such as model checker). Finally, it cannot verify a program that communicates
with the outside world. Think of a simple REPL, a web server, or an operating
system; it is even unclear how to write a Hoare triple for such a program.

17 Our Approach

In this section, we first present our approach with the mutual-sum example
(Section 17.1). To the best of our knowledge, our framework is the first, in the
context of CompCert, that is capable of verifying the mutually recursive modules.
Then, we point out that our approach does not suffer from the aforementioned
problems in Section 16 while supporting the modular reasoning principle (Section
17.2). Additionally, we verify utod, CompCert’s internal handwritten assembly
function whose behavior is axiomatized, and show that such axioms can be
removed (Section 17.3). Finally, we report their verification efforts (Section
17.4).

17.1 Verification of mutual-sum

Section 17.1 shows a C module, a.c; a handwritten assembly module, b.asm
(presented in C syntax for readability); their open specification modules, a.spec
and b.spec; and the combined closed specification module ab.spec. Both
functions f in a.c and g in b.asm mutually recursively compute the summation
from 0 up to the given argument integer i (denoted sum(i)), performing different
memoization optimizations. The function f memoizes the result of f(i) in the
static variable memoized1[i], which is initialized with zero representing invalid
value. The function call f(i) first reads the memoized value, and returns it if
it is valid; otherwise, it calculates, memoizes, and returns g(i-1), expected to
be sum(i − 1), plus i. On the other hand, the function g memoizes only the
result of the latest call g(i) with the index i, where memoized2[0] = i and
memoized2[1] = g(i). The code of g is self-explanatory under the assumption
that the call f(i-1) returns sum(i− 1).

1Here is a simple counter example: f := call f. Here, one can prove arbitrary pre/-
postcondition on f by using the call rule, which in turn implies that f terminates. This is
contradiction.

63

The open specification modules a.spec and b.spec are the same except that
the names of the internal and external functions are swapped. This is natural
because the two functions f and g compute the same summation. The open
specification a.spec is an abstract, nondeterministic, version of the function f
in a.c including all the observable behaviors of f. It has three kinds of states,
Init i, Ecall i and Ret r, representing the initial state with argument i, the
call state executing g(i− 1), and the halt state returning r, respectively. Then
init core starts with Init i when f is invoked with argument i if 0 ≤ i < 1000,
otherwise UB; at external recognizes Ecall i as the state invoking g with
i− 1; after external transitions from Ecall i to Ret sum(i) only when the
return value from the external call g(i− 1) is sum(i− 1), otherwise UB, which
means that this module gives a conditional specification under the assumption

64

that g(i) returns sum(i); halted recognizes Ret r as the halted state returning
r; and finally step transitions from Init i to either Ret sum(i) or Ecall i

nondeterministically (without updating the memory), where the former abstracts
reading from memoization and the latter recursively computing the sum. The
same applies to b.spec. Finally, the combined specification ab.spec does not
make any external function call and simply returns the summation.

Then, we perform our verification as follows. First, we prove a.spec ≽R a.c
using memory injections with the following invariant:

∀0 ≤ i < 1000, memoized1[i] = 0 ∨ memoized1[i] = sum(i) .

Second, we prove b.spec ≽R b.asm using memory injections with the following
invariant:

∃0 ≤ i < 1000, memoized2[0] = i ∧ memoized2[1] = sum(i) .

Finally, we prove ab.spec ≽R a.spec⊕b.spec using the memory identity. Note
that R is the set containing open simulations with the three memory relations
used in the above verification (i.e., memory injections with the two invariants
above and the memory identity).

17.2 Advantages

Our approach does not suffer from the aforementioned problems in Section 16
while supporting the modular reasoning principle (Section 17.2).

First and foremost, by passively modeling the expected behavior of other
modules with UB, we do not have any circularity in our reasoning. Therefore,
we do not need a step-index, so our specification is clean and easy to understand.
Furthermore, as our specification is written in operational semantics, it can
even be executed and tested. It is crucial to have a reliable and understandable
specification, perhaps as important as the verification itself, and testing is
widely adopted as a tool to establish such trust. Second, we trivially support
total correctness because the notion of behavior is termination-sensitive, and
we prove behavioral refinement. Third, we do not impose any restriction on
the client module because RUSC quantifies over an arbitrary context. Finally,
our specification module can trigger events just as C and assembly modules
do, so we can definitely give a REPL-like specification. Note that while we
give terminating specifications for terminating implementations and reactive
(non-terminating and consistently communicating with the outside world, like
REPL) specification for reactive modules, their correctnesses are all expressed
in the same RUSC relation. This is in contrast with where they define Hoare

65

Figure IV.1: Verification of utod

triple for partial correctness and total correctness separately, and these two do
not coexist.

17.3 Verification of utod

__compcert_i64_utod (Figure IV.1 - (d)) is one of the CompCert’s internal
handwritten assembly functions, which converts unsigned long to double by
utilizing architecture-specific instructions like cvtsi2sdq. Note that the call
to this assembly function is introduced during compilation passes; for example
a source program purely written in C (Figure IV.1 - (a)) is translated to
__compcert_i64_utod (Figure IV.1 - (b)). In order to justify this translation,
CompCert currently axiomatizes the behaviors of such runtime libraries as
described in Figure IV.1 - (c).

We demonstrate that such axioms can be essentially removed in CompCertM
by proving the axiom for __compcert_i64_utod. We first turn the axiom for
__compcert_i64_utod into a specification module and then establish an open
simulation with memory injections between the assembly module containing
__compcert_i64_utod and the specification module.

66

Table IV.1: SLOC of additional developments

Portion mutual-sum utod
Pass Proofs 3,088 361
The Rest 2,707 424
Total 5,795 785

17.4 Verification Effort

Table IV.1 shows SLOC for the program verification examples presented above.
Pass proofs (establishing open simulation between the specification and the

implementation module) are mostly mechanical and tedious. They mostly consist
of executing C (or assembly) semantics step-by-step, making a simple reduction
on the local environment (or register state), and applying memory related
lemmas appropriately. Note that all of these are shared patterns among general
C (or assembly) program verification. We did not do any proof automation at
all, so there is a big room for improvement.

For “The Rest,” mutual-sum and utod have quite different reasons for their
SLOC. In utod, the whole SLOC is about proving the self-relatedness of the
specification module. Recall that we verified self-relatedness for arbitrary C and
assembly modules but not for arbitrary specification modules (it is not true). In
mutual-sum, however, about 1,089 SLOC are from ab.spec ≽R a.spec⊕b.spec.
As discussed above, the proof of this translation is mainly about termination,
which should (morally) be easy. The main technical hassle that made this long
SLOC is that we had to take unknown context into account. Such reasoning can
be made as a general-purpose meta-theory.

18 Limitations and Future Works

At the moment, our framework has a number of limitations, but we plan to
extend it and use it to verify a realistic operating system. In the following list,
we clarify our current limitations (by comparing them with modern variants of
Hoare logic) and discuss future research directions.

• Specification language: it is often very inconvenient and inefficient to articulate
each and every state and its transitions. Instead, what we want is a language
that can describe state-transition systems concisely while maintaining express-
ibility.

• Module-local abstract state: for writing a richer specification module, we want

67

each module to have its own abstract state that is shared among different
invocations. We already have such a mechanism – namely, a static variable –
so that we may able to encode any mathematical data to an integer (e.g., by
Gödelization), but it is very inconvenient.

• Notion of separation: modern variants of Hoare logic also employ a notion
of separation – hence called higher-order separation logic – which gives a
very natural way to reason about programs handling shared resources (e.g.,
memory). In a smaller sense, we can think of intra-module separation, by
which we mean the separation between memory locations owned by a single
module. It is already supported, and a simpler form of it is even implemented
in CompCert.2 However, what is more interesting is inter-module separation.

{{ p |-> 0 }} {{ }} void g() {{ }}
int f(int* p) {

*p = 42;
{{ p |-> 42 }}

g();
{{ p |-> 42 }}

print(*p); --> print(42);
}

In the above example, ignore the code colored blue at the moment. A function
f takes a parameter p, initializes it with 42, calls an external function g, and
finally prints *p. Note that the pointer p is from an outside world (i.e., leaked);
thus, p may point to a value other than 42 after the call to g. However, if
the function f is given full ownership of the pointer *p – which prevents
the outside world from accessing it – the print(*p) can be abstracted into
print(42).

With separation logic, such reasoning is naturally supported. The precondition
of f (first line with blue color) specifies that it will require the full ownership
of p, and it points to value 0 (p |-> 0). Then, when calling g, its precondition
does not require the ownership of p, which means that it does not access the
location of p. Therefore, it is guaranteed that p points to the same value after
the call to g, thus justifying the abstraction.

The key idea here is that by employing the notion of separation and writing
specifications with respect to it, one can accommodate a richer form of
2In Separation.v

68

cooperation between modules. As discussed, we do support cooperation between
modules to some extent, but ours are not expressive enough. For instance,
in f’s specification, we can execute UB if the memory after the call to g
has an unexpected value in p’s address. However, in order to erase such UB
when merging the modules f and g, an additional proof is required. This is
in contrast with separation logic, where each module is verified modularly
according to precise specifications (expressed in terms of separation), and
there is no additional obligation on the top level.

• Concurrency: The modern variants of Hoare logic also support concurrent
programs – hence called higher-order concurrent separation logic – and we plan
to support it too. The key ingredients of higher-order current separation logic
are the notion of separation and invariants. We already discussed the former,
and the latter is already supported. Specifically, when the execution begins
(e.g., the function begins), we assume MR.mrel, and when the execution ends
(e.g., the function returns), we guarantee it. Such mechanisms are precisely
the same as opening/closing the invariants.
As we are mainly concerned with verifying operating systems, we are not
interested in the fork/join model or more abstract notion of concurrency (e.g.,
message passing). For our purpose, it is sufficient to have a simple model
where the number of concurrent agents (i.e., cores) and the programs they are
executing are predetermined. Instead, we want to concentrate on supporting
a more realistic concurrency model (e.g., [13]).

• Automation: modern variants of higher-order concurrent separation logic[12, 1]
are equipped with highly automated tactics that greatly reduce proof effort. In
contrast, we do not have any automation yet. We plan to adopt the automation
engine from separation logic. Also, note that our approach naturally supports
gradual abstraction (by vertical compositionality). This is also favorable for
automation because each abstraction is kept small, and we can choose different
tools for each abstraction. For instance, when abstracting just arithmetic
expressions, we may use an SMT-solver.

Also, for a fair comparison with higher-order concurrent separation logic, we
clarify that our framework does not support higher-order functions. Overcoming
this limitation is also an interesting future work, but it is not our priority at
the moment.

69

19 Related Works

CompComp The thesis suggests closed specification modules (i.e., without
making external calls) written in Coq’s Gallina language, which foreshadows
our open specification modules and verification against them.

CompCertX and CertiKOS Using CompCertX as a backend compiler,
CertiKOS– an OS kernel specially developed for verification purposes – has
been verified. As discussed in Chapter III, CompCertX has several restrictions:
it does not support (mutual) recursion and passing a pointer as an argument.
Also, they write specifications in CAL, which only works when each function
does not make an externally visible event and is guaranteed to terminate. On
the other hand, they have a notion of a module-local abstract state while we do
not. Also, their recently extended version [9] supports some form of concurrency
while we do not.

70

Chapter V

Conclusion

We conclude by recalling the main contributions of this dissertation. We de-
veloped a novel modular verification technique called RUSC (Chapter II) and
demonstrated its usefulness by applying it to both compiler verification (Chap-
ter III) and program verification (Chapter IV). On the one hand, RUSC is a
significant step forward for compiler verification; it achieves both the flexibility
of CompCertX and the generality of CompComp. We have applied RUSC to
CompCert and developed CompCertM, a full extension of CompCert supporting
multi-language linking. On the other hand, RUSC as a program verification
technique is in its early stage but shows considerable potential. We have ap-
plied RUSC to verify interesting examples and discussed its advantages, current
limitations, and future research directions.

71

Bibliography

[1] A. W. Appel. Verified software toolchain. In Proceedings of the 20th
European Symposium on Programming, ESOP 2011, 2011.

[2] A. W. Appel. Program Logics for Certified Compilers. Cambridge University
Press, 2014.

[3] A. W. Appel. Program Logics for Certified Compilers. Cambridge University
Press, 2014.

[4] L. Beringer, G. Stewart, R. Dockins, and A. W. Appel. Verified compilation
for shared-memory c. In Proceedings of the 23rd European Symposium on
Programming Languages and Systems, ESOP 2014, 2014.

[5] D. Dreyer, G. Neis, and L. Birkedal. The impact of higher-order state and
control effects on local relational reasoning. In Proceeding of the 15th ACM
SIGPLAN International Conference on Functional Programming, ICFP
2010, 2010.

[6] L. Gu, A. Vaynberg, B. Ford, Z. Shao, and D. Costanzo. Certikos: A
certified kernel for secure cloud computing. In Proceedings of the 2nd ACM
SIGOPS Asia-Pacific Workshop on Systems, APSys 2011, 2011.

[7] R. Gu, J. Koenig, T. Ramananandro, Z. Shao, X. N. Wu, S. Weng, H. Zhang,
and Y. Guo. Deep specifications and certified abstraction layers. In
Proceedings of the 42nd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2015, 2015.

[8] R. Gu, Z. Shao, H. Chen, X. Wu, J. Kim, V. Sjöberg, and D. Costanzo.
Certikos: An extensible architecture for building certified concurrent os

72

kernels. In Proceedings of the 12th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2016, 2016.

[9] R. Gu, Z. Shao, J. Kim, X. N. Wu, J. Koenig, V. Sjöberg, H. Chen,
D. Costanzo, and T. Ramananandro. Certified concurrent abstraction layers.
In Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2018, page 646–661, New York,
NY, USA, 2018. Association for Computing Machinery.

[10] C.-K. Hur, D. Dreyer, G. Neis, and V. Vafeiadis. The marriage of bisim-
ulations and kripke logical relations. In Proceedings of the 39th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2012, 2012.

[11] H. Jiang, H. Liang, S. Xiao, J. Zha, and X. Feng. Towards certified separate
compilation for concurrent programs. In Proceedings of the 40th ACM SIG-
PLAN Conference on Programming Language Design and Implementation,
PLDI 2019, 2019.

[12] R. JUNG, R. KREBBERS, J.-H. JOURDAN, A. Bizjak, L. Birkedal, and
D. Dreyer. Iris from the ground up: A modular foundation for higher-order
concurrent separation logic. Journal of Functional Programming, 28, 01
2018.

[13] J. Kang, C.-K. Hur, O. Lahav, V. Vafeiadis, and D. Dreyer. A promising
semantics for relaxed-memory concurrency. In Proceedings of the 44th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2017, 2017.

[14] J. Kang, C.-K. Hur, W. Mansky, D. Garbuzov, S. Zdancewic, and
V. Vafeiadis. A formal c memory model supporting integer-pointer casts.
In Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2015, 2015.

[15] J. Kang, Y. Kim, C.-K. Hur, D. Dreyer, and V. Vafeiadis. Lightweight
verification of separate compilation. In Proceedings of the 43rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2016, 2016.

73

[16] X. Leroy. Formal certification of a compiler back-end or: Programming a
compiler with a proof assistant. In Proceedings of the 33rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2006,
2006.

[17] X. Leroy. Formal verification of a realistic compiler. Commun. ACM,
52(7):107–115, July 2009.

[18] J. R. Lorch, Y. Chen, M. Kapritsos, B. Parno, S. Qadeer, U. Sharma, J. R.
Wilcox, and X. Zhao. Armada: Low-effort verification of high-performance
concurrent programs. In Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2020, page
197–210, New York, NY, USA, 2020. Association for Computing Machinery.

[19] G. Neis, C.-K. Hur, J.-O. Kaiser, C. McLaughlin, D. Dreyer, and
V. Vafeiadis. Pilsner: A compositionally verified compiler for a higher-
order imperative language. In Proceedings of the 20th ACM SIGPLAN
International Conference on Functional Programming, ICFP 2015, 2015.

[20] M. S. New, W. J. Bowman, and A. Ahmed. Fully abstract compilation
via universal embedding. In Proceedings of the 21st ACM SIGPLAN
International Conference on Functional Programming, ICFP 2016, 2016.

[21] D. Patterson and A. Ahmed. The next 700 compiler correctness theorems
(functional pearl). In Proceedings of the 24th ACM SIGPLAN International
Conference on Functional Programming, ICFP 2019, 2019.

[22] D. Patterson, J. Perconti, C. Dimoulas, and A. Ahmed. Funtal: Reason-
ably mixing a functional language with assembly. In Proceedings of the
38th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2017, 2017.

[23] J. T. Perconti and A. Ahmed. Verifying an open compiler using multi-
language semantics. In Proceedings of the 23rd European Symposium on
Programming, ESOP 2014, 2014.

[24] G. Scherer, M. S. New, N. Rioux, and A. Ahmed. FabULous interoperabil-
ity for ML and a linear language. In Proceedings of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2018, 2018.

74

[25] Y. Song, M. Cho, D. Kim, Y. Kim, J. Kang, and C.-K. Hur. Compcertm:
Compcert with c-assembly linking and lightweight modular verification.
Proc. ACM Program. Lang., 4(POPL), Dec. 2019.

[26] G. Stewart. Verified Separate Compilation for C. PhD thesis, Princeton
University, 2015.

[27] G. Stewart, L. Beringer, S. Cuellar, and A. W. Appel. Compositional Comp-
Cert. In Proceedings of the 42nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2015, 2015.

[28] Y. Wang, P. Wilke, and Z. Shao. An abstract stack based approach to
verified compositional compilation to machine code. In Proceedings of the
46th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2019, 2019.

75

초록

현대의 소프트웨어 시스템은 매우 복잡하고, 이 복잡성을 길들이기 위해 모듈별로
나눠 개발하는 것은 매우 중요하다. 이런 시스템을 검증하려면, 모듈별로 나눠 검
증하는 검증 기법이 필수적이다. 하지만, 기존의 방법들은 만족스럽지 못하다. 본
박사학위 논문에서 우리는 나눠서 검증하는 새로운 기법인 RUSC (Refinement
Under Self-related Contexts)를 개발하고, 그 유용함을 번역기 검증과 프로그램
검증을 통해 입증한다.
우리는 RUSC를 이용하여 번역기 검증의 최첨단을 개척하였다. 구체적으로,

우리는 전체 CompCert를 확장하여 적은 비용으로 아무런 제약 없이 다중 언

어 링킹을 지원하는 CompCertM을 개발하였고, 이것은 기존의 최첨단 기술인
CompCertX와 Compositional CompCert의 결과를 능가한다. 다른 한편, RUSC
를 프로그램 검증에 사용하는 것은 아직 초기 단계이지만 주목할만한 잠재력을 보

여준다. 고차 분리 논리(higher-order separation logic)와 비교하여, 우리의 방법은
더 간단한 명세와 더 강력한 결과를 제공하지만, 검증 비용이 훨씬 높고 복잡한
기능들을 지원하지 않는다.

주요어:
학번: 2015-21244

76

감사의 글

연구실에 입학하기 위해 처음 교수님을 만나 뵈었던 때가 바로 어제같이 생생합니

다. 교수님께서는 세상에 도움이 되는 재미있는 문제를 해결해나가자고 하셨었고,
지난 6년간 정말로 그런 시간을 보낼 수 있어서 감사했습니다.
저의 지도교수님이신 허충길 교수님께 감사드립니다. 교수님께서는 논문을 읽

고, 문제를 찾고, 해결하고, 구현하고, 쓰고, 발표하는 모든 과정에서 저를 이끌어
주셨고, 이를 통해 연구란 무엇인지 조금씩 배워나갈 수 있었습니다. 무엇보다도
교수님의 연구자로서의 자세를 배워나갈 수 있어 감사했습니다. 깊은 이해란 무
엇인지, 또 이를 위해서 얼마나 노력해야 하는지 배울 수 있었습니다. 복잡하고
거창한 것을 만드는 게 아니라, 실제 문제를 가장 단순하게 해결하려는 태도를
배울 수 있었습니다. 남들이 해놓은 일에 겁먹지 않고, 자신감을 갖고 문제에 도전
하는 게 얼마나 중요한지 배울 수 있었습니다.
이광근 교수님께 감사드립니다. 교수님께서 한국 프로그래밍 언어 동네의 토

양을 도탑게 가꾸어주셔서, 저도 조그마한 싹을 틔울 수 있었습니다. 이를테면,
교수님께서는 항상 우리말로 쉽고 정확하게 표현하라고 말씀해주셨고, 저는 그
과정에서 각 단어에 대한 견고한 이해를 쌓아나갈 수 있었습니다. 특히 compiler,
interpreter를 번역기, 실행기로 표현하면 된다는 것을 배웠을 때의 충격은 잊을 수
없습니다.
강지훈 교수님에게 감사드립니다. 교수님은 제가 아는 가장 훌륭한 엔지니어

이고,짧지않은시간함께일하며저도훌쩍성장할수있었습니다.특히생산성과
완벽함 사이의 오묘한 균형을 잡는 방법, 먼저 뼈대를 잡고 살을 채워나가는 효율
적인 개발 방법을 배울 수 있었습니다. 연구실 선배로서 저에게 정말 많은 조언을
해주셨고, 어려울 때 언제든 의지할 수 있는 든든한 버팀목이 되어주셨습니다.
조민기에게 감사합니다. 민기는 비상한 이해력과 문제해결 능력, 논리적 모순

을 찾아내는 날카로움으로 제 연구에 큰 도움이 되어주었습니다. 끊임없는 지적인
호기심과 밝은 에너지로 항상 주변을 밝혀주었고, 저에게 귀감이 되어주었습니다.

77

연구 외적으로도 많은 철학과 과학 상식을 배울 수 있었습니다.
소프트웨어 원리 연구실과 프로그래밍 연구실의 동료분들께 감사드립니다. 이

렇게 뛰어난 동료들과 이렇게 허물없이, 이렇게 즐겁게 시간을 보낼 수 있는 날은
아마도 다시 오기 힘들 것 같습니다. 연구실 모든 구성원들께서 연구실에 크고 작
은일이있을때마다발벗고나서주셔서감사합니다.특히강지훈교수님,김윤승
형, 이준영, 김용현에게 감사합니다. 함께 연구할 때 저를 믿고 잘 따라와 준 조
민기, 김동주, 김용현에게 감사합니다. 같이 맛집도 다니고 잡담도 하면서 즐겁게
지내게해준이준영,이동권,김세훈,이성환,조민기에게감사합니다.항상따뜻하
게 반겨주시고, 선배로써 많은 조언 해주시는 이우석 교수님, 허기홍 교수님에게
감사드립니다.
기나긴 대학원 과정을 잘 마무리할 수 있게 도와주신 부모님과 가족에게 이

논문을 바칩니다. 물심양면으로 지원해주신 덕분에 부족함 없이 편안한 마음으
로 공부에 임할 수 있었습니다. 이것이 얼마나 감사할 일인지 잘 알고 있습니다.
갚아나가며 살겠습니다.

78

	Abstract
	I Overview
	1 Compiler Verification
	2 Program Verification

	II RUSC
	3 Background
	4 Problems
	5 Our Solution

	III Compiler Verification
	6 Background
	6.1 CompCert's Memory Model and Memory Relations
	6.2 Interaction Semantics

	7 Problems
	8 Our Solution
	8.1 Assumptions on the Registers
	8.2 Assumptions on the Stack
	8.3 Mixed Simulation

	9 Advanced Optimizations with Module-Local Invariants
	10 CompCertM
	10.1 Compositional Correctness
	10.2 Evaluation of Verification Efforts

	11 Formal Semantics
	11.1 Loading in Interaction Semantics
	11.2 Module Semantics

	12 Formalization of Verification Techniques
	12.1 Mixed Simulation
	12.2 Parameters for Open Simulations
	12.3 Open Simulations with Parameters
	12.4 Horizontal Compositionality and Adequacy
	12.5 Instances of Parameters

	13 CompCertR
	14 Related Work
	14.1 Compositional Correctness for CompCert
	14.2 Compositional Compiler Correctness for Higher-Order Languages

	IV Program Verification
	15 Background
	16 Problems
	17 Our Approach
	17.1 Verification of mutual-sum
	17.2 Advantages
	17.3 Verification of utod
	17.4 Verification Effort

	18 Limitations and Future Works
	19 Related Works

	V Conclusion
	초록
	감사의 글

